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ABSTRACT 

Image noise can occur during image acquisition, transmission 

or storage. Noises in images are caused by many factors such 

as atmospheric or intermediate media in-homogeneity and 

relative motion between the object and the camera. An 

application of wavelet transform is noise suppression in 

signals; image signals inclusive. The wavelet transform of a 

noisy color image has 2D wavelet coefficients for each of the 

red, green and blue channels. The 2D wavelet coefficients are 

grouped into Approximation part and Details part. The 

coefficients in the Details part with values less than a 

threshold value represent the noise content. For the purpose of 

noise suppression, Threshold Shrinkage Functions are used to 

modify the coefficients in the Details part. Experiments on 

image noise suppression capability of Hard Threshold 

Shrinkage Function (HTSF), Soft Threshold Shrinkage 

Function (STSF), Hyperbola Threshold Shrinkage Function 

(HYTSF), Garrote Threshold Shrinkage Function (GTSF) and 

Modified Garrote Threshold Shrinkage Function (MGTSF) 

are presented. Six types of noise are considered. Noise 

suppression in the wavelet domain by the five wavelet 

threshold shrinkage functions is compared with noise 

suppression in the spatial domain by the Gaussian Filter (G), 

Median Filter (MDN), Alpha-Trimmed Mean [4 Pixels 

Excluded] Filter (AT4P), Mean Filter (MEAN) and Texture 

Synthesis Adaptive Median Filter (TSBAMF). Optimum 

threshold value is obtained with the logarithm in the universal 

threshold equation taken to base 10. MGTSF and GTSF are 

found to be the best wavelet de-noising schemes for the 

suppression of Poisson noise and Speckle noise respectively. 

HYTSF is found to be the best wavelet de-noising scheme for 

both the Localvar noise and the Gaussian noise. Wavelet de-

noising is recommended to be limited to first decomposition 

level as filtered images at higher decomposition levels are 

marred with blurring and undesirable edges. Wavelet de-

noising is found not suitable for the suppression of Random 

Valued Impulse noise and Salt & Pepper noise; spatial domain 

de-noising is highly effective for both noise types. 

Suppression of Localvar noise, Poisson noise, Gaussian noise, 

and Speckle noise is found to yield good results in the wavelet 

domain but yield better results in the spatial domain. 

General Terms 

Digital Signal Processing, Digital Image Processing, Image 

De-noising. 

Keywords 

Image noise, Wavelet transform, Threshold shrinkage 

functions, Spatial domain filters, Peak signal to noise ratio. 

1. INTRODUCTION 
Suppression of noise in images is an active area of research 

[1], [2], [3], [4], [5], [6], [7]. Images are often corrupted with 

noise. Noise can occur during image capture, transmission or 

processing, and may be dependent on or independent of image 

content [8], [9], [10]. Noises in images are caused by many 

sources. These include atmospheric or intermediate media   

in-homogeneity, relative motion between object and camera, 

fluctuation in heat, temperature, and infrared radiation, 

inherent thermal noises in electro optical imaging devices, and 

physical or chemical noises of the object.  

Noise suppression in the spatial domain was studied with the 

aid of experiments in [11]. Spatial filters based on thirteen 

statistics were tested for the suppression of six types of noise 

[11]. Gaussian Filter (G) is found to be the best spatial filter 

for the suppression of Gaussian Noise, Localvar Noise and 

Speckle Noise [11]. Median Filter (MDN) and Alpha-

Trimmed Mean [4 Pixels Excluded] Filter (AT4P) are the best 

filters for the suppression of Salt & Pepper Noise and Poisson 

Noise respectively [11]. Mean Filter (MEAN) is also good for 

noise suppression. MDN filter is further studied in [12] and a 

Texture Synthesis Adaptive Median Filter (TSBAMF) was 

developed in [13].   

In this work, Noise suppression in the wavelet domain is 

studied with the aid of experiments and compared with spatial 

domain filters mentioned above; namely G, MDN, AT4P, 

MEAN and TSBAMF. A wavelet is defined as a small wave 

whose energy is concentrated in time [14], [15], [16], [17], 

[18], [19]. Wavelets applications include noise filtering [19], 

[20], [21], [22].  

