
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 49, September 2019

30

Improved Round Robin Scheduling Algorithm with

Progressive Time Quantum

Tithi Paul
Department of Computer Science

& Engineering
niversity of Barishal, Barishal-

8200, Bangladesh

Rahat Hossain Faisal
Department of Computer Science

& Engineering
University of Barishal, Barishal-

8200, Bangladesh

Md. Samsuddoha
Department of Computer Science

& Engineering
University of Barishal, Barishal-

8200, Bangladesh

ABSTRACT

Process management is considered as an important function in

the operating system where several scheduling algorithms are

used to maintain it. Round Robin is one of the most

conventional CPU scheduling algorithms which is frequently

used in operating system. The performance of round robin

algorithm differs on the choice of time quantum which is

clarified by the researchers. In this paper, a new round robin

scheduling algorithm has been proposed where time quantum

is selected dynamically. An experimental evaluation has been

conducted to evaluate the performance of the proposed

algorithm. Also a comparative analysis has been performed

where the obtained result of this proposed algorithm has been

compared with some existing algorithms. The experimental

result shows that the performance of the proposed algorithm

performs much better than some mentioned algorithms in

terms of average waiting time and average turnaround time.

General Terms

 Scheduling Algorithm. Round Robin Scheduling

Keywords

Operating System, CPU scheduling, Round Robin, Time

Quantum, Waiting Time, Turnaround time, Context Switching

1. INTRODUCTION
Operating System (OS) provides an interface between a user

and computer hardware which helps the user to handle the

system in a convenient manner [1]. The modern operating

system becomes more complex when they switch from a

single task to a multitasking environment. The aim of an OS

is to allow a number of processes concurrently in order to

maximize Central Processing Unit (CPU) utilization. The

CPU is one of the primary computer resources, so its

scheduling is essential to an OS design. In a multi-

programmed OS, a process is executed until it must wait for

the competition of some input-output request [2]. Different

scheduling algorithms are being used in OS for multi-tasking

purposes while multiple processes arrive at the same time in

the ready queue.

Basically, a long term scheduler, a mid-term or medium-term

scheduler and a short- term are three well-known schedulers

of the operating system. Different CPU scheduling algorithms

such as First Come First Serve (FCFS), the requested process

that is first come, the CPU first is allocated the CPU first.

Each process is associated with the priority in the priority

scheduling algorithm, and the CPU is allocated to the process

with the highest priority. The processes which are equal

priority are scheduled in the FCFS order. In priority

scheduling starvation is a major problem. In this scheduling,

some low priority processes wait indefinitely to get the CPU

[1]. In Shortest Job First (SJF), the process with the smallest

burst time is allocated the CPU first. At the available time of

CPU, the process that has the smallest CPU burst is assigned

after finishing the operation of the current process. When the

burst time of the next CPU two processes are the same, FCFS

scheduling is used to break the tie.

Round robin is one of the mostly used scheduling algorithms

which have equal priority of every process. In this system,

every process is preempted after a specified time quantum or

time slice. Although RR gives improved response time and

uses shared resources efficiently [3]. Larger waiting time,

undesirable overhead and larger turnaround time for processes

with variable CPU bursts due to the use of static time

quantum, etc. are the limitations for RR. In this case a RR

with progressive time quantum on the sorted ready queue can

be developed. Round Robin works with a small unit of time

for the execution of process which is called Time Quantum or

Time slice. If a process CPU burst exceeds 1-time quantum,

that process is preempted and is put back in the ready queue.

If a new process arrives then it is added to the tail of the

circular queue. However, RR provides better performance

among the above discussed algorithms as compared to the

others in the case of the time sharing operating system. It

works with a fixed time slice. All the existing works based on

Round Robin edit the way of taking time slice. But among

them, different way shows different limitations. When the

time slice is too high the process in the ready queue are

suffering from starvation [4]. When it is very small the

context switching time is high.

In this paper a new method has been proposed that changed

time quantum in a progressive way at various state of the

ready queue. This proposed algorithm solves this problem by

taking a progressive time quantum where the time quantum is

repeatedly adjusted according to the remaining burst time of

currently running processes. Moreover the processes are

sorted in ascending order of their burst time and after that the

operation is done on process according to the proposed

algorithm to provide better turnaround time, waiting time and

context switch. The presented algorithm is comparatively

better and efficient as compared to other mentioned RR

algorithms in this paper.

