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ABSTRACT 

The increasing trends of data growth with the Internet and 

Internet of Things (IoT), the big data topic is becoming not 

only important but also very challenging for Data Centers.  

Apache Hadoop is a framework that allows for the distributed 

processing of huge amount of datasets across clusters of 

computers. Big Data Analytics applications have already 

started to move beyond the classic Hadoop architecture 

towards very close to real-time architectures such as Spark 

etc. In this sense, a fundamental understanding of a Hadoop 

and MapReduce principles and services (e.g. Hive, HBase 

etc.,) where operates on top of the Hadoop core, can be 

considered a very good starting point to have a good view of 

the Big Data World. This manuscript presents not only the 

design and deployment, but also a performance evaluation of 

benchmarks and stress testing of a Hadoop cluster. Given the 

fact that the raspberry pi is an affordable single board 

computer (SBC) gives the chance to everyone to enhance its 

knowledge and contribute, in a reasonable degree to the 

academic community, based on Raspberry Pi 2 abilities as an 

integrated computer. The current model is comprised of 15 

low cost Raspberry Pi 2 model B computers with CPU 900 

MHz, 32-bit quad-core ARM Cortex-A7 CPU processors and 

RAM 1GHz each node. The most common benchmarking and 

testing tools that are included in the Apache Hadoop 

distribution, are the TestDFSIO, TeraSort, NNBench and 

MRbench tools. Broadly speaking, the above mentioned tools 

are very popular choices to benchmark and stress test a 

Hadoop cluster to measure the performance, to compare the 

results and to share the outcome with other people who are 

interested in the topic. In this project the TestDFSIO tool is 

used to stress test the Hadoop cluster. 
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1. INTRODUCTION 
Big Data encompasses not only digital data but also to the 

data collected and stored as a paperwork from years to years. 

The rise of the Mobile Internet and the Internet of Things 

(IoT) is a fact which is supported nowadays from the 4G 

penetration levels and access to low-cost smartphones. In turn, 

smartphones act as the driving force to mobile internet 

adoption resulting for mobile operators to change the service 

model increasing their business innovation opportunities. 

Moreover, Internet of Things (IoT) and Clouding are driving 

the demand for storage and big data analytics. Most 

Organizations nowadays understand that there is a necessity to 

analyze huge amount of data to uncover for instance hidden 

patterns, correlations, or getting answers based on their 

interest, almost immediately. Big Data Analytics brings to the 

Organization’s table new advantages to uncover insights and 

trends that can be used for future decisions, identifying new 

business opportunities. The importance of Big Data Analytics 

in Organizations focuses on cost reduction, faster and better 

decision making and new products and services.  

Hadoop is an open-source distributed processing framework 

which is used to provide massive storage of any kind of data 

and run applications on clusters of commodity hardware [1]. It 

provides the ability of tremendous processing power and the 

ability to handle virtually limitless concomitant tasks. Hadoop 

clusters are boosting the speed of data analysis application, 

running open source distributed processing software, 

analyzing huge amount of unstructured data in a distributed 

computing environment. 

This research project involves the design, deployment and 

benchmark of a Hadoop cluster, composed of 15 Raspberry Pi 

2 model B computers, where all of them are connected over 

an Ethernet Network 100 Mbps in a parallel mode of 

operation. 

Raspberry Pi (RPi) 2 Model B “Figure 1” is equipped with a 

900 MHz quad-core ARM Cortex-A7 CPU (BCM2836) and 1 

GB of RAM (LP DDR2 SDRAM) [2]. The low cost of the 

Raspberry Pi 2 was an affordable solution to build and 

investigate the performance of a Hadoop cluster.  

 

Figure 1: Single Board Computer (SBC) - Raspberry Pi 2 

Model B [1]. 