2. DE-NOISING IN WAVELET DOMAIN 
Fig. 1 illustrates Wavelet de-noising scheme. X (NN-by-MM-

by-3) is a color image and is a three-dimensional signal. X is 

corrupted with noise to yield a noisy image Xn. Six types of 

noise are considered; Gaussian noise, Poisson noise, Speckle 

noise, Speckle noise, Salt & Pepper noise, Random Valued 

Impulse noise and Localvar noise [9], [11], [12], [13], [23]. Y 

(NN-by-MM-by-3) is the Haar wavelet transform of Xn at 

LLth decomposition level. Y is easily obtained as described in 

[18], [24].  

At the first decomposition level, each of the red, green and 

blue channels of Y is partitioned into four regions or 

components namely: Approximation (A1), Horizontal details 

(HD1), Vertical details (VD1), and Diagonal details (DD1) as 

illustrated in Fig. 2 (b) [18]. A1, HD1, VD1, and DD1 are the 

Low/Low (LL), Low/High (LH), High/Low (HL) and the 

High/High (HH) frequency components of the signal 

respectively. At the next decomposition level, the 

Approximation component (A1) is further divided into another 

set of A2, HD2, VD2, and DD2 as shown in Fig. 2 (c) and (d).  

For the purpose of noise filtering in the wavelet domain, each 

of the red, green and blue channels of Y can be broadly 

partitioned into the Approximation and Details parts, Ya and 

Yd respectively. At 1LL , A1 is the Approximation part 

while HD1, VD1 and DD1 together constitute the Details part. 
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At 2LL , A2 is the Approximation part while HD2, VD2, 

DD2, HD1, VD1 and DD1 together constitute the Details part. 

At 3LL , A3 is the Approximation part while HD3, VD3, 

DD3, HD2, VD2, DD2, HD1, VD1 and DD1 together constitute 

the Details part.  

A Threshold Shrinkage Function is used to modify the details 

part Yd to give modified details part Ymd; any element in Yd 

which is equal to or less than a threshold is set to zero while 

an element which is greater than the threshold is modified. 

Five Threshold Shrinkage functions are considered in this 

work. These are Hard Threshold Shrinkage Function (HTSF), 

Soft Threshold Shrinkage Function (STSF), Hyperbola 

Threshold Shrinkage Function (HYTSF),  Garrote Threshold 

Shrinkage Function (GTSF) and Modified Garrote Threshold 

Shrinkage Function (MGTSF) which are defined by Eqns. (1), 

(2), (3), (4) and (5) respectively [17], [19], [20], [21], [22], 

[25]. σ, t and λ are defined as the noise level, universal 

threshold and modified universal threshold respectively and 

are given by Eqns. (6), (7) and (8) respectively [17], [19], 

[20], [21], [22], [25]. 
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The untouched approximation part Ya is recombined with 

modified details part Ymd to give modified wavelet transform 

Yf. The Inverse wavelet transformation of Yf gives de-noised 

or filtered image Xf.  

 

Fig 1: Image de-noising in the wavelet domain. 

 

(a)               X                          (b)    Y after 1LL                (c)     Y after 2LL                (d)   Y after 3LL  

Fig 2: Regions or components of 2D wavelet transform for each color channel [18] 
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where N is the number of elements in Yd. 

                                           t 

  

                                   (8) 

where α is a tuning constant. Optimum value for α is 0.4 [22]. 

The wavelet de-noising scheme performance is evaluated 

using the Peak Signal to Noise Ratio (PSNR) [11], [12], [13], 

[26]. PSNRc of Eqn. (9) compares the noisy image Xn with the 

original image X. PSNRf of Eqn. (10) compares the de-noised 

image Xf with the original image X. The Gain of Eqn. (11) is 

positive if there is some degree of noise suppression. The 

Frequency Estimate of X of each test image is measured with 

Eqn. (12), (13), and (14) [27].  

3. RESULTS AND DISCUSSIONS 
A test bed of twelve images is formed to study wavelet 

domain noise suppression capability. Some of the images are 

from the University of Southern California (USC)-Signal and 

Image Processing Institute (SIPI) Image Database [28]. 

3.1 Test for Optimum Threshold Value  
The optimization of the universal threshold t of Eqn. (7) is 

studied by varying the base b of the logarithm. Five test 

images are used for the optimization test. 

A corrupted test image is filtered with b = 2 using the HTSF. 