The rest of the paper is decorated by Related Work in section

2, Proposed Algorithm in section 3, Experimental Setup and

Result Analysis is demonstrated in the section 4 and section 5

shows and describes the conclusion.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 49, September 2019

31

2. RELATED WORK
Round Robin algorithm efficiently works according to the

variation of time slice in a different situation. Some works

have been done on the RR CPU scheduling algorithm

adjusting its time quantum. This section describes the review

aspects of different thoughts of authors. Basically, the

literature review shows different statements on round robin.

There has a lot of work on the round robin algorithm by

adjusting its time slice. Different authors proposed different

techniques rearranging the time slice of the system those are

presented in this section.

A new Dynamic Quantum using the Mean Average Round

Robin (AN RR) is proposed which focuses on calculating an

ideal time quantum [5]. It is the extension of standard RR with

the exception that each time a process moves in or out of the

ready queue, the time quantum is recalculated. If the ready

queue is empty, then the time quantum equals the burst time

of the running process. Otherwise, the time quantum equals

the average burst time of the processes in the ready queue.

In the paper [6] author proposed solution which named

Shortest Remaining Burst Round Robin (SRBRR). Here for

each cycle, the median of burst time of the processes is

calculated and used as time quantum. In other words time,

quantum is calculated using median value (BT of the process

in the ready queue). This algorithm is improved the RR

algorithm by taking judiciously the time quantum and the

ordering of processes. An optimized round robin is proposed

in [7] which is also like standard RR with some exceptions. It

consists of two phases. During phase 1, processes are

executed in order just like they are in standard RR and each

process runs for the one time slice. During phase 2, the time

quantum is doubled, and processes are executed in the order

of their remaining burst times with shorter times running

before longer times. After each process has run for the one

time slice, the phase shifts back to phase one. And no

information was given as to what would happen if a process

arrived mid-phase. This paper assumes that processes that

arrive mid-phase will not get a chance to run until the next

phase. This paper also assumes the time quantum resets to its

initial value after second phase.

Saroj et al. proposed an Adaptive RR which focuses on

calculating an ideal time quantum [8]. In this approach,

processes are sorted by their burst times with the shorter

processes at the front of the ready queue. Next, the adaptive

time quantum is calculated based on the defined method. If

the number of processes in the ready queue is even, then the

time quantum equals the average burst time of all the

processes. Otherwise, the time quantum equals the burst time

of the process in the middle of the ready queue. Any processes

that arrive in the middle of the execution of the algorithm are

added at the end of the queue and do not run during the

current round. After each of the initial processes has had a

chance to run, the process repeats.

Efficient RR combines elements of the Shortest Remaining

Time (SRT) algorithm and the Standard RR algorithm [12]. In

the SRT algorithm, the process with the shortest remaining

burst time is always selected to run, and preemption can occur

whenever a new process arrives. One of the downsides to SRT

is that processes with long remaining burst times can suffer

from starvation. Efficient RR is just like the SRT algorithm,

but instead of preemption occurring whenever a new process

arrives, preemption only occurs at the end of the time slice. At

the end of the time slice, when it comes time to select a

process to run, the process with the shortest remaining burst

time is always selected [9]. Long processes can suffer from

starvation in Efficient RR just like in SRT [10].

The Modulus Based (MB) algorithm has been devised on the

basis of two scheduling algorithms namely MRR (AVG)

algorithm and SRBRR (median) algorithm [15]. This

algorithm gives the results intermediate between both of its

parent algorithms. if we encounter scenarios where the MRR

(AVG) algorithm behaves more efficiently than the SRBRR

algorithm or vice versa, then we can select the given MB

algorithm in order to get more stable results [13]. MRRA is

proposed to improve the performance of Round Robin. In

MRRA for each cycle, the average burst time of the processes

is calculated and used as time quantum. It enhances the

accessibility of resources whenever one wants or whenever

one wants [16].

Sometimes the SJF and RR both algorithms are combined

together to determine a time quantum and build up an

excellent scheduling algorithm [17]. Ajit singh et al.

introduced a round robin algorithm where the time quantum

becomes twice than its previous time quantum [7]. Mean

average value has been evaluated for determining a dynamic

time quantum [11]. Modulus technic has been also been used

to define a time quantum for round robin [14]. Mohanty along

with other researchers also developed various round robin

algorithms for process scheduling to increase the performance

[19]. Priority based algorithm and RR have been accumulated

together to build up an algorithm [20] and another is the

combination of SJF and RR [21].

