
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 43, August 2019

35

Implemented Analyzer and Syntesis in Compiler Process

Tri Ichsan Saputra
Universitas Nasional
Jakarta, Indonesia

Fauziah
Universitas Nasional
Jakarta, Indonesia

Andez Apriansyah
Universitas Nasional
Jakarta, Indonesia

Gatot Soepriyono
Universitas Nasional
Jakarta, Indonesia

ABSTRACT

The compiler is a translator that is used in the process of

making program code with the aim of tracing errors that

occur. In this study, the compiler will function as a translator

and as an error identifier. To make translators like compilers,

standards or rules (grammar) need to be made, just as humans

communicate to have grammar so that their interlocutors

understand what is being discussed. The compiler works

based on its structure, the system flow in the compiler is

divided into 2 main groups, namely analysis and synthesis

groups. In this study the analysis is in the form of lexical,

syntactic and semantic analysis, also produced a synthesis of

intermediate code, code generator, also code optimization.

Later the program code will display an error message if there

is an error in the program code that has been entered.

General Terms

Language Concepts and Notations: Grammar is a set of

variables, terminal symbols, non-terminal symbols, initial

symbols that are limited by production rules. Making a

translator in the form of a compiler is needed grammar, as

humans communicate having grammar so that the interlocutor

understands. Likewise to translate into a machine (computer)

must be made a grammar so that the computer can understand

what is desired by humans through the programs they make

[1].

Compiler: A program that can read programs that are source

languages and translate them into machine language or the

target language. The compiler maps program resources into

the target program semantically. If seen, there are two parts of

this compiler mapping: analysis and synthesis [2].

Keywords

Compiler, Language Notation, Analysis, Synthesis

1. INTRODUCTION
A compiler is system software that converts a high-level

programming language program into a target language

equivalent to low-level (machine) language program [3].

Besides that, the compiler can identify an error in the program

code that the programmer enters so that it can be handled

easily. Both functions of the compiler are needed, either as an

interpreter or as an error identifier.

But every time we make a source code and start the evaluation

process, the computer only displays output and errors (if they

occur). We as programmers don't know the real process

behind it. In this research paper, the exact procedure behind

the compilation task is explained. Thus programmers can

better understand the procedures that have been experienced

[4].

2. RESEARCH METHODS

2.1 Compiler Structure

Fig 1: Structure of compiler

The compiler works based on its structure, Figure 1 describes

the flow of the application design system which is divided

into 2 phases, namely the analysis and synthesis phase.

2.1.1 Phase Analysis

Fig 2: The design of the process that occurs in the analysis

phase

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 43, August 2019

36

1. Lexical Analyzer is the initial steps carried out in the

compiler, also called scanners. The main process carried

out in Lexical Analyzer is to convert an input sentence

line into a token and then group it into lexemes,

whitespace removal, conversion of numerical constants

into specific/specific data types [5]. Then, the token will

be sent to the next stage, namely Syntax Analysis.

2. Syntax Analyzer is also called parser analysis because the

process carried out in this stage is the result of lexical

analysis (token) will be arranged and grouped in a certain

structure that has a specific definition [6]. The stages of

the syntax analyzer are (1) sorting of tokens which are the

results of the lexical analysis. (2) Continue by calling the

next process, namely Semantic Analyzer.

3. Semantic Analyzer, this stage becomes a bridge between

analysis and synthesis of a compilation. The final result of

this step is an executable code in a simple compilation

which is then manipulated with various optimization from

the translator [2].

2.1.2 Phase Synthesis

Fig 3: The design of phase synthesis

1. Intermediate Code Generator, the process for generating

code based on the parsing tree (according to the related

formula/syntax). The result of this process is a command

that is a 3-address-code or quadruples [7].

2. Code Optimizer, the process for optimizing code that has

undergone processes before finally forming an executable

code. In this stage, one of them is the process of reducing

redundancy in the code so that it is more efficient and

effective [8].

3. Code Generator, the process of making code known as

machine language which is an assembler language.

Usually, the code consists of a command with an address

and accumulator, each of which consists of 1 component

[8].

3. RESULTS AND DISCUSSION

3.1 Lexical (Scanner)
Lexical Analysis (Scanner) checks the source code with status

changes that occur. In its application, source code will be

broken down into certain symbols called tokens [9]. The token

specifications needed are terminal components contained in

grammar. Scanner acts as an interface between the source

code and the process of syntactic analysis (parser) [10]. The

scanner will check each character from the source code.

