
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 42, August 2019

37

Benchmarking Raspberry Pi 2 Hadoop Cluster

Dimitrios Papakyriakou
mVAS DevOps Engineer (Tester)
Deutsche Telecom Pan-Net GR

Messaging & Connected Services
Athens, Greece

ABSTRACT

The increasing trends of data growth with the Internet and

Internet of Things (IoT), the big data topic is becoming not

only important but also very challenging for Data Centers.

Apache Hadoop is a framework that allows for the distributed

processing of huge amount of datasets across clusters of

computers. Big Data Analytics applications have already

started to move beyond the classic Hadoop architecture

towards very close to real-time architectures such as Spark

etc. In this sense, a fundamental understanding of a Hadoop

and MapReduce principles and services (e.g. Hive, HBase

etc.,) where operates on top of the Hadoop core, can be

considered a very good starting point to have a good view of

the Big Data World. This manuscript presents not only the

design and deployment, but also a performance evaluation of

benchmarks and stress testing of a Hadoop cluster. Given the

fact that the raspberry pi is an affordable single board

computer (SBC) gives the chance to everyone to enhance its

knowledge and contribute, in a reasonable degree to the

academic community, based on Raspberry Pi 2 abilities as an

integrated computer. The current model is comprised of 15

low cost Raspberry Pi 2 model B computers with CPU 900

MHz, 32-bit quad-core ARM Cortex-A7 CPU processors and

RAM 1GHz each node. The most common benchmarking and

testing tools that are included in the Apache Hadoop

distribution, are the TestDFSIO, TeraSort, NNBench and

MRbench tools. Broadly speaking, the above mentioned tools

are very popular choices to benchmark and stress test a

Hadoop cluster to measure the performance, to compare the

results and to share the outcome with other people who are

interested in the topic. In this project the TestDFSIO tool is

used to stress test the Hadoop cluster.

Keywords

Raspberry Pi Hadoop cluster, Cloud Computing, Hadoop, Big

Data, Big Data Analytics, Parallel Computing, MapReduce,

Hadoop cluster benchmark.

1. INTRODUCTION
Big Data encompasses not only digital data but also to the

data collected and stored as a paperwork from years to years.

The rise of the Mobile Internet and the Internet of Things

(IoT) is a fact which is supported nowadays from the 4G

penetration levels and access to low-cost smartphones. In turn,

smartphones act as the driving force to mobile internet

adoption resulting for mobile operators to change the service

model increasing their business innovation opportunities.

Moreover, Internet of Things (IoT) and Clouding are driving

the demand for storage and big data analytics. Most

Organizations nowadays understand that there is a necessity to

analyze huge amount of data to uncover for instance hidden

patterns, correlations, or getting answers based on their

interest, almost immediately. Big Data Analytics brings to the

Organization’s table new advantages to uncover insights and

trends that can be used for future decisions, identifying new

business opportunities. The importance of Big Data Analytics

in Organizations focuses on cost reduction, faster and better

decision making and new products and services.

Hadoop is an open-source distributed processing framework

which is used to provide massive storage of any kind of data

and run applications on clusters of commodity hardware [1]. It

provides the ability of tremendous processing power and the

ability to handle virtually limitless concomitant tasks. Hadoop

clusters are boosting the speed of data analysis application,

running open source distributed processing software,

analyzing huge amount of unstructured data in a distributed

computing environment.

This research project involves the design, deployment and

benchmark of a Hadoop cluster, composed of 15 Raspberry Pi

2 model B computers, where all of them are connected over

an Ethernet Network 100 Mbps in a parallel mode of

operation.

Raspberry Pi (RPi) 2 Model B “Figure 1” is equipped with a

900 MHz quad-core ARM Cortex-A7 CPU (BCM2836) and 1

GB of RAM (LP DDR2 SDRAM) [2]. The low cost of the

Raspberry Pi 2 was an affordable solution to build and

investigate the performance of a Hadoop cluster.

Figure 1: Single Board Computer (SBC) - Raspberry Pi 2

Model B [1].