All the improved Round Robin CPU scheduling which are

described above are being some findings. In maximum

improved round robin algorithm, time quantum is taken in a

static way. In this way, the starvation of processes remaining

in the ready queue is very high and the waiting time of some

processes is increased. On the other hand, in a dynamic time

quantum method, the context switching of the process is very

high. Because of having these limitations the author proposed

a new idea that handles the time quantum dynamically and

minimizes the context switching in a limited number.

3. PROPOSED ALGORITHM
The whole procedure of the proposed algorithm is described

in this section with the help of flowchart, algorithm,

illustration of the proposed method and a theoretical analysis.

Theoretical analysis proves the effectiveness of the proposed

algorithm which is experimentally proved in the Experiment

Analysis section. Following subsections described the

proposed algorithm step by step.

3.1 Contribution
The performance of the RR algorithm depends upon the

optimal choice of time quantum which is already clarified.

Whenever it becomes very large, the algorithm degenerates to

FCFS. Whenever it becomes very small, it causes too many

context switches. This proposed algorithm solves this problem

by taking a progressive time quantum where the time quantum

is repeatedly adjusted according to the remaining burst time of

currently running processes. Moreover the processes are

sorted in ascending order of their burst time and after that the

operation is done on process according to the proposed

algorithm to provide better turnaround time, waiting time and

context switch.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 49, September 2019

32

Fig. 1: Sequential working flow of the proposed algorithm

3.2 Proposed RR Algorithm
Figure 1 depicts the steps of the execution of the proposed

algorithm. This flow chart shows how the algorithm works in

sequentially. In this flowchart TQ1, TQ2 and ABT represent

the equations (1), (2) and (3) where first two equations are

used to calculate the time quantum and equation (3) is used to

calculate the average burst time.

 (1)

 (2)

 (3)

The proposed algorithm is presented in the Algorithm 1. It

showed how the time quantum is determined. If the numbers

of processes are less than 4 then the time quantum is

calculated from their average burst time which is shown in the

line 5 to 9.

Algorithm 1: Proposed Round Robin Algorithm

1. Initialize: Ready Queue=0, Average Turn-around

Time=0, Average Waiting Time=0, Time Quantum

(TQ);

2. While(Ready queue != empty)

3. Sort all the Process in ascending order

4. N = number of process in the ready queue

5. If N <= 4

6. Sum ← 0

7. for i ← 1 to N do

8. Sum ← Sum + Pi

9. TQ ← Sum / N;

10. Else if (N%2 = 0)

11. TQ ← (Pi + PN + P(N/2) + P(N/2 + 1))/4

12. Else

13. TQ ← (Pi + PN + P ceil(N/2 - 1) + P ceil(N/2 + 1))/4

14. Executed the process by TQ

15. Calculate the average waiting time and average

turn-around time

When the number of processes are more than 3 then the time

quantum are determined for the odd and even number of

processes which is shown in the line number 10 to 13. TQ will

determine repeatedly until the burst time of all processes in

the ready queue are zero as the proposed algorithm is

dynamic. Finally the average turnaround time and average

waiting time are calculated and the method is described in the

below subsection which is working procedure.

3.3 Working Procedure
The proposed algorithm is designed to meet all scheduling

criteria such as maximum CPU utilization, maximum

throughput, minimum turnaround time, minimum waiting

time and minimum context switches. Three performance

metrics: Turnaround Time (TAT), Waiting Time (WT) and

Context Switching (CS) are considered in each case of our

experiment.

 (4)

 (5)

The proposed algorithm works on reducing the waiting time

of the CPU process and enhancing CPU utilization. This

algorithm combines with the features of SJF and Round Robin

scheduling algorithm with varying time quantum which is

described in the Algorithm 1. The algorithm is described step

by step in below:

 Initially, according to the proposed approach, the

processes in the ready queue are arranged in the

ascending order of their burst time.

 For the different situations of ready queue, the

algorithm runs different procedures to calculate the

optimal time quantum.

 When the number of processes present in the ready

queue is less than or equal 4 then the time quantum

has been taken by calculating the average of CPU

processes burst time.

 When the number of process (N) is even, then time

quantum(TQ) is calculated by using equation (1).

Where Pi, PN, PN/2, and P(N/2+1) is the first process, last process,

the median and thereafter present beside the median CPU

process in the sorted ready queue.