2. SYSTEM DESCRIPTION 

2.1 Hardware Components 
The Hadoop cluster is composed of 15 Raspberry Pi2’s 

“Figure 2” where all the nodes are stacked together in two 

groups of 7 RPi’s each, plus the master node housed in a 

separate place. One out of 15 RPi’s is the so called Namenode 

which can be considered as the master node and the rest 14 

RPi’s are the DataNodes. All the RPi’s are connected to a 16-

Port 10/100 Mbps Ethernet switch, where the maximum 

network throughput for any individual node is 100 Mbps. A 

microSD card of 16 or 32 MB is placed in each RPi since the 

Pi cannot be booted without it. There is an external Hard Disk 

(HD) with size 320GB connected to the Namenode, apart 

from the microSD card of size 32GB needed to boot it. 
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Moreover, there are 3 USB cords to power the individual Pi’s 

with 3 switch-mode power supplies of 150W in total with 5V 

output, boosted to 5.5V so as to adjust the voltage drop. In 

addition, there are 4 cooling FANs to provide cooling 

solutions to the system thermal problems and 3 voltage meters 

to supervise the voltage output of the switch-mode power 

supplies [3]. 

 

Figure 2: Hadoop Cluster development. 

2.2 Software Tools 
The Operating System used to setup the RPi’s in the Hadoop 

cluster is the Raspbian GNU/Linux 8 (Jessie) which is one of 

the official supported Operating System (OS) [4]. 

The 1st software (SW) package needed for the cluster is the 

Hadoop, and in this project the Hadoop 2.7.2 version is used. 

Hadoop is a big data computing framework that generally 

refers to the following main components: the Hadoop 

common utilities, the Hadoop Distributed File System 

(HDFS) for data storage, the Hadoop Yet Another Resource 

Negotiator (YARN) for resource management and Job 

Scheduling/Monitoring and the Hadoop MapReduce which is 

a YARN-based “Figure 5”. Prerequisite for the Hadoop (SW) 

to work properly is to choose the proper Java version based on 

the Hadoop version. As a result, the 2nd software (SW) 

package we need is Java which is needed to be installed in all 

the RPi 2 nodes. Hadoop 2.7 version and later require at least 

Java 7. In this project the oracle-java8-jdk is installed “Figure 

3”. 

 

Figure 3: Hadoop and Java version in Hadoop Cluster. 

There is another SW package needed to build Hadoop which 

is the protobuf 2.5.0 libraries. In order to compile the Hadoop 

binaries, there is a need to apply the HADOOP-9320 patch. 

Next it’s absolutely necessary to install a whole bunch of 

build tools and libraries so as to see the Hadoop, up and 

running “Figure 4”. 

 

Figure 4: Critical Bunch of build libraries needed for 

Hadoop setup. 

2.3 Hadoop Cluster Architecture 
The Apache Hadoop software is based on Java and provides a 

scalable and fault-tolerant framework for distributed storage 

and processing of Big Data across many parallel nodes in a 

cluster. The Apache Hadoop library is designed to scale up 

from single to thousands nodes, involving hundreds or 

thousands of terabytes of data,  and the library itself is 

designed to detect and handle failures at the application layer. 

Hadoop has become the de facto industry framework for Big 

Data processing because of its innate benefits [5]. 

Apache Hadoop is composed of two core components, 

Hadoop Distributed File System (HDFS) and the Hadoop 

MapReduce which is a YARN-based. The other software or 

components such as, Hive, HCatalog, Pig, HBase, Sqoop, 

Mahout, Flume, Oozie, Pegasus and RHadoop are different 

components that sit on and around Hadoop “Figure 5”. 

 

Figure 5: Hadoop 2.x High Level Architecture. 

2.3.1 Hadoop Distributed File System (HDFS) 
The Hadoop Distributed File System (HDFS) is based on the 

Google File System (GFS) and written entirely in Java [6]. 

Google provided only a white paper with no implementation, 

but a significant part of the GFS architecture has been applied 

in its implementation in the form of HDFS.  

HDFS is a highly scalable, distributed, load-balanced, 

portable and fault-tolerant - there is a built-in redundancy at 

the software level – storage component of Hadoop. In other 

words, provides high throughput access to application data 

and is suitable for applications that have large data sets, 

whereas is designed to run on commodity hardware. 