2. SYSTEM DESCRIPTION

2.1 Hardware Components
The Hadoop cluster is composed of 15 Raspberry Pi2’s

“Figure 2” where all the nodes are stacked together in two

groups of 7 RPi’s each, plus the master node housed in a

separate place. One out of 15 RPi’s is the so called Namenode

which can be considered as the master node and the rest 14

RPi’s are the DataNodes. All the RPi’s are connected to a 16-

Port 10/100 Mbps Ethernet switch, where the maximum

network throughput for any individual node is 100 Mbps. A

microSD card of 16 or 32 MB is placed in each RPi since the

Pi cannot be booted without it. There is an external Hard Disk

(HD) with size 320GB connected to the Namenode, apart

from the microSD card of size 32GB needed to boot it.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 42, August 2019

38

Moreover, there are 3 USB cords to power the individual Pi’s

with 3 switch-mode power supplies of 150W in total with 5V

output, boosted to 5.5V so as to adjust the voltage drop. In

addition, there are 4 cooling FANs to provide cooling

solutions to the system thermal problems and 3 voltage meters

to supervise the voltage output of the switch-mode power

supplies [3].

Figure 2: Hadoop Cluster development.

2.2 Software Tools
The Operating System used to setup the RPi’s in the Hadoop

cluster is the Raspbian GNU/Linux 8 (Jessie) which is one of

the official supported Operating System (OS) [4].

The 1st software (SW) package needed for the cluster is the

Hadoop, and in this project the Hadoop 2.7.2 version is used.

Hadoop is a big data computing framework that generally

refers to the following main components: the Hadoop

common utilities, the Hadoop Distributed File System

(HDFS) for data storage, the Hadoop Yet Another Resource

Negotiator (YARN) for resource management and Job

Scheduling/Monitoring and the Hadoop MapReduce which is

a YARN-based “Figure 5”. Prerequisite for the Hadoop (SW)

to work properly is to choose the proper Java version based on

the Hadoop version. As a result, the 2nd software (SW)

package we need is Java which is needed to be installed in all

the RPi 2 nodes. Hadoop 2.7 version and later require at least

Java 7. In this project the oracle-java8-jdk is installed “Figure

3”.

Figure 3: Hadoop and Java version in Hadoop Cluster.

There is another SW package needed to build Hadoop which

is the protobuf 2.5.0 libraries. In order to compile the Hadoop

binaries, there is a need to apply the HADOOP-9320 patch.

Next it’s absolutely necessary to install a whole bunch of

build tools and libraries so as to see the Hadoop, up and

running “Figure 4”.

Figure 4: Critical Bunch of build libraries needed for

Hadoop setup.

2.3 Hadoop Cluster Architecture
The Apache Hadoop software is based on Java and provides a

scalable and fault-tolerant framework for distributed storage

and processing of Big Data across many parallel nodes in a

cluster. The Apache Hadoop library is designed to scale up

from single to thousands nodes, involving hundreds or

thousands of terabytes of data, and the library itself is

designed to detect and handle failures at the application layer.

Hadoop has become the de facto industry framework for Big

Data processing because of its innate benefits [5].

Apache Hadoop is composed of two core components,

Hadoop Distributed File System (HDFS) and the Hadoop

MapReduce which is a YARN-based. The other software or

components such as, Hive, HCatalog, Pig, HBase, Sqoop,

Mahout, Flume, Oozie, Pegasus and RHadoop are different

components that sit on and around Hadoop “Figure 5”.

Figure 5: Hadoop 2.x High Level Architecture.

2.3.1 Hadoop Distributed File System (HDFS)
The Hadoop Distributed File System (HDFS) is based on the

Google File System (GFS) and written entirely in Java [6].

Google provided only a white paper with no implementation,

but a significant part of the GFS architecture has been applied

in its implementation in the form of HDFS.

HDFS is a highly scalable, distributed, load-balanced,

portable and fault-tolerant - there is a built-in redundancy at

the software level – storage component of Hadoop. In other

words, provides high throughput access to application data

and is suitable for applications that have large data sets,

whereas is designed to run on commodity hardware.