Values of the threshold t for the three color channels and the 

filtering Gain are evaluated. This process is repeated for 

STSF, HYTSF, GTSF, and MGTSF. The experiment is 

repeated with b = e = 2.7183. The experiment is again 

repeated with b = 10. The results are presented in Figs. 3    

and 4. 

The processes are then repeated with another four corrupted 

test images. The averages of the results for the five test 

images are presented in Figs. 5 and 6. Figs. 3 to 6 show that 

the lowest threshold value and highest Gain are obtained 

when b is 10. 10 is therefore the optimum value for b of    

Eqn. (7). 

 

Fig 3: Optimization test results for a test image; values of 

threshold t for the three color channels and for the three 

values of b  

3.2 Test for Suppression of Poisson Noise  
The twelve test images are corrupted with Poisson noise. The 

five shrinkage functions with 10b  in Eqn. (7) and 1LL  

were applied for the filtering of the noisy images. The average 

of the Gain values for the twelve test images for each of the 

five threshold shrinkage functions is shown in the bar chart of 

Fig. 7. 
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Fig 4: Optimization test results for a test image; Gain for 

the five threshold shrinkage functions and for the three 

values of b  

 

    Fig 5: Optimization test results for five test images; 

Average of the threshold values for the three color 

channels and for the three values of b 

Fig. 7 also compares Poisson noise suppression in the wavelet 

domain by the five wavelet threshold shrinkage functions with 

Poisson noise suppression in the spatial domain by G, MDN, 

AT4P, MEAN and TSBAMF. On the basis of the average, 

Poisson noise suppression is found to be more productive in 

the wavelet domain than the spatial domain. MGTSF and 

AT4P are found to be the best wavelet and spatial domain 

filtering schemes respectively for Poisson noise suppression.  

Fig. 8 shows the actual Gain obtained with MGTSF and AT4P 

for each of the twelve test images. The Frequency Estimate of 

the twelve test images are indicated in Fig. 8. Fig. 9 shows the 

result for the first test image. The test images with lower 

Frequency Estimate tend to yield higher Gain. At lower 

Frequency Estimate, AT4P has higher Gain than MGTSF. 

MGTSF has higher Gain than AT4P at higher Frequency 

Estimate. 

 

Fig 6: Optimization test results for five test images; 

Average of the Gain values for the five threshold 

shrinkage functions and for the three values of b  

 

Fig 7: Poisson noise suppression test results; Average of 

the Gain values for the twelve test images 
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3.3 Test for Suppression of Localvar Noise  
The experiment in section 3.2 is repeated with Localvar noise. 

The results are presented in Fig. 10. Localvar noise 

suppression is better in the spatial domain than the wavelet 

domain. HYTSF and G are found to be the best wavelet and 

spatial domain filtering schemes respectively for Localvar 

noise suppression. Fig. 11 shows the actual Gain obtained 

with HYTSF and G for each of the twelve test images. Fig. 12 

shows the result for the third test image.  

 

Fig 8: the Actual Gain obtained with MGTSF and AT4P 

for each of the twelve test images corrupted with Poisson 

noise  

 
 Fig 9: Results of the test for suppression of Poisson noise  

for the first test image  

 

Fig 10: Localvar noise suppression test results; Average of 

the Gain values for the twelve test images  

 

Fig 11: Actual Gain obtained with HYTSF and G for each 

of the twelve test images corrupted with Localvar noise  

 

Fig 12: Results of the test for suppression of Localvar 

noise for the third test image 
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3.4 Test for Suppression of Salt & Pepper 

Noise  
The experiment in section 3.2 is repeated with Salt & Pepper 

noise. The results are presented in Fig. 13. Suppression of Salt 

& Pepper noise in the wavelet domain is very poor compared 

with spatial domain. STSF and TSBAMF are found to be the 

best wavelet and spatial domain filtering schemes respectively 

for Salt & Pepper noise suppression. Fig. 14 shows the actual 

Gain obtained with STSF and TSBAMF for each of the 

twelve test images. Fig. 15 shows the result for the fourth test 

image.  

3.5 Test for Suppression of Gaussian Noise  
The experiment in section 3.2 is repeated with Gaussian noise. 

The results are presented in Fig. 16. Gaussian noise 

suppression is better in the spatial domain than the wavelet 

domain. HYTSF and G are found to be the best wavelet and 

spatial domain filtering schemes respectively for Gaussian 

noise suppression. Fig. 17 shows the actual Gain obtained 

with HYTSF and G for each of the twelve test images. Fig. 18 

shows the result for the fifth test image. 