Lexical analysis deals with writing programming languages,

for example, endl, float, string.

3.2 Syntaxis (Parser)
The tree is a connected graph that is not circular, has one node

(or vertex), namely the root and from this root has a path (or

edge) to each other node [11]. Derivation tree/syntax

tree/parse tree is useful to describe how to get a string (string)

by lowering or replacing variable symbols into terminals.

Each variable symbol will be lowered or replaced into a

terminal [4].

o The variable symbol is denoted by uppercase (capital).

o The terminal symbol is denoted by lowercase letters,

occupying the position of the leaf.

o The initial symbol is the variable S, occupying the top

of the tree (root).

The process of declining (or parsing) can be done, among

others by:

a. Decrease through the leftmost derivation: the extended

leftmost variable symbol expanded first.

b. Decrease through rightmost derivation: the extended

rightmost variable symbol that is expanded first.

As an example,

It is known that context-free grammar (CFG) has the

following production rules [7]:

S  aAS | a

A  SbA | ba

The following is a picture of the declining tree to get the

strand 'aabbaa':

a. By means of leftmost decline, it will be obtained:

S >> aAS >> aSbAS >> aabAS >> aabbaS >> aabbaa

Fig 4: Leftmost derivation

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 43, August 2019

37

b. By means of rightmost decline, it will be obtained::

S >> aAS >> aAa >> aSbAa >> aSbbaa >> aabbaa

Fig 5: Rightmost derivation

3.3 Semantic
The semantic analysis utilizes the syntax tree generated in the

parsing process. In general, the function of semantic analysis

is to determine the meaning of a series of instructions

contained in the source program [5]. Semantic analysis is

related to variables in the program code, such as variables for

name, total, results, etc.

3.4 Intermediate Code
In the process of translating a source program into target code,

a compiler may construct one or more intermediate

representations, which can have a variety of forms. Syntax

trees are a form of intermediate representation; they are

commonly used during syntax and semantic analysis [5].

After syntax and semantic analysis of the source program,

many compilers generate an explicit low-level or machine-

like intermediate representation, which we can think of as a

program for an abstract machine. This intermediate

representation should have two important properties: it should

be easy to produce and it should be easy to translate into the

target machine [5].

In processing intermediate code, N-Tuple notation is used by

quadruples notation.

The format for quadruples notation:

<operator> <operand> <operand> <result>

Example instruction :

Y := (A - B) * (C + D)

Then the form of quadruples is as follows :

a. - , A , B , T1

b. + , C , D , T2

c. * , T1 , T2 , Y

d.

3.5 Code Generator
The code generator is enabled to translate the code into

assembly language or machine language [4].

Example : (A + B) / C * D

Quadruples :

a. + , A , B , T1

b. / , T1 , C , T2

c. * , T2 , D , T3

Assembly language translation (before optimization):

LDF A

ADDF B

STF T1

LDF T1

DIVF C

STF T2

LDF T2

MULF D

STF T3

3.6 Code Optimization
Code optimization is used to improve performance in terms of

speed. Code optimization is carried out in an intermediate

code so that repetition does not need to happen someday [13].

Assembly code in the above translation can be optimized to:

LDF A

SUBF B

STF T1

LDF T1

DIVF C

MULF D

STF T2

3.7 Error Handling
On CO:AS machines, the compiler will handle errors that

occur in the source program, the form of handling the error is

a message error. The error message will display a form of

error from the analysis process, including lexical, syntactic

and semantic analysis.

The following is part of the program code in handling errors:

string inputcode = tb_code.Text;

newwords.Clear();

onecheck.Clear();

string result = "";

bool error = false;

string temp = "";

for (int i = 0; i < inputcode.Length; i+

{

if (char.IsWhiteSpace(inputcode[i]))

{

i++;

while (i < inputcode.Length)

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 43, August 2019

38

{

if (char.IsWhiteSpace(inputcode[i]))

{

i++;

}

else { i--; break; }

}

if (temp != "")

{

newwords.Add(temp);

}

temp = "";

}

else { temp += inputcode[i]; }

}

if (temp != "") newwords.Add(temp);

for (int i = 0; i < newwords.Count; i++)

{

if (_syntax(newwords[i]))