HDFS is composed of a master and slave’s architecture in

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 42, August 2019

39

which the master is named Namenode and the slaves are

named Datanodes “Figure 6” implementing a distributed file

system that provides high-performance access to data. HDFS

supports the rapid data transfer between the Datanodes. The

master or Namenode manages the file system namespace

operations including opening, closing, renaming files and

directories and controls access to the files by the client

application and multiple Datanodes. The Datanodes manages

file storage and storage device attached to it. When HDFS

takes the data, internally split them up into one or more blocks

– chunks of 128MB by default - and distributes them to

different Datanodes in the cluster enabling parallel processing

in a high efficient way. The HDFS replicates each piece of

data multiple times and distributes the multiple copied data of

each block per replication factor to individual Datanodes,

placing at least one copy on a different Datanodes than the

others. The replication factor is configurable at the cluster

level or at file creation. Hence, if the data on Datanodes crash,

can be found elsewhere within the cluster performing a highly

fault-tolerant operation.

Figure 6: Hadoop HDFS Architecture.

Datanodes are also responsible for serving read and write

requests from the HDFS clients and they are performing block

creation, deletion and replication when the Namenode instruct

them to do. Datanodes store and retrieve blocks when they are

instructed to do – by the client application or by the

Namenode – and in turn they report back to the Namenode

periodically with list of blocks that are stored keeping and

informing the Namenode on the current status.

2.3.2 Hadoop MapReduce
MapReduce is generally defined as a programming paradigm

to process and generate large set of data [7]. In other words,

MapReduce is a software framework – or data processing

layer of Hadoop - written in Java and having the ability to

split up input data into smaller tasks that can be executed in

parallel processes. The output from the so called (map tasks)

are then reduced and saved to a file system. In “Figure 7” can

be seen the MapReduce flow of a Word Count program where

a text file is taken as an input, divided into smaller parts,

count each word and outputs a file with a count of all words

within a file.

Figure 7: Word Count Flow execution with MapReduce.

A short explanation of the MapReduce Job flow of a Word

Count program is depicted below [8], [9].

Split phase. – The so called InputSplits (InputSplits in Hadoop

MapReduce is the logical representation of data) are created

by logical data division, which serves as the input to a single

Mapper Job and the Blocks are created in turn by the physical

division of data. One input split can spread across multiple

physical blocks of data. The fundamental need of InputSplits

is to feed the Mapper with accurate logical data locations so

that each Mapper to be able to process complete set of data,

spread over more than one blocks. HDFS splits huge files into

small ones storing them into the Hadoop file system and those

small chunk of spitted data are known as data blocks “Figure

8”. All such things are decided by the Namenode.

Figure 8: InputSplit in Hadoop MapReduce.

InputSplit does not comprise actual data but a reference to the

data which is a key-value pair, dependent on the data set and

the required output. InputSplit converts the physical

representation of a block into logical for the Hadoop mapper,

where this block is processed by an individual Mapper. In

general, the key-value pair is specified in four places: Map

input, Map output, Reduce input and Reduce output. How the

input files are split up and read in Hadoop is defined by the

InputFormat which is responsible for creating the input splits,

dividing them into records. InputSplit in Hadoop is defined by

the user according to the size of data. Thus the number of map

tasks is equal to the number of InputSplit and the client which

runs the job, can calculate the splits for a job, giving this info

to the application master to schedule the map tasks that will

be processed on the cluster.

Map phase. – Mapper job processes each input record,

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 42, August 2019

40

generating an intermediate key-value pair and store the

intermediate-output on the local disk. Before storing the

output for each mapper task, a partitioning of the key of the

intermediate-output takes place on the basis of the key and

then a sorting is done. The partitioning as a process specifies

that all the values of a single key go to the same reducer

determining which reducer is responsible for the particular

key. The total number of partitioners is equal to the number of

reducers. Moreover, the total number of blocks of the input

file handles the number of map tasks in a program. As it’s

already mentioned, the InputFormat determines in fact the

number of maps.

Sort phase. – In this phase, two sub-processes are taking

place. The first one is called Shuffling where the intermediate

output from mappers are transferred to the reducer and the

second is the Sort process which is responsible for merging

and sorting of map outputs. The two processes in Hadoop

occur at the same time by the MapReduce framework. During

the sort phase, all the intermediate key-value pairs generated

in mapper in MapReduce are sorted by key, assisting the

reducer to distinguish the new reduce tasks when they started.

Reduce phase. – Hadoop Reducer takes as an input a set of an

intermediate key-value pair, produced by the mapper

aggregated them and then generates the outputs which is the

final one and is stored in HDFS. Reducers run in parallel since

they are independent of one another.