 When the number of process (N) is odd, then time

quantum (TQ) is calculated by using equation (2).

Where, Pi, PN, P(N/2+1) and P(N/2-1) is the first, last, thereafter

present beside the median and previous nearest of the median

in the sorted ready queue.

 For the different situations of CPU ready queue, the

different time quantum is calculated dynamically.

 The time quantum is changed with the arrival of

every CPU process and the whole system is

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 49, September 2019

33

repeated with the arrival of each process in the

ready queue.

The time quantum is recalculated taking the remaining burst

time after each cycle. In the next step, we have to rearrange

the sorted processes along with all processes currently stored

in a queue and repeat these systems again and again until the

burst time of processes are zero.

3.4 Illustration
This subsection illustrated the methodology through an

example to analysis the proposed algorithm which is

described in the above subsection (Working Procedure). To

demonstrate this procedure, a ready queue with eight

processes P1, P2, P3, P4, P5, P6, P7, and P8 with their

corresponding burst time 9, 10, 5, 12, 20, 14, 12 and 2 ms

have been considered where the arriving time are 0, 4, 5, 5, 6,

8, 10, 10 ms respectively. When the arrival time is 0 ms, there

has only process P1 reached in the ready queue. So, the time

quantum is allocated according to P1 burst time and the time

quantum is 9.

At 4 ms there have two processes in the ready queue those are

P1 and P2. During this moment, the remaining burst time of P1

is 5. The processes P1 and P2 are arranged in the ascending

order of their burst time in the ready queue which gives the

sequence P1 and P2. Here the time quantum is counted in the

average of those processes which is 8 and the shortest process

executes first with this time quantum. After 1 ms there are P3

and P4 also in the ready queue. At that time the remaining

burst time of P1 is 4. The arrangement of all the processes in

the ascending order of their burst time in the ready queue

gives the sequence P1, P3, P2, and P4. Averaging those

processes burst time, the time quantum is 8 and the P1 is

executed with this time quantum. After 1 ms, P5 also arrives in

the ready queue. Due to having 5 (odd) possesses in the ready

queue, the processes are arranged in the ascending order of

their burst time in the ready queue which gives the sequence

P1, P3, P2, P4, and P5. According to the condition of the

proposed algorithm, the time quantum is calculated by the

average of P1, P3, P4, and P5. The figured time quantum is 10

and P1 (smallest process) is executed with this time quantum.

After 2 ms, P6 is in the ready queue and at that time,

calculated the time quantum by taking P1, P2, P4, and P5

(according to the proposed algorithm). Now, the time

quantum is 11. After 1 ms, the remaining burst time of P1 is 0

ms. So, by taking P3, P2, P6, and P5 the time quantum is 13.

After 1 ms P7 and P8 are in the ready queue and the remaining

burst time of P3 is 4. At that moment, taking P8, P2 P4, and P5

and the time quantum is 29. After 2 ms, P8 has been finished.

Now the time quantum is 13 and after 4 ms, the remaining

burst time of P3 is 0. According to the above description P2, P4,

P7, P6, and P5 are executed with dynamic time quantum 14, 15,

16, 17 and 20. After executing the above procedure, the

remaining burst time for all processes is 0 and the ready queue

is empty. Figure 2 represents the Gantt chart of these

procedures. Moreover, the calculated average waiting time

20.875 ms and the average turn-around time is 31.375 ms.

Using the same set of the process with the same arrival and

CPU burst times, the average waiting time is 37.25 ms and the

average turnaround time is 47.75 in RR.

3.5 Theoretical Evaluation
Several researchers proposed new technique for the round

robin algorithm to determine time quantum efficiently.

However median, partial average and average are the three

well-known methods used in this research to determine an

optimal time quantum. This section presents the theoretical

explanation of the proposed algorithm.

Assume that the number of processes (P) in the ready queue is

N. Now the time quantum for Median (M), Partial Average

(PA) and Average (A) are:

M = (PN/2 + PN/2+1)/2

PA = (P1 + PN)/2

A= (P1 +P2 + P3 + …………+PN)/N

In the proposed algorithm, for N number of the process, the

asymptotic analysis is:

TQ = (P1+PN/2+PN/2+1+PN)/4

= (P1/4 + PN/2 /4 + PN/2+1/4 + PN/4)

=1/2*((P1+PN)/2) + 1/2*((PN/2+PN/2+1)/2)

 =1/2*PA+ 1/2*M

This analysis showed that when the Partial average method

and median method show the best output independently, our

proposed algorithm also shows a good result for containing

both of them in one equation. Similarly at the case where the

median method shows the worst result and Partial average

shows the best result the proposed algorithm shows average

good result for having both terms in the proposed equation

and vice versa. When the few amounts of processes are in the

ready queue, the system acts like the average time quantum

method. So it also has benefits of average for some cases.

