
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.5, November 2017

20

A New Algorithm to Provide all Solutions of SSP

Problem

Vishal Kesri
Tek Infotree Pvt Ltd

New Delhi, India

ABSTRACT
Sum of subset (SSP) is an important problem of complexity

theory and cryptography in computer science. The SSP

involves searching from a given set of distinct integers to find

all the subsets whose sum of elements equal to certain integer

capacity. The importance of this algorithm is that, it can be

applied to create a better decryption technique and in many

others. The proposed algorithm is able to find all solutions of

SSP from a given set of integers. Simulation shows that the

algorithm takes less number of steps as compared to

traditional back tracking algorithm.

General Terms
NP hard, NP complete, cryptography, encryption, decryption.

Keywords
Search, Total, Next Element, Next Search, Set-A, Set-B,

Remain-Set, Final Matrix.

1. INTRODUCTION
The Subset-Sum Problem (SSP) is one the most fundamental

NP-complete problems [2] and simple of its kind. Given a set

of n data items with positive weights and a given capacity,

SSP is use to find out all the subset whose sum is equal to

given capacity. SSP is useful in solving many real life

problems that includes, decision version of SSP with unique

solutions represent a secret message in a SSP-based

cryptosystem [1]. It is also applicable in combinatorial

problem [8], scheduling problem [11], 0-1 integer problem

[10] and bin packing algorithm [9]. The Subset-Sum Problem

is often thought of as a special case of the Knapsack Problem,

where the weight of a data item is proportional to its size.

Therefore, algorithms for the Knapsack Problem can be

applied for SSP automatically.

1.1 Brief History
There exists some algorithms which provide the solution of

SSP but the time complexity of these algorithms is very high.

A naive algorithm solves the SSP in O(n2n), as the algorithm

finds all possible subsets and evaluates them to obtain the

solution.

An improved algorithm suggested by Horowitz and Sahni in

1974, achieves the solutions in time O(n2n/2)and the exact

algorithm for solving this have not been improved since then

[1]. Some dynamic programming algorithms give faster

solutions to a special case of SSP, where the capacity is

relatively small and many other algorithms have been

proposed under different heuristics [7].

2. DEFINITION
Given an instance S = {x1, x2, . . . , xn} of SSP, is a set of n

distinct positive numbers such that, to find all combinations

of this numbers (usual called subset) whose sum is equal to

some integer capacity ‘C’. Where set S is the input vector,

containing x1, x2, . . . , xn are the data elements and ‘C’ is the

given capacity. The desire solutions can be expressed by

either a fixed or variable sized vector. Here, in this paper

variable sized solution vector is used.

2.1 Mathematical Definition

Given the input vector, x1…….xn taken in ascending order

and a capacity C such that

 , where xi >0 and 1 ≤ i ≤ n ……….(1)

 , where yi = 1...…………….(2)

x1 ≤ C………………………….………………(3)

2.2 Notations
The notations used in this algorithm are given in table 1.

Table 1. List of Notations

Symbols Definition

C Capacity

S[] Input vector

SE Search

T Total

A[] Set-A

R Remain Set

 P(R) Power Set of Remain Set

B[] Set-B

NE Next Element

NS Next Search

Search: Initially search value is equal to the capacity.

However, at each recursion step the capacity value is re

calculated and assign to SE.

Total: It is the sequential addition of data item of S. And the

value of addition of the data items is assigned to T and the

value of T ≤ SE.

http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Cryptography

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.5, November 2017

21

Algorithm for ‘Total’

/* n= Size of input array S[] */

/* calculate1 is a variable */

for (i = 0; i < n; i++)

{

 calculate1 = calculate1 + S[i];

 if (calculate1 ≤ SE)

 {

 T = calculate1;

 }

 else

 break;

}

Algorithm 1

Set-A: the set-A contains the data elements of set S whose

summation must be less than or equal to SE and assigned to T.