2.3.3 Yet Another Resource Negotiator (YARN)
YARN is the resource management layer and task scheduling

to be executed in different nodes, allocating system resources

to the various applications running in a Hadoop cluster.

YARN as a cluster resource management layer support

different data processing engines, such as graph processing,

interactive processing, batch processing and others stored in

Hadoop Distributed File System (HDFS). YARN enhances a

Hadoop cluster with significant features such as Multi-

tenancy where the Capacity Scheduler enables the cluster to

be run as multi-tenant systems. In the multi-tenancy

architecture, a single instance of a software application serves

multiple customers where each customer is named tenant.

This ability allows multiple access engines to use Hadoop as a

common standard, for interactive, real time and concurrently

access the same dataset. The multi-tenancy architecture has a

broaden significance in cloud computing because for instance

in a Software-as-a-Service (SaaS) provider, we can run one

instance of its application on one database instance providing

web access to multiple customers. In a Hadoop cluster

architecture YARN sits between HDFS and the processing

engines which are used to run applications “Figure 9” [10].

Figure 9: Hadoop Cluster resource management – YARN.

2.4 Design and Setup

2.4.1 Design
Hadoop has a Master-Slave architecture for data storage and

distributed data processing using MapReduce and Hadoop

Distributed File System (HDFS) methods “Figure 10” [11].

Figure 10: Master-Slave architecture in Hadoop.

Master is the node in the cluster which allows to conduct

parallel processing of data using Hadoop MapReduce and is

named Namenode. Slave is the node which assist to manage

the state of an HDFS node, allows to store data to conduct

complex calculations and is named Datanode. The JobTracker

is an essential Daemon for MapReduce execution, receives

the requests for MapReduce execution from the client,

determines the data location, and finds the best TaskTracker

nodes to execute the tasks, monitoring and controlling the

overall status of the job back to clients. The TaskTracker runs

on Datanodes which administers the Mapper and Reducer

tasks and being in constant communication with the

JobTracker signaling the progress of the executed tasks [12],

[13], and [14].

The Hadoop cluster is composed of 15 Raspberry Pi’s

connected to the 16-Port 10/100 Mbps Ethernet switch. One

out of the 15 RPi’s is the master node called Namenode which

is the head of the cluster and the rest 14 are the slaves called

Datanodes or workers. Each node has a static IP address and

the configuration is in such a way where the master can only

communicate to every node with secure shell “Figure 11”.

Figure 11: Network topology diagram for Hadoop cluster.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 42, August 2019

41

2.4.2 Setup
The fundamental steps of building the cluster, comprises

initially a task to set up the network connectivity where the

hosts of the cluster must be assigned properly. A dedicated

Hadoop user “hduser” and group accounts for the Hadoop

environment must be created so as to separate the Hadoop

installation from other services. The Rivest-Shamir-Adleman

(RSA) key pair to allow “hduser” to access the slave machines

seamlessly with empty passphrase is necessary to create in the

master node. Secure Shell (SSH) keys replication to all the

cluster nodes is necessary so that all the Raspberry Pi’s

(RPi’s) to be able to communicate each other without

prompting for passwords. Java version "1.8.0_65" must be

installed to support Hadoop 2.7.2 version. Then the Hadoop

installation and configuration will follow creating the HDFS

directories. It’s wise to check and verify the correct Hadoop

installation and native libraries using the command “hadoop

checknative –a”. The environment variables to be added

correctly are very critical, paying attention in the right paths

where the Java and Hadoop installation are located.

There are several XML files that must be modified according

to our architecture where these modifications needs to be

applied in the Namenode and in all the Datanodes. The

needed XML files are mentioned briefly below:

Update core-site.xml. – The core-site.xml informs Hadoop

daemon where the Namenode runs in the cluster.

Update hdfs-site.xml. – The hdfs-site.xml comprises the

configuration setting for HDFS daemons; the Namenode, the

secondary Namenode if the cluster architecture is designed so,

and the Datanode.

Update yarn-site.xml. – YARN by default tracks Central

Processor Unit (CPU) and memory of all nodes, applications,

queues and as a resource manager loads its resource definition

from the XML configuration files.