4. RESULT AND DISCUSSION

4.1 Assumptions and Implementation

The proposed algorithm has been developed and illustrated

with a view to increasing the performance of scheduling in the

field of maximum throughput, maximum CPU utilization,

reducing turnaround time and minimizing waiting time.

Basically two type of processes such as having equal arrival

time and different arrival time. In this research both of the

cases are considered. The proposed algorithm had been

implemented with C++ programming language with Core-i3

Processor, 4GB RAM, 64bit windows operating system

computer. For conducting the experiment n processes have

been taken and all of these are independent. Before executing

the data of any test case for all the processes their

corresponding burst time (BT) and arrival time (AT) are

known. These are the input parameters of this system. The

output parameters are average turnaround time (ATAT),

average waiting time (AWT) and context switch (CS).

Following sections describe about the datasets and

experimental result obtained from the implemented system.

4.2 Datasets

The experiment has been conducted with two different test

cases where one is with same arrival time and another is with

different arrival time. The datasets have been selected

randomly. Table 1 and 2 presents these datasets. To evaluate

the performance of the proposed algorithm a comparative

result has been conducted with two different data sets where

the obtained result of our algorithm is presented with some

selected algorithms proposed in the existing literature. This

experiment also has been performed with two different

datasets which shows in table 3 and table 5.

4.3 Experimental Result
In this subsection two data sets have been taken for analyzing

the process. Experiment has been conducted both for the

without arrival time and with different arrival time.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 49, September 2019

34

Case 1: (Without arrival Time)

Table 1 presents the first dataset where five processes have

taken with their respective burst time with arrival time 0.

Table 1: Dataset- 1

Process Id CPU Burst Time (ms)

P1 22

P2 18

P3 9

P4 10

P5 5

The Gantt chart of the proposed algorithm for the first dataset

is demonstrated in Figure 2.

Fig. 2: Gantt chart for dataset 1

Proposed algorithm provides the following result for the first

dataset: the number of Context Switches 4, average waiting

time 13 ms average turnaround time 29.8 ms. Using the same

set of the process with the same arrival and CPU burst times,

standard RR provides a number of context switches 13, the

average waiting time is 34 ms and the average turnaround

time is 46.8 in RR where time quantum is 5.

Case 2: (With Arrival Time)

Assume eight processes P1, P2, P3, P4, P5,P6, P7, and P8 arriving

at different times 0, 4, 5, 5, 6, 8, 10 and 10 respectively with

increasing burst time 9, 10, 5, 12, 20, 14, 12 and 2. Table 2

presents the details of this dataset.

Table 2: Dataset - 2

Process Id Arrival time CPU Burst Time (ms)

 P1 0 9

P2 4 10

P3 5 5

P4 5 12

P5 6 20

P6 8 14

P7 10 12

P8 10 2

The Gantt chart of the proposed algorithm is demonstrated in

Figure 3.

Fig. 3: Gantt chart for dataset 2

In this process, a number of context switches 12, average

waiting time 20.875 ms, average turnaround time 31.375 ms.

Using the same set of the process with the same arrival and

CPU burst times, a number of context switches 14 in RR, the

average waiting time is 45 ms in RR. The average turnaround

time is 55.5 in RR (at time quantum 8).

From the above experiment context switch, average waiting

time and average turnaround time both are reduced by using

the proposed algorithm. The reduction of context switch,

average waiting time and average turnaround time shows

maximum CPU utilization and minimum response time. This

proposed algorithm is much more efficient as compared to a

simple RR algorithm.

4.4 Comparison with Algorithms
Two different data sets have been conducted to evaluate the

proposed system by comparing some other existing methods.