 

Fig 13: Salt & Pepper noise suppression test results; 

Average of the Gain values for the twelve test images   

 

Fig 14: Actual Gain obtained with STSF and TSBAMF for 

each of the twelve test images corrupted with Salt & 

Pepper noise 

 

Fig 15: Results of the test for suppression of Salt & Pepper 

noise for the fourth test image 

 

Fig 16: Gaussian noise suppression test results; Average of 

the Gain values for the twelve test images  

 

Fig 17: Actual Gain obtained with HYTSF and G for each 

of the twelve test images corrupted with Gaussian noise 
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Fig 18: Results of the test for suppression of Gaussian 

noise for the fifth test image 

3.6 Test for Suppression of Speckle Noise  
The experiment in section 3.2 is repeated with Speckle noise. 

The results are presented in Fig. 19. Speckle noise 

suppression is better in the spatial domain than the wavelet 

domain. GTSF and G are found to be the best wavelet and 

spatial domain filtering schemes respectively for Speckle 

noise suppression. Fig. 20 shows the actual Gain obtained 

with HYTSF and G for each of the twelve test images. Fig. 21 

shows the result for the sixth test image.  

 

Fig 19: Speckle noise suppression test results; Average of 

the Gain values for the twelve test images  

 

Fig 20: Actual Gain obtained with GTSF and G for each 

of the twelve test images corrupted with Speckle noise 

3.7 Test for Suppression of Random 

Valued Impulse Noise   
The experiment in section 3.2 is repeated with Random 

Valued Impulse noise. The results are presented in Fig. 22. 

Random Valued Impulse noise suppression in the wavelet 

domain is very poor compared with the spatial domain. STSF 

and TSBAMF are found to be the best wavelet and spatial 

domain filtering schemes respectively for Random Valued 

Impulse noise suppression. Fig. 23 shows the actual Gain 

obtained with STSF and TSBAMF for each of the twelve test 

images. Fig. 24 shows the result for the seventh test image.  

 

Fig. 21: Results of the test for suppression of Speckle noise 

for the sixth test image 
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Fig 22: Random Valued Impulse noise suppression test 

results; Average of the Gain values for the twelve test 

images  

 

Fig 23: Actual Gain obtained with STSF and TSBAMF for 

each of the twelve test images corrupted with Random 

Valued Impulse noise 

 

Fig. 24: Results of the test for suppression of Random 

Valued Impulse noise for the seventh test image 

3.8 Test for the Effect of Wavelet 

Decomposition Level  
The GTSF with 10b  in Eqn. (7) and 1LL  was applied 

to de-noise the second test image corrupted with Speckle 

noise. The HYTSF with 10b  in Eqn. (7) and 1LL  was 

applied to de-noise the third test image corrupted with 

Localvar noise. The GTSF and HYTSF experiments on the 

second and the third test images respectively were repeated 

with 2LL  and 3LL .  

The results are presented in Fig. 25. The higher 

decomposition levels, the better noise suppression (the higher 

Gain). At higher decomposition levels, the filtered images are 

blurred and are marred with undesirable edges as observed in 

Fig. 25. Therefore, wavelet de-noising is better limited to the 

first decomposition level only. 

4. CONCLUSIONS 
Wavelet de-noising with five threshold shrinkage functions 

has been studied with the aid of experiments. Optimum 

threshold value was obtained when the logarithm in the 

universal threshold equation is taken to base 10. MGTSF and 

GTSF are the best de-noising schemes for the suppression of 

Poisson noise and Speckle noise respectively. HYTSF is the 

best wavelet de-noising scheme for both the Localvar noise 

and the Gaussian noise. Wavelet de-noising is recommended 

to be limited to first decomposition level as filtered images are 

marred with blurring and undesirable edges at higher 

decomposition levels.  Suppression of Localvar noise, Poisson 

noise, Gaussian noise, and Speckle noise is found to yield 

good results in the wavelet domain but yield better results in 

the spatial domain. Wavelet de-noising is found not suitable 

for the suppression of Random Valued Impulse noise and Salt 

& Pepper noise; spatial domain de-noising is highly effective 

for both noise types.  
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Fig. 25: Results of the test for the effect of the wavelet 

decomposition level LL 
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