Update mapred-site.xml. – The mapred-site.xml comprises the

configuration setting for MapReduce daemons; the job tracker

and the task-trackers.

The last step is to format the Namenode and start the services.

The right path is in “$HADOOP_HOME/bin/” and the

execution command is the “./hdfs namenode –format”. In the

Namenode go to “$HADOOP_HOME/sbin/” and execute the

commands “./start-yarn.sh” and “./start-dfs.sh” “Figure 12”.

Figure 12: Start Services in Hadoop cluster.

Following starting the services in Hadoop cluster we check

with the (Java Virtual Machine Process Status Tool) JPS

command all the Hadoop daemons running on it such as the

NameNode, DataNode, ResourceManager, NodeManager etc

“Figure 13”.

Figure 13: Hadoop daemons in Namenode and Datanode.

The final verification of the Hadoop cluster that everything is

running properly can be done by opening the browser or

alternatively the Java processes in the nodes can be checked

or to run the HDFS report command “hdfs dfsadmin –report”,
“Figure 14”, “Figure 15”.

Figure 14: Namenode overview in Hadoop cluster.

Figure 15: Datanodes overview in Hadoop cluster.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 42, August 2019

42

3. PERFORMANCE EVALUATION
The Hadoop distribution comes with a number of benchmarks

which are bundled in Hadoop-*test*.jar and Hadoop-

examples.jar.

3.1 Hadoop HDFS Benchmark

3.1.1 TestDFSIO
The TestDFSIO benchmark is a read and write test for

Hadoop Distributed File System (HDFS). That is to say, it

will write and read a number of files to and from HDFS and is

designed in such a way that it will use one map task per file.

The file size and the number of files are specified by the

command-line arguments. The TestDFSIO benchmark is part

of the “hadoop-mapreduce-client-jobclient.jar”.

The command used for running the write test for instance of

12 files of 1GB each is the following: “hadoop jar

/opt/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-

client-jobclient-2.7.2.jar TestDFSIO -write -nrFiles 12 -

fileSize 1GB -resFile /tmp/$USER-dfsio-12f-1GBwrite.txt”

with the respective results “Figure 16”. Once the preceding

command is initiated, a map reduce job will write 12 files to

HDFS that are 1 GB in size. These test create data in HDFS

under the “/benchmarks/TestDFSIO” directory.

Figure 16: Benchmark of HDFS: Result of write test.

The command used for running the read test for instance of 12

files of 1GB each is the following: “hadoop jar

/opt/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-

client-jobclient-2.7.2.jar TestDFSIO -read -nrFiles 12 -

fileSize 1GB -resFile /tmp/$ USER-dfsio-12f-1GBread.txt”

with the respective results “Figure 17”.

Figure 17: Benchmark of HDFS: Results of read test.

After each test completion it’s needed to clean up the test

results, otherwise available storage space will be consumed by

the benchmark output file. The command used to clean up test

results after completion is the following: “hadoop jar

/opt/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-

client-jobclient-2.7.2.jar TestDFSIO –clean” “Figure 18.

Figure 18: Clean up test results after completion.

TestDFSIO is designed in such a way that it will use 1 map

task per file, namely, it’s a 1:1 mapping from files to map

tasks. Splits are defined so that each map gets only one

filename, which it creates (-write) or reads (-read). The

TestDFSIO benchmark is a read and write stress testing for

HDFS, where we discover performance bottleneck in our

network, shake out the hardware and give a first impression of

how fast our cluster is in terms of I/O. The most notable

metrics in TestDFSIO are the Throughput (mb/sec) and the

Average IO rate (mb/sec) where both metrics are based on the

file size written or read by the individual map, compared with

the elapsed time to do it.

Throughput (mb/sec) for a TestDFSIO using (N) map tasks is

defined as follows:

 (1)

The index denotes the individual map tasks.

The Average IO rate (mb/sec) is defined as follows:

 (2)

3.2 Results

3.2.1 TestDFSIO
“Table 1” and “Table 2” depicts the different stats extracted

from the TestDFSIO concerning the writing and read stress

test.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 42, August 2019

43

Table 1. Write Speed Test of Several Files

Numb

er of

Files

Total

MBytes

process

ed

Throu

ghput

(mb/se

c)

Avera

ge IO

rate

(mb/s

ec)

IO rate

standar

d

deviati

on

Test

exec.

time(s

ec)

 1
1000

1.1670

02

1.167

002

0.00018

2

889.6

83

2
2000

0.9945

66

0.996

609

0.04511

7

2072.