For ensure the effectiveness and accuracy of this proposed

algorithm, some existing algorithms had been selected. The

selected algorithms are listed below:

 Dynamic Quantum Using the Mean Average Round

Robin (ANRR) [5]

 Shortest Remaining Burst RR (SRBRR) [6]

 An Optimized Round Robin Algorithm (ORR)[7]

 Adaptive Round Robin Algorithm (ARR) [8]

 Simple Round Robin Algorithm (RR) [12]

Case 1:

Assume six processes P1, P2, P3, P4, P5, and P6 arriving at

different times 0, 0, 3, 5, 10, 13 respectively with burst time

7, 5, 4, 4, 8, 8 as shown in Table 3.

Table 3: Dataset 3

Process Id Arrival time Burst Time

P1 0 7

P2 0 5

P3 3 4

P4 5 4

P5 10 8

P6 13 8

The result of the proposed algorithm against the mentioned

algorithm has been shown in Table 4. This proposed

algorithm is comparatively better against all other Round

Robin algorithms. From the data of Table 3, the comparison

among RR, SRBRR, AN RR, Optimized RR, Adaptive RR,

and proposed algorithm. Figure 4 represents the comparison

of the obtained result of Table 4.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 49, September 2019

35

Table 4: Comparison over dataset 3

Algorithms ATAT AWT CS

RR (At TQ=4) 17.17 11.17 9

SRBRR 14.833 8.833 8

AN RR 15.83 9.83 6

ORR, TQ = 4 (Phase 1),

8 (Phase 2)

15.00 9.00 7

Adaptive RR 16.67 10.67 7

Proposed Algorithm 13.33 7.33 7

Case 2:

Assume Five processes P1, P2, P3, P4, and P5 arriving at

different times 0, 6, 8, 9, 10 respectively with burst time 7, 15,

90, 42 and 8 are shown in Table 5.

Table 5: Dataset 4

Process Id Arrival Time Burst Time

P1 0 7

P2 6 15

P3 8 90

P4 9 42

P5 10 8

The result of the proposed algorithm against the mentioned

algorithms has been shown in Table 6. The result shows that

the proposed algorithm performs better than other algorithms

in terms of ATAT, AWT. In the terms of CS some other

algorithms show better performance than the proposed

algorithm. Table 6 presents the details of the result and Figure

5 represents the comparison in a clear concise.

Table 6: Comparison over dataset 4

Algorithms ATAT AWT CS

RR (At TQ=25) 72 39.6 8

SRBRR 52 19.6 5

AN RR 52 19.6 4

ORR,TQ = 6 (Phase One),

12 (Phase Two), 24, 48

63.8 31.4 12

ARR 52 19.6 5

Proposed Algorithm 51.2 18.8 8

Fig. 4: Comparison over dataset 3

Fig. 5: Comparison over dataset 4

5. CONCLUSION
One of the most important components of the computer

resource is the CPU. CPU scheduling involves a careful

examination of pending processes to determine the most

efficient way to service the requests. Many CPU scheduling

algorithms have been presented having some advantages and

disadvantages. A comparative study of a simple RR algorithm

and proposed one is made. In this paper, the proposed

algorithm is the modification of the thoughts of finding time

quantum. Experiment shows that our proposed algorithm

performed well. The comparative study also shows that the

proposed algorithm performs well than the mentioned

algorithm in terms of average waiting time and average

turnaround time. Our proposed algorithm can be further

investigated to improve the performance in terms of context

switching. Moreover, in future we will work to develop

adaptive algorithms which can be used in any situations by

combing all of the scheduling algorithms.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 49, September 2019

36

6. REFERENCES
[1] Silberschatz, Abraham, Greg Gagne, and Peter B.

Galvin. Operating system concepts. Wiley, 2018.

[2] S. R. Chavan, P. C. Tikekar, An Improved Optimum

Multilevel Dynamic Round Robin Scheduling

Algorithm, International Journal of Scientific &

Engineering Research, Volume 4, Issue 12, December-

2013 ISSN 2229-5518.

[3] Sukumar Babu B., Neelima Priyanka N., and Sunil

Kumar B., "Efficient Round Robin CPU Scheduling

Algorithm," International Journal of Engineering

Research and Development, vol. 4, Ino. 9, Nov. 2012, p.

36-42.

[4] Ajit Singh, Priyanka Goyal, Sahil Batra, An Optimized

Round Robin Scheduling Algorithm for CPU

Scheduling, (IJCSE) International Journal on Computer

Science and Engineering Vol. 02, No. 07, 2010, 2383-

2385.