HDFS is composed of a master and slave’s architecture in 
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which the master is named Namenode and the slaves are 

named Datanodes “Figure 6” implementing a distributed file 

system that provides high-performance access to data. HDFS 

supports the rapid data transfer between the Datanodes. The 

master or Namenode manages the file system namespace 

operations including opening, closing, renaming files and 

directories and controls access to the files by the client 

application and multiple Datanodes. The Datanodes manages 

file storage and storage device attached to it. When HDFS 

takes the data, internally split them up into one or more blocks 

– chunks of 128MB by default - and distributes them to 

different Datanodes in the cluster enabling parallel processing 

in a high efficient way. The HDFS replicates each piece of 

data multiple times and distributes the multiple copied data of 

each block per replication factor to individual Datanodes, 

placing at least one copy on a different Datanodes than the 

others. The replication factor is configurable at the cluster 

level or at file creation. Hence, if the data on Datanodes crash, 

can be found elsewhere within the cluster performing a highly 

fault-tolerant operation. 

 

Figure 6: Hadoop HDFS Architecture. 

Datanodes are also responsible for serving read and write 

requests from the HDFS clients and they are performing block 

creation, deletion and replication when the Namenode instruct 

them to do. Datanodes store and retrieve blocks when they are 

instructed to do – by the client application or by the 

Namenode – and in turn they report back to the Namenode 

periodically with list of blocks that are stored keeping and 

informing the Namenode on the current status. 

2.3.2 Hadoop MapReduce 
MapReduce is generally defined as a programming paradigm   

to process and generate large set of data [7]. In other words, 

MapReduce is a software framework – or data processing 

layer of Hadoop - written in Java and having the ability to 

split up input data into smaller tasks that can be executed in 

parallel processes. The output from the so called (map tasks) 

are then reduced and saved to a file system. In “Figure 7” can 

be seen the MapReduce flow of a Word Count program where 

a text file is taken as an input, divided into smaller parts, 

count each word and outputs a file with a count of all words 

within a file. 

 

Figure 7: Word Count Flow execution with MapReduce. 

A short explanation of the MapReduce Job flow of a Word 

Count program is depicted below [8], [9]. 

Split phase. – The so called InputSplits (InputSplits in Hadoop 

MapReduce is the logical representation of data) are created 

by logical data division, which serves as the input to a single 

Mapper Job and the Blocks are created in turn by the physical 

division of data. One input split can spread across multiple 

physical blocks of data. The fundamental need of InputSplits 

is to feed the Mapper with accurate logical data locations so 

that each Mapper to be able to process complete set of data, 

spread over more than one blocks. HDFS splits huge files into 

small ones storing them into the Hadoop file system and those 

small chunk of spitted data are known as data blocks “Figure 

8”. All such things are decided by the Namenode. 

  

Figure 8: InputSplit in Hadoop MapReduce. 

InputSplit does not comprise actual data but a reference to the 

data which is a key-value pair, dependent on the data set and 

the required output. InputSplit converts the physical 

representation of a block into logical for the Hadoop mapper, 

where this block is processed by an individual Mapper. In 

general, the key-value pair is specified in four places: Map 

input, Map output, Reduce input and Reduce output. How the 

input files are split up and read in Hadoop is defined by the 

InputFormat which is responsible for creating the input splits, 

dividing them into records. InputSplit in Hadoop is defined by 

the user according to the size of data. Thus the number of map 

tasks is equal to the number of InputSplit and the client which 

runs the job, can calculate the splits for a job, giving this info 

to the application master to schedule the map tasks that will 

be processed on the cluster. 

Map phase. – Mapper job processes each input record, 
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generating an intermediate key-value pair and store the 

intermediate-output on the local disk. Before storing the 

output for each mapper task, a partitioning of the key of the 

intermediate-output takes place on the basis of the key and 

then a sorting is done. The partitioning as a process specifies 

that all the values of a single key go to the same reducer 

determining which reducer is responsible for the particular 

key. The total number of partitioners is equal to the number of 

reducers. Moreover, the total number of blocks of the input 

file handles the number of map tasks in a program. As it’s 

already mentioned, the InputFormat determines in fact the 

number of maps.  