Algorithm for ‘Set-A’

/* n= Size of input array S[] */

/* calculate2 is a variable */

for (i = 0; i < n; i++)

{

 calculate2 = calculate2 + S[i];

 if (calculate2 ≤ SE)

 {

 A[i] = S[i];

 }

 else

 break;

}

Algorithm 2

Remain Set: Remain set contains the elements whose

individual element are less than or equal to SE.

Algorithm for ‘Remain-Set’

/* n= Size of input array S[] */

/* Capacity = Entered by the user */

for (i = 0; i < n; i++)

 {

 calculate3 = calculate3 + S[i];

 j = i;

 if (calculate3 ≥ SE)

 break;

 }

for (i = j; i < n; i++)

 {

 if (S[i] ≤ capacity)

 {

 R[i] = S[i];

 }

 else

 break;

 }

Algorithm 3

R' is a power set of R, which contains subsets of R. the

summation of the elements in individual subset is less than or

equal to SE. xi is the subset of R

Example

R= {2, 3, 5, 7 } SE = {8}

R' = {(2), (3), (5), (7), (2, 3), (2, 5), (3, 5)}

Here we not consider (3, 7), etc. as element of R' because the

value of (3, 7) become 10 after add “3+7”, which is ≥’SE’.

Set-B: In each iteration, Set-B contains one element of R' and

in the second iteration, Set-B contains second element and so

on.

Algorithm for ‘Set-B’

mlength of R'[]

for  1 to m

 do BR' [] /* Here pass one by one each

 element of R' into B */

Algorithm 4

Next Element: the NE contains the summation of all the

element of the Set-B for a particular iteration.

Next Search: NS contains a value that becomes the capacity

for the next level. That is NS become the value of SE for next

level.

Final Matrix: The final matrix is important to calculate the

solutions of SSP. When T = = SE we get a solution of SSP.

Final Matrix has three columns (Level, Set-A, Set-B) and n

rows where “n=number of levels”.

Solution: The element, which appear odd number of time in

the final matrix, that become a solution of SSP.

2.3 Algorithm
The propose algorithm describe below in Algorithm-5:

Algorithm for ‘SSP’

/* S [], is an input array, B[] is an array of Set-B

 Initial flag=1, flag2=1 */

void main

{

 read S , C ;

 SSP (C);

}

SSP (SE) /* From step-1 to step-6 */

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.5, November 2017

22

{

Step-1:

 if S[0] > ‘SE’ && level == 1

 exit ;

 else if S[0] > ‘SE’

 return previous level at step-5

 else

 continue ;

Step-2:

 calculate A []

 calculate ‘T’

Step-3:

 if flag2 == 0

 {

 calculate R with “<” condition

 flag2 = 1;

 }

 if flag ≠ 0

 calculate R with “≤” condition

 calculate R'

Step-4:

 if ‘T’= = ‘SE’

 {

 if R' = = null && level = = 1

 {

 flag = 0;

 Solution () ;

 }

 else

 {

 flag = 1;

 Solution () ;

 }

 }

 Step-5:

 if R'= = null && level = = 1

 exit;

 if R'= = null && level ≠ 1

 return previous level at step-5;

 else

 send one by one each element to Set-B from R'

Step-6:

 calculate NE

 calculate NS

 if B[0] = = NE = = NS

 flag2 = 0;

 SSP (NS);

/* NS become SE value for next level */

Solution ()

{

 Step-7:

 calculate Final Matrix

Step-8:

 calculate solution

 if flag = = 0

 exit;

 else if flag = = 1

 return ;

}

Algorithm 5

3. ANALYSIS OF ALGORITHM
The space complexity of this algorithm is:

Time complexity need to be calculate during future work.

3.1 Comparison
The Figure-1 shows a comparison between the traditional

backtracking algorithms and propose algorithm. This

comparison done by taking a fixed input sequence and

variable capacity. The result shows that the propose algorithm

batter than traditional backtracking algorithm. There is 50

elements in input vector. Where “x-axis” represents the

capacity and “y-axis” represents number of lines executed.