446

3
3000

0.9639

47

0.981

378

0.12575

6

2753.

687

4
4000

1.0609

73

1.075

586

0.11949

1

3200.

846

5
5000

1.0831

82

1.099

735

0.13113

4

4744.

475

6
6000

1.1767

74

1.192

759

0.13712

1

5239.

95

7
7000

1.0801

24

1.113

796

0.18754

8

6661.

712

8
8000

1.2026

52

1.466

353

0.88503

1

6829.

868

9
9000

1.2914

16

1.848

100

1.41464

5

7156.

598

10
10000

1.4058

30

2.058

063

1.45051

9

7303.

195

11
11000

1.4191

48

2.230

232

1.62825

1

7956.

805

12
12000

1.3935

38

2.152

734

1.38241

7

8844.

385

Table 2. Read Speed Test of Several Files

Numb

er of

Files

Total

MBytes

process

ed

Throu

ghput

(mb/se

c)

Avera

ge IO

rate

(mb/s

ec)

IO rate

standar

d

deviati

on

Test

exec.

time(s

ec)

 1
1000

4.6509

09

4.650

908

0.00212

6

231.8

71

2
2000

4.6914

90

4.691

844

0.04070

8

449.1

42

3
3000

4.7751

83

4.775

540

0.04134

5

657.1

11

4
4000

4.7313

60

4.731

854

0.04803

3

879.8

29

5
5000

4.7598

81

4.760

251

0.04195

3

1090.

584

6
6000

4.7580

06

4.758

788

0.06070

8

1307.

109

7
7000

4.7539

52

4.754

276

0.03907

2

1526.

137

8
8000

4.7150

26

4.715

320

0.03732

6

1757.

054

9
9000

4.7441

30

4.745

264

0.07386

7

1962.

655

10
10000

4.7451

45

4.745

468

0.03930

2

2180.

204

11
11000

4.7796

86

4.780

229

0.05112

5

2377.

444

12
12000

4.7490

13

4.749

453

0.04575

4

2611.

314

A practical example to understand how the Throughput,

Average IO rate, Standard Deviation is calculated, is to

collect the raw MapReduce results for write and read speed

testing by giving the following commands for the writing test

(hdfs dfs –cat /benchmarks/TestDFSIO/io_write/part*) and

reading test (hdfs dfs –cat

/benchmarks/TestDFSIO/io_read/part*) respectively “Figure

19”. The following formulas are used to calculate Throughput,

Average IO rate, Standard Deviation. [14].

Figure 19: Raw MapReduce result for Write and Read

Speed Testing.

Write test Results. – We calculate the Throughput, Average

IO rate, Standard Deviation for 5 files 1GB each as depicted

in the “Table 1”.

 (3)

 (4)

 (5)

(3)

(4)

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 42, August 2019

44

(5)

 × =

1.0997354 ×1.0997354= 0.1311344726

The same methodology is used to calculate the read test for 5

files 1GB each, and it’s applied to every experimental result

for write and read testing “Table 1”, “Table 2”.

The TestDFSIO read-write test for assessing Hadoop

performance was performed by running 1 to 12 files each of

size 1GB. In the “Figure 20” we can see the statistics of the

read-write TestDFSIO runtime performance, in “Figure 21”

we see the throughput TestDFSIO and in “Figure 22” we see

the I/O rate TestDFSIO performance based on metrics stated

in “Table 1”, “Table 2”. The experimentation started by

gradually scaling up the file size from 1 GB to 12 GB.

Figure 20: Runtime (speed-test) of read-write test (TestDFSIO).

Figure 21: Throughput of read-write test (TestDFSIO).

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 42, August 2019

45

Figure 22: I/O Rate of read-write test (TestDFSIO).

Figure 23: Throughput of read-write test per DataNodes (TestDFSIO).