Sort phase. – In this phase, two sub-processes are taking 

place. The first one is called Shuffling where the intermediate 

output from mappers are transferred to the reducer and the 

second is the Sort process which is responsible for merging 

and sorting of map outputs. The two processes in Hadoop 

occur at the same time by the MapReduce framework. During 

the sort phase, all the intermediate key-value pairs generated 

in mapper in MapReduce are sorted by key, assisting the 

reducer to distinguish the new reduce tasks when they started. 

Reduce phase. – Hadoop Reducer takes as an input a set of an 

intermediate key-value pair, produced by the mapper 

aggregated them and then generates the outputs which is the 

final one and is stored in HDFS. Reducers run in parallel since 

they are independent of one another. 

2.3.3 Yet Another Resource Negotiator (YARN) 
YARN is the resource management layer and task scheduling 

to be executed in different nodes, allocating system resources 

to the various applications running in a Hadoop cluster. 

YARN as a cluster resource management layer support 

different data processing engines, such as graph processing, 

interactive processing, batch processing and others stored in 

Hadoop Distributed File System (HDFS). YARN enhances a 

Hadoop cluster with significant features such as Multi-

tenancy where the Capacity Scheduler enables the cluster to 

be run as multi-tenant systems. In the multi-tenancy 

architecture, a single instance of a software application serves 

multiple customers where each customer is named tenant. 

This ability allows multiple access engines to use Hadoop as a 

common standard, for interactive, real time and concurrently 

access the same dataset. The multi-tenancy architecture has a 

broaden significance in cloud computing because for instance 

in a Software-as-a-Service (SaaS) provider, we can run one 

instance of its application on one database instance providing 

web access to multiple customers. In a Hadoop cluster 

architecture YARN sits between HDFS and the processing 

engines which are used to run applications “Figure 9” [10]. 

 

Figure 9: Hadoop Cluster resource management – YARN. 

2.4 Design and Setup 

2.4.1 Design 
Hadoop has a Master-Slave architecture for data storage and 

distributed data processing using MapReduce and Hadoop 

Distributed File System (HDFS) methods “Figure 10” [11].  

 

Figure 10: Master-Slave architecture in Hadoop. 

Master is the node in the cluster which allows to conduct 

parallel processing of data using Hadoop MapReduce and is 

named Namenode. Slave is the node which assist to manage 

the state of an HDFS node, allows to store data to conduct 

complex calculations and is named Datanode. The JobTracker 

is an essential Daemon for MapReduce execution, receives 

the requests for MapReduce execution from the client, 

determines the data location, and finds the best TaskTracker 

nodes to execute the tasks, monitoring and controlling the 

overall status of the job back to clients. The TaskTracker runs 

on Datanodes which administers the Mapper and Reducer 

tasks and being in constant communication with the 

JobTracker signaling the progress of the executed tasks [12], 

[13], and [14]. 

The Hadoop cluster is composed of 15 Raspberry Pi’s 

connected to the 16-Port 10/100 Mbps Ethernet switch. One 

out of the 15 RPi’s is the master node called Namenode which 

is the head of the cluster and the rest 14 are the slaves called 

Datanodes or workers. Each node has a static IP address and 

the configuration is in such a way where the master can only 

communicate to every node with secure shell “Figure 11”.  

 

Figure 11: Network topology diagram for Hadoop cluster. 
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2.4.2 Setup 
The fundamental steps of building the cluster, comprises 

initially a task to set up the network connectivity where the 

hosts of the cluster must be assigned properly. A dedicated 

Hadoop user “hduser” and group accounts for the Hadoop 

environment must be created so as to separate the Hadoop 

installation from other services. The Rivest-Shamir-Adleman 

(RSA) key pair to allow “hduser” to access the slave machines 

seamlessly with empty passphrase is necessary to create in the 

master node. Secure Shell (SSH) keys  replication to all the 

cluster nodes is necessary so that all the Raspberry Pi’s 

(RPi’s) to be able to communicate each other without 

prompting for passwords. Java version "1.8.0_65" must be 

installed to support Hadoop 2.7.2 version. Then the Hadoop 

installation and configuration will follow creating the HDFS 

directories. It’s wise to check and verify the correct Hadoop 

installation and native libraries using the command “hadoop 

checknative –a”. The environment variables to be added 

correctly are very critical, paying attention in the right paths 

where the Java and Hadoop installation are located. 