The element of this Input vector for this experiment described

in appendix-2 as input-1.

Fig 1: Comparison between naive Algorithm and Propose

Algorithm by different capacity but same input vector

The Figure-2 shows a comparison between the traditional

backtracking algorithms and propose algorithm. This

comparison is done by taking variable size input vector and

fixed capacity. The result shows that the propose algorithm

batter than traditional backtracking algorithm. Here “x-axis”

represents size of input vector and “y-axis” represents number

of lines executed. The input elements for this experiment are

describe in appendix-2 from input-2 to input-6.

Fig 2: Comparison between naive and Propose Algorithm

by different input size vector and same capacity

0

1000

2000

3000

4000

5000

6000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Propose Algorithm Naive Algorithm

610
922

1336

3279 3166

821 974

2162

3701

4767

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50

Propose Algorithm Naive Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.5, November 2017

23

4. CONCLUSION AND FUTURE WORK
The proposed algorithm ‘sum of subset’ problem provides all

solutions of a given set of input vector and certain capacity.

Simulation shows that the algorithm takes less number of

steps as compared to traditional Naive algorithm. In future

Time complexity of this algorithm can be analyze.

Apendix-1: Example

/* Level = Recurrence */

Step-1:

Level-1

Search Set-A Total Set-B N.E N.S

30

Step-2:

Level-1

Search Set-A Total Set-

B

N.E N.S

30 {2,4,5,7,11} 29

Step-3:

Level-1

Search Set-A Total Set-

B

N.E N.S

30 {2,4,5,7,11} 29

Remain-Set R'

{ 13 ,17 ,21 ,25 } {13 ,17 ,21 ,25 , (13,17) }

Step-4

/* ‘T’ ≠ ‘SE’, So this step skip */

Step-5

Level-1

Search Set-A Total Set-

B

N.E N.S

30 {2,4,5,7,11} 29 13

Remain-Set R'

{ 13 ,17 ,21 ,25 } {13 ,17 ,21 ,25 , (13,17) }

Step-6

Level-1

Search Set-A Total Set-

B

N.E N.S

30 {2,4,5,7,11} 29 13 13 12

Remain-Set R'

{ 13 ,17 ,21 ,25 } {13 ,17 ,21 ,25 , (13,17) }

/* Recurrence call again */

Step-1:

Level-2

Search Set-A Total Set-B N.E N.S

12

Step-2:

Level-2

Search Set-A Total Set-B N.E N.S

12 {2,4,5} 11

Step-3:

Level-2

Search Set-A Total Set-B N.E N.S

12 {2,4,5} 11

Remain-Set R'

{ 7,11 } {7, 11 }

Step-4

/* ‘T’ ≠ ‘SE’, So this step skip */

Step-5

Level-2

Search Set-A Total Set-B N.E N.S

12 {2,4,5} 11 7

Remain-Set R'

{ 7, 11 } {7, 11 }

Step-6

Level-2

Search Set-A Total Set-B N.E N.S

12 {2,4,5} 11 7 7 6

Remain-Set R'

{ 7, 11 } { 7, 11 }

/* Recurrence call again */

Step-1:

Level-3

Search Set-A Total Set-B N.E N.S

6

Step-2:

Level-3

Search Set-A Total Set-B N.E N.S

6 {2,4} 6

Step-3:

Level-3

Search Set-A Total Set-B N.E N.S

12 {2,4,5} 11

Remain-Set R'

{ 5 } { 5 }

Step-4

Level-3

‘T’ == ‘SE’

 Set flag=1;

 goto step-7;

Step-7

Level-3

FINAL MATRIX

Level Set-A Set-B

1 { 2, 4, 5, 7, 11 } {13}

2 { 2, 4, 5 } {7}

3 { 2, 4 } { }

Step-8

Solution= { 2, 4, 11, 13 }

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.5, November 2017

24

Return step-5

/* This process continue according to algorithm until

 get all solution */

Apendix-2: Describe Input vector ‘S’ for

Experiment