{

onecheck.Add(newwords[i] + " \t: Syntax Error" +

System.Environment.NewLine);

}

else if (_leksikal(newwords[i]))

{

onecheck.Add(newwords[i] + " \t: Lexical Error" +

System.Environment.NewLine);

}

else if (_semantic(newwords[i]))

{

onecheck.Add(newwords[i] + " \t: Semantic Error" +

System.Environment.NewLine);

}

}

if (error) { }

else

{

for (int i = 0; i < onecheck.Count; i++)

{

result += onecheck[i] + "";

}}

frm2.SendToReceiver(result);

3.8 Software Design
For the design of the user interface of the CO: AS software

(Compiler: Analyzer Synthesis) this uses 2 forms. The first

form is the main page in which there is a text-box as the input

source program that you want to compile and there are 3

buttons including the start button, clear button, and exit button

can be seen from Figure 6.

Fig 6: The main form of the program

The function of the start button is to execute the program code

entered by the user into the text-box source code. The

appearance after the user enters the program code can be seen

in Figure 7.

Fig 7: Input process

After the user enters the program code and presses the start

button, the application will analyze the program code and

display it on the second form. If there is no error in the

program code, the application will not display an error

message and will display the code which can be seen in

Figure 8.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 43, August 2019

39

Fig 8: Successful in program execution

On the contrary, if the program code has an error whether it's

a lexical error, the syntax or the semantic, it looks like in

Figure 9.

Fig 9: There was an error message on the program

execution

4. CONCLUSION
CO:AS (Compiler: Analyzer Synthesis) software created and

designed to run compilation functions properly. The results of

this study are symbol tables, message errors in terms of

lexical analysis, syntax and also semantics, this study also

produces optimization results from intermediate code.

5. REFERENCES
[1] M. Jain, N. Sehrawat, and N. Munsi, “Compiler Basic

Design and Contruction,” Int. J. Comput. Sci. Mob.

Comput., vol. 3, no. 10, pp. 850–852, 2014.

[2] R. Babu, V. Tiwari, and J. Dehakar, “Parsing and

Compiler design Techniques for Compiler Applications,”

Int. J. Recent Innov. Trends Comput. Commun., vol. 3,

no. 2, pp. 449–453, 2015.

[3] P. Saini and R. Sharma, “An Analysis of Compiler

Design in Context of Lexical Analyzer,” Int. J. Emerg.

Technol., vol. 8, no. 1, pp. 377–381, 2017.

[4] V. Trivedi, “Life Cycle of Source Program - Compiler

Design,” Int. J. Innov. Res. Comput. Commun. Eng., vol.

5, no. 12, 2017.

[5] P. Ezhilarasu and N. Krishnaraj, “Applications of Finite

Automata in Lexical Analysis and as a Ticket Vending

Machine – A Review,” Int. J. Comput. Sci. Eng.

Technol., vol. 6, no. 05, pp. 267–270, 2015.

[6] G. P. Arya, N. Sohail, P. Ranjan, P. Kumari, and S.

Khatoon, “Design and Implementation of a Customized

Compiler,” Int. J. Comput. Sci. Inf. Technol., vol. 8, no.

3, pp. 342–346, 2017.

[7] L. Leiva and N. Acosta, “MISD Compiler for Feature

Vector Computation in Serial Input Images,” ARPN J.

Syst. Softw., vol. 1, no. 3, pp. 108–116, 2011.

[8] P. P. Gotarane and S. N. Pundkar, “Java Compiler :

Review on Code Generation and Optimization

Techniques,” Int. J. Innov. Adv. Comput. Sci., vol. 4, no.

March, pp. 66–76, 2015.

[9] A. Goyal and R. Yadav, “Content and Lexical Analysis :

Practical Application,” Int. J. Comput. Sci. Mob.

Comput., vol. 3, no. 10, pp. 356–366, 2014.

[10] R. Chuhan, V. Singh, K. Makhan, and M. Kumar,

“Implementation of Lexical Analysis,” Int. J. Res. Appl.

Sci. Eng. Technol., vol. 5, no. V, pp. 614–617, 2017.

[11] T. Tyagi, A. Saxena, S. Nishad, and B. Tiwari, “Lexical

and Parser tool for CBOOP program,” IOSR J. Comput.

Eng., vol. 10, no. 6, pp. 30–34, 2013.

IJCATM : www.ijcaonline.org