There are several XML files that must be modified according 

to our architecture where these modifications needs to be 

applied in the Namenode and in all the Datanodes. The 

needed XML files are mentioned briefly below: 

Update core-site.xml. – The core-site.xml informs Hadoop 

daemon where the Namenode runs in the cluster. 

Update hdfs-site.xml. – The hdfs-site.xml comprises the 

configuration setting for HDFS daemons; the Namenode, the 

secondary Namenode if the cluster architecture is designed so, 

and the Datanode. 

Update yarn-site.xml. – YARN by default tracks Central 

Processor Unit (CPU) and memory of all nodes, applications, 

queues and as a resource manager loads its resource definition 

from the XML configuration files. 

Update mapred-site.xml. – The mapred-site.xml comprises the 

configuration setting for MapReduce daemons; the job tracker 

and the task-trackers. 

The last step is to format the Namenode and start the services. 

The right path is in “$HADOOP_HOME/bin/” and the 

execution command is the “./hdfs namenode –format”. In the 

Namenode go to “$HADOOP_HOME/sbin/” and execute the 

commands “./start-yarn.sh” and “./start-dfs.sh” “Figure 12”. 

 

Figure 12: Start Services in Hadoop cluster. 

Following starting the services in Hadoop cluster we check 

with the (Java Virtual Machine Process Status Tool) JPS 

command all the Hadoop daemons running on it such as the 

NameNode, DataNode, ResourceManager, NodeManager etc 

“Figure 13”. 

 

Figure 13: Hadoop daemons in Namenode and Datanode. 

The final verification of the Hadoop cluster that everything is 

running properly can be done by opening the browser or 

alternatively the Java processes in the nodes can be checked 

or to run the HDFS report command “hdfs dfsadmin –report”, 
“Figure 14”,  “Figure 15”. 

 

Figure 14:  Namenode overview in Hadoop cluster. 

 

Figure 15:  Datanodes overview in Hadoop cluster. 
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3. PERFORMANCE EVALUATION 
The Hadoop distribution comes with a number of benchmarks 

which are bundled in Hadoop-*test*.jar and Hadoop-

*examples*.jar.   

3.1 Hadoop HDFS Benchmark 

3.1.1 TestDFSIO 
The TestDFSIO benchmark is a read and write test for 

Hadoop Distributed File System (HDFS). That is to say, it 

will write and read a number of files to and from HDFS and is 

designed in such a way that it will use one map task per file. 

The file size and the number of files are specified by the 

command-line arguments. The TestDFSIO benchmark is part 

of the “hadoop-mapreduce-client-jobclient.jar”. 

The command used for running the write test for instance of 

12 files of 1GB each is the following: “hadoop jar 

/opt/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-

client-jobclient-2.7.2.jar TestDFSIO -write -nrFiles 12 -

fileSize 1GB -resFile /tmp/$USER-dfsio-12f-1GBwrite.txt” 

with the respective results “Figure 16”. Once the preceding 

command is initiated, a map reduce job will write 12 files to 

HDFS that are 1 GB in size. These test create data in HDFS 

under the “/benchmarks/TestDFSIO” directory. 

 

Figure 16:  Benchmark of HDFS:  Result of write test. 

The command used for running the read test for instance of 12 

files of 1GB each is the following: “hadoop jar 

/opt/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-

client-jobclient-2.7.2.jar TestDFSIO -read -nrFiles 12 -

fileSize 1GB -resFile /tmp/$ USER-dfsio-12f-1GBread.txt” 

with the respective results “Figure 17”. 

 

Figure 17:  Benchmark of HDFS:  Results of read test. 

After each test completion it’s needed to clean up the test 

results, otherwise available storage space will be consumed by 

the benchmark output file. The command used to clean up test 

results after completion is the following: “hadoop jar 

/opt/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-

client-jobclient-2.7.2.jar TestDFSIO –clean” “Figure 18. 

 

Figure 18:  Clean up test results after completion. 