Figure 24: I/O Rate of read-write test per DataNodes (TestDFSIO)

In Hadoop, the tasks are divided among different blocks and

the processing is taking place in parallel and independent to

each other. With the TestDFSIO read-write testing in fact we

examine how efficiently HDFS is able to write and read big

files.

It was measured that the read runtime operation is

approximately 3.5-4.5 times faster compared to write runtime

operation, most likely because the Hard Disk Drive (HDD) in

every RPi is a microSD card. Compared to a Solid State Drive

(SSD), the expected result would be as such, read operation to

be a little bit faster than write operation. Moreover, as we

scale up the number of files from 1GB to 12GB, the write and

read runtime operation is increased gradually as is expected

“Table 1”, “Table 2” and “Figure 20”. Moreover, due to

parallel processing the HDFS has good throughput “Figure

21” throughout the 12 “Datanodes”. It’s noted that the

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 42, August 2019

46

throughput during reading operation is more by 3.5 to 5 times

than the throughput during writing operation. As the number

of files is increased, the throughput of the write operation

stays approximately the same between (1-7) GB files whereas

between (8-12) GB files the throughput starts to increase. In

case of read operation the throughput stays approximately the

say as the number of files is increased “Table 1”, “Table 2”,

“Figure 21”.

The I/O rate is actually the speed where the data transfer takes

place between the hard drive, the network and the Random

Access Memory (RAM).Concerning I/O rate, as the number

of files is increased, the I/O rate of the write operation stays

approximately the same between (1-7) GB files whereas

between (8 -12) GB, the I/O rate starts to increase “Table 1”,

“Table 2”, and “Figure 22”.

Table 3. Write Speed Test to Multiple Nodes

Numbe

r of

Datano

des

Total

MBytes

process

ed

Throu

ghput

(mb/se

c)

Avera

ge IO

rate

(mb/s

ec)

IO rate

standar

d

deviati

on

Test

exec.

time(s

ec)

 3
5000

2.3633

09

2.390

478

0.25311

5

2182.

55

6
5000

1.8038

47

1.828

905

0.20844

8

2860.

783

9
5000

1.6364

90

1.648

843

0.14271

5

3146.

882

12
5000

1.2411

64

1.255

608

0.13355

4

4141.

714

Table 4. Read Speed to Multiple Nodes

Numbe

r of

Datano

des

Total

MBytes

process

ed

Throu

ghput

(mb/se

c)

Avera

ge IO

rate

(mb/s

ec)

IO rate

standar

d

deviati

on

Test

exec.

time(s

ec)

 3
5000

4.7118

97

4.711

999

0.02187

0

1103.

003

6
5000

4.7024

98

4.703

307

0.06175

8

1104.

757

9
5000

4.7115

24

4.713

297

0.09134

3

1102.

966

12
5000

4.7069

72

4.707

448

0.04750

6

1105.

616

Another research interest is to see how the “throughput” and

the “average I/O rate” is changing when we increase the

“Datanodes” “Table 3”and “Table 4”. Two definite factors

that affects the distributed HDFS I/O performance are the

block size and the number of Datanodes. The blocks are the

units for reading and writing in HDFS. The smaller the block

size, the greater the block seek time. In this case the block size

considered as the optimal of 128 MB which is the default

value. Regarding the number of DataNodes, if the number of

nodes is increased, a sufficient performance improvement is

expected due to the increase degree of the distributed data

which are processed in parallel. “Figure 23” and “Figure 24”

shows the variation of the distributed I/O performance as the

number of the DataNodes increases. Instead of the expected

results, the throughput” and the “average I/O rate” is linearly

decreased when we increase the DataNodes from 3 to 12

“Table 3”, “Table 4”, “Figure 23” and “Figure 24” regarding

the writing performance. Compared to read performance the

“throughput” and the “average I/O rate” remains constantly

the same as the DataNodes increased. The explanation could

be that, when the mapping process is completed the resulting

blocks are stored in the HDD and then are transferred and

received between the DataNodes shuffling through the

network. The reading operation does not concern writing in

the HDD. On the other hand, in the experiment, all

DataNodes are installed in a single Ethernet switch of

100Mbps. It make sense that the bandwidth limitation of the

network causes the performance degradation due to overhead

of communication between Namenode and DataNodes.