[5] Abbas Noon, Ali Kalakech and Seifedine Kadry, “A

New Round Robin Based Scheduling Algorithm for

Operating Systems: Dynamic Quantum Using the Mean

Average,” International Journal of Computer Science,

vol. 8, no. 1, May 2011, p. 224-229.

[6] Prof. Rakesh Mohanty, Prof. H. S. Behera, Khusbu

Patwari, Manas Ranjan Das, Monisha Dash, Sudhashree,

Design and Performance Evaluation of a New Proposed

Shortest Remaining Burst Round Robin (SRBRR)

Scheduling Algorithm.

[7] Ajit Singh, Priyanka Goyal, and Sahil Batra, "Optimized

Round Robin Scheduling Algorithm for CPU

Scheduling," International Journal on Computer Science

and Engineering, vol. 02, no. 07, 2010, p. 2383-2385.

[8] Saroj Hiranwal and Dr. K.C. Roy, “Adaptive Round

Robin Scheduling using Shortest Burst Approach Based

on Smart Time Slice,” International Journal of Computer

Science and Communication, vol. 2, no. 2, July-Dec.

2011, p. 319-323.

[9] Sukumar Babu B., Neelima Priyanka N., and Dr. P.

Suresh Varma, "Optimized Round Robin CPU

Scheduling Algorithm," Global Journal of Computer

Science and Technology, vol. 12, Issue 11, 2012, p. 21-

25.

[10] Sukumar Babu B., Neelima Priyanka N., and Sunil

Kumar B., "Efficient Round Robin CPU Scheduling

Algorithm," International Journal of Engineering

Research and Development, vol. 4, Ino. 9, Nov. 2012, p.

36-42.

[11] Matarneh, Rami J. "Self-adjustment time quantum in

round robin algorithm depending on burst time of the

now running processes." American Journal of Applied

Sciences 6.10 (2009): 1831.

[12] Christopher McGuire and Jeonghwa Lee, Comparisons

of Improved Round Robin Algorithms, Proceedings of

the World Congress on Engineering and Computer

Science 2014 Vol I WCECS 2014, 22-24 October 2014,

San Francisco, USA.

[13] Bhavin Fataniya1, Manoj Patel2, Survey on Different

Method to Improve Performance of The Round Robin

Scheduling Algorithm, International Journal of Scientific

Research in Science, Engineering and Technology.

[14] Mohanty, Rakesh, et al. "Priority based dynamic round

robin (PBDRR) algorithm with intelligent time slice for

soft real time systems." arXiv preprint arXiv:1105.1736

(2011).

[15] Salman Arif, Saad Rehman and Farhan Riaz "Design of

A Modulus Based Round Robin Scheduling Algorithm",

IEEE, 9th Malaysian Software Engineering Conference,

Dec. 2015.

[16] Pandaba Pradhan, Prafulla Ku. Behera and B N B Ray,

"Modified Round Robin Algorithm for Resource

Allocation in Cloud Computing ", ScienceDirect,

Procedia Computer Science (2016) 878 – 890,2016.

[17] Amar Ranjan Dash, Sandipta Kumar Sahu, and Sanjay

Kumar Samantha, An Optimized Round Robin CPU

Scheduling Algorithm with Dynamic Time Quantum,

International Journal of Computer Science, Engineering

and Information Technology (IJCSEIT), Vol. 5, No.1,

February 2015.

[18] H.S.Behera, Rakesh Mohanty, Sabyasachi Sahu, and

Sourav Kumar Bhoi, "Comparative Performance

Analysis of Multi-dynamic Time Quantum Round Robin

(mdtqrr) Algorithm with Arrival Time," Indian Journal of

Computer Science and Engineering, vol. 2, no. 2, Apr-

May 2011.

[19] Mohanty, Rakesh, et al. "Design and performance

evaluation of a new proposed shortest remaining burst

round robin (SRBRR) scheduling algorithm."

Proceedings of International Symposium on Computer

Engineering & Technology (ISCET). Vol. 17. 2010.

[20] Ghanbari, Shamsollah, and Mohamed Othman. "A

priority based job scheduling algorithm in cloud

computing." Procedia Engineering 50.0 (2012): 778-785.

[21] Rakesh Mohanty, H. S. Behera, Debashree Nayak, “A

New Proposed Dynamic Quantum with Re-Adjusted

Round Robin Scheduling Algorithm and Its Performance

Analysis” International Journal of Computer

Applications (0975 – 8887), Volume 5– No.5, August

2010.

IJCATM : www.ijcaonline.org