TestDFSIO is designed in such a way that it will use 1 map 

task per file, namely, it’s a 1:1 mapping from files to map 

tasks. Splits are defined so that each map gets only one 

filename, which it creates (-write) or reads (-read). The 

TestDFSIO benchmark is a read and write stress testing for 

HDFS, where we discover performance bottleneck in our 

network, shake out the hardware and give a first impression of 

how fast our cluster is in terms of I/O. The most notable 

metrics in TestDFSIO are the Throughput (mb/sec) and the 

Average IO rate (mb/sec) where both metrics are based on the 

file size written or read by the individual map, compared with 

the elapsed time to do it. 

Throughput (mb/sec) for a TestDFSIO using (N) map tasks is 

defined as follows:  

               
             

   

         
   

 (1) 

The index           denotes the individual map tasks. 

The Average IO rate (mb/sec) is defined as follows: 

                    
         

   

 
   

 
            

       
 
   

 
 (2) 

3.2 Results  

3.2.1 TestDFSIO 
“Table 1” and “Table 2” depicts the different stats extracted 

from the TestDFSIO concerning the writing and read stress 

test.  

 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 178 – No. 42, August 2019 

43 

Table 1. Write Speed Test of Several Files 

 

Numb

er of 

Files 

 

Total 

MBytes 

process

ed 

Throu

ghput 

(mb/se

c) 

Avera

ge IO 

rate 

(mb/s

ec) 

 

IO rate 

standar

d 

deviati

on 

 

Test 

exec. 

time(s

ec) 

    1 
1000 

1.1670

02 

1.167

002 

 

0.00018

2 

889.6

83 

2 
2000 

0.9945

66 

0.996

609 

0.04511

7 

2072.

446 

3 
3000 

0.9639

47 

0.981

378 

0.12575

6 

2753.

687 

4 
4000 

1.0609

73 

1.075

586 

0.11949

1 

3200.

846 

5 
5000 

1.0831

82 

1.099

735 

0.13113

4 

4744.

475 

6 
6000 

1.1767

74 

1.192

759 

0.13712

1 

5239.

95 

7 
7000 

1.0801

24 

1.113

796 

0.18754

8 

6661.

712 

8 
8000 

1.2026

52 

1.466

353 

0.88503

1 

6829.

868 

9 
9000 

1.2914

16 

1.848

100 

1.41464

5 

7156.

598 

10 
10000 

1.4058

30 

2.058

063 

1.45051

9 

7303.

195 

11 
11000 

1.4191

48 

2.230

232 

1.62825

1 

7956.

805 

12 
12000 

1.3935

38 

2.152

734 

1.38241

7 

8844.

385 

 

Table 2. Read Speed Test of Several Files 

 

Numb

er of 

Files 

 

Total 

MBytes 

process

ed 

Throu

ghput 

(mb/se

c) 

Avera

ge IO 

rate 

(mb/s

ec) 

 

IO rate 

standar

d 

deviati

on 

 

Test 

exec. 

time(s

ec) 

    1 
1000 

4.6509

09 

4.650

908 

0.00212

6 

231.8

71 

2 
2000 

4.6914

90 

4.691

844 

0.04070

8 

449.1

42 

3 
3000 

4.7751

83 

4.775

540 

0.04134

5 

657.1

11 

4 
4000 

4.7313

60 

4.731

854 

0.04803

3 

879.8

29 

5 
5000 

4.7598

81 

4.760

251 

0.04195

3 

1090.

584 

6 
6000 

4.7580

06 

4.758

788 

0.06070

8 

1307.

109 

7 
7000 

4.7539

52 

4.754

276 

0.03907

2 

1526.

137 

8 
8000 

4.7150

26 

4.715

320 

0.03732

6 

1757.

054 

9 
9000 

4.7441

30 

4.745

264 

0.07386

7 

1962.

655 

10 
10000 

4.7451

45 

4.745

468 

0.03930

2 

2180.

204 

11 
11000 

4.7796

86 

4.780

229 

0.05112

5 

2377.

444 

12 
12000 

4.7490

13 

4.749

453 

0.04575

4 

2611.