4. CONCLUSION
In this project, the performance of a Hadoop cluster using

commodity low cost HW implemented and analyzed, with the

tiny Raspberry Pi 2 platform. The most common

benchmarking and testing tools that are included in the

Apache Hadoop distribution, are the TestDFSIO, TeraSort,

NNBench and MRbench tools. In this project the TestDFSIO

used as the most widely reported of these benchmarks. After

performing the TestDFSIO benchmark, the following

observations can be stated: (a) The HDFS reading operation

performance of files is much faster compared to writing

operation performance; (b) due to parallel processing the

HDFS has good throughput performance; (c) when the

DataNodes are increased, the “throughput” and “average I/O

rate” performance degradation is observed, concerning the

writing operation; (d) the network bandwidth bottleneck

seems to be a major factor influencing the whole Hadoop

performance;

5. FUTURE WORK
Since the mVAS dept. is dealing with design, testing and

deployment Value Added Services (VAS), and lately started

to deal with services in cloud environment there was a huge

interest by me to research the Hadoop clustering topic. The

first attempt was to design, deploy and stress test an

affordable High Performance Hadoop cluster using

Raspberry’s Pi 2 so that to gain knowledge and experiment

the behavior and performance of a Hadoop cluster with stress

testing the MapReduce and HDFS performance. The next step

is to combine Hadoop with R programming to investigate the

statistical computations and data analysis of massive amounts

of data under the scope of Big Data Analytics and distributed

machine learning topic.

6. ACKNOWLEDGMENTS
My sincere gratitude to my colleagues in multi Value Added

Services (mVAS) dept. for their encouragement to

successfully complete this project.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 42, August 2019

47

7. REFERENCES
[1] Hadoop. [Online]. Available:

https://www.sas.com/el_gr/insights/big-data/hadoop.html

[2] Raspberry Pi 2 Model B. [Online]. Available:

https://www.raspberrypi.org/products/raspberry-pi-2-

model-b/

[3] Dimitrios Papakyriakou, Dimitra Kottou, and Ioannis

Kostouros. Benchmarking Raspberry Pi 2 Beowulf

Cluster. International Journal of Computer

Applications 179(32):21-27, April 2018. doi:

10.5120/ijca2018916728.

[4] Raspberry Pi 2 Model B. Operating System. [Online].

Available: https://www.raspberrypi.org/downloads/

[5] Apache Hadoop. [Online]. Available:

https://hadoop.apache.org/

[6] Sanjay Ghemawat, Howard Gobioff, and Shun-

TakLeung. The Google File System, ACM Symposium

on Operating Systems Principles, Lake George, NY, pp.

29 – 43, October 2003.

[7] Dean Jeffery, and Sanjay Ghemawat. MapReduce:

Simplified Data Processing on Large Clusters. Google

Research Publication San Francisco, CA (2004): pp. 137-

150 [Online]. Available:

https://static.googleusercontent.com/media/research.goog

le.com/en//archive/mapreduce-osdi04.pdf.

[8] Hadoop MapReduce Job Execution flow Chart. [Online].

Available: https://techvidvan.com/tutorials/mapreduce-

job-execution-flow/

[9] Srinath Perera and Thilina Gunarathne. Hadoop

MapReduce Cookbook. Packt Publishing Ltd, February

2013.

[10] Apache Hadoop YARN. [Online]. Available:

https://hadoop.apache.org/docs/current/hadoop-

yarn/hadoop-yarn-site/YARN.html

[11] HDFS Architecture Guide. [Online]. Available:

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[12] Hadoop, Architecture, Ecosystem, Components.

[Online]. Available: https://www.guru99.com/learn-

hadoop-in-10-minutes.html

[13] Tom White. Hadoop: The definitive Guide. O’REILLY,

June 2009.

[14] Tanmay Deshpande. Hadoop Real-World Solutions

Cookbook 2nd edition. Packt Publishing Ltd, March 2016

IJCATM : www.ijcaonline.org

https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/downloads/
https://hadoop.apache.org/
https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf
https://techvidvan.com/tutorials/mapreduce-job-execution-flow/
https://techvidvan.com/tutorials/mapreduce-job-execution-flow/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://www.guru99.com/learn-hadoop-in-10-minutes.html
https://www.guru99.com/learn-hadoop-in-10-minutes.html