314 

 

A practical example to understand how the Throughput, 

Average IO rate, Standard Deviation is calculated, is to 

collect the raw MapReduce results for write and read speed 

testing by giving the following commands for the writing test 

(hdfs dfs –cat /benchmarks/TestDFSIO/io_write/part*) and 

reading test (hdfs dfs –cat 

/benchmarks/TestDFSIO/io_read/part*) respectively “Figure 

19”. The following formulas are used to calculate Throughput, 

Average IO rate, Standard Deviation. [14]. 

 

Figure 19:  Raw MapReduce result for Write and Read 

Speed Testing. 

Write test Results. – We calculate the Throughput, Average 

IO rate, Standard Deviation for 5 files 1GB each as depicted 

in the “Table 1”. 

                                         (3) 

                                   (4) 

                   
                                              
                                          (5) 

(3)                                          
                                      
                                          

(4)                                    
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(5) 

                   

                                              

                       ×               =        
                                            

1.0997354 ×1.0997354= 0.1311344726 

The same methodology is used to calculate the read test for 5 

files 1GB each, and it’s applied to every experimental result 

for write and read testing “Table 1”, “Table 2”. 

The TestDFSIO read-write test for assessing Hadoop 

performance was performed by running 1 to 12 files each of 

size 1GB. In the “Figure 20” we can see the statistics of the 

read-write TestDFSIO runtime performance, in “Figure 21” 

we see the throughput TestDFSIO and in “Figure 22” we see 

the I/O rate TestDFSIO performance based on metrics stated 

in “Table 1”, “Table 2”. The experimentation started by 

gradually scaling up the file size from 1 GB to 12 GB.  

 

Figure 20: Runtime (speed-test) of read-write test (TestDFSIO). 

 

Figure 21: Throughput of read-write test (TestDFSIO). 
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Figure 22: I/O Rate of read-write test (TestDFSIO). 

 

Figure 23: Throughput of read-write test per DataNodes (TestDFSIO). 

 

Figure 24: I/O Rate of read-write test per DataNodes (TestDFSIO)

In Hadoop, the tasks are divided among different blocks and 

the processing is taking place in parallel and independent to 

each other. With the TestDFSIO read-write testing in fact we 

examine how efficiently HDFS is able to write and read big 

files.  

It was measured that the read runtime operation is 

approximately 3.5-4.5 times faster compared to write runtime 

operation, most likely because the Hard Disk Drive (HDD) in 

every RPi is a microSD card. Compared to a Solid State Drive 

(SSD), the expected result would be as such, read operation to 

be a little bit faster than write operation. Moreover, as we 

scale up the number of files from 1GB to 12GB, the write and 

read runtime operation is increased gradually as is expected 

“Table 1”, “Table 2” and “Figure 20”. Moreover, due to 

parallel processing the HDFS has good throughput “Figure 

21” throughout the 12 “Datanodes”. It’s noted that the 
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throughput during reading operation is more by 3.5 to 5 times 

than the throughput during writing operation. As the number 

of files is increased, the throughput of the write operation 

stays approximately the same between (1-7) GB files whereas 

between (8-12) GB files the throughput starts to increase. In 

case of read operation the throughput stays approximately the 

say as the number of files is increased “Table 1”, “Table 2”, 

“Figure 21”.  

The I/O rate is actually the speed where the data transfer takes 

place between the hard drive, the network and the Random 

Access Memory (RAM).Concerning I/O rate, as the number 

of files is increased, the I/O rate of the write operation stays 

approximately the same between (1-7) GB files whereas 

between (8 -12) GB, the I/O rate starts to increase “Table 1”, 

“Table 2”, and “Figure 22”.  

Table 3. Write Speed Test to Multiple Nodes 

 

Numbe

r of 

Datano

des  

 

Total 

MBytes 

process

ed 

Throu

ghput 

(mb/se

c) 

Avera

ge IO 

rate 

(mb/s

ec) 

 

IO rate 

standar

d 

deviati

on 

 

Test 

exec. 

time(s

ec) 

    3 
5000 

2.3633

09 

2.390

478 

0.25311

5 

2182.

55 

6 
5000 

1.8038

47 

1.828

905 

0.20844

8 

2860.

783 

9 
5000 

1.6364

90 

1.648

843 

0.14271

5 

3146.

882 

12 
5000 

1.2411

64 

1.255

608 

0.13355

4 

4141.

714 

 

Table 4. Read Speed to Multiple Nodes 

 

Numbe

r of 

Datano

des 

 

Total 

MBytes 

process

ed 

Throu

ghput 

(mb/se

c) 

Avera

ge IO 

rate 

(mb/s

ec) 

 

IO rate 

standar

d 

deviati

on 

 

Test 

exec. 

time(s

ec) 

    3 
5000 

4.7118

97 

4.711

999 

0.02187

0 

1103.

003 

6 
5000 

4.7024

98 

4.703

307 

0.06175

8 

1104.

757 

9 
5000 

4.7115

24 

4.713

297 

0.09134

3 

1102.

966 

12 
5000 

4.7069

72 

4.707

448 

0.04750

6 

1105.

616 

 

Another research interest is to see how the “throughput” and 

the “average I/O rate” is changing when we increase the 

“Datanodes” “Table 3”and “Table 4”. Two definite factors 

that affects the distributed HDFS I/O performance are the 

block size and the number of Datanodes.  The blocks are the 

units for reading and writing in HDFS. The smaller the block 

size, the greater the block seek time. In this case the block size 

considered as the optimal of 128 MB which is the default 

value. Regarding the number of DataNodes, if the number of 

nodes is increased, a sufficient performance improvement is 

expected due to the increase degree of the distributed data 

which are processed in parallel. “Figure 23” and “Figure 24” 

shows the variation of the distributed I/O performance as the 

number of the DataNodes increases. Instead of the expected 

results, the throughput” and the “average I/O rate” is linearly 

decreased when we increase the DataNodes  from 3 to 12 

“Table 3”, “Table 4”, “Figure 23” and “Figure 24” regarding 

the writing performance. Compared to read performance the 

“throughput” and the “average I/O rate” remains constantly 

the same as the DataNodes increased. The explanation could 

be that, when the mapping process is completed the resulting 

blocks are stored in the HDD and then are transferred and 

received between the DataNodes shuffling through the 

network. The reading operation does not concern writing in 

the HDD. On the other hand, in the experiment, all 

DataNodes are installed in a single Ethernet switch of 

100Mbps. It make sense that the bandwidth limitation of the 

network causes the performance degradation due to overhead 

of communication between Namenode and DataNodes.  

4. CONCLUSION 
In this project, the performance of a Hadoop cluster using 

commodity low cost HW implemented and analyzed, with the 

tiny Raspberry Pi 2 platform. The most common 

benchmarking and testing tools that are included in the 

Apache Hadoop distribution, are the TestDFSIO, TeraSort, 

NNBench and MRbench tools. In this project the TestDFSIO 

used as the most widely reported of these benchmarks. After 

performing the TestDFSIO benchmark, the following 

observations can be stated: (a) The HDFS reading operation 

performance of files is much faster compared to writing 

operation performance; (b) due to parallel processing the 

HDFS has good throughput performance; (c) when the 

DataNodes are increased, the  “throughput” and “average I/O 

rate” performance degradation is observed, concerning the 

writing operation; (d) the network bandwidth bottleneck 

seems to be a major factor influencing the whole Hadoop 

performance;  

5. FUTURE WORK 
Since the mVAS dept. is dealing with design, testing and 

deployment Value Added Services (VAS), and lately started 

to deal with services in cloud environment there was a huge 

interest by me to research the Hadoop clustering topic. The 

first attempt was to design, deploy and stress test an 

affordable High Performance Hadoop cluster using 

Raspberry’s Pi 2 so that to gain knowledge and experiment 

the behavior and performance of a Hadoop cluster  with stress 

testing the MapReduce and HDFS performance. The next step 

is to combine Hadoop with R programming to investigate the 

statistical computations and data analysis of massive amounts 

of data under the scope of Big Data Analytics and distributed 

machine learning topic. 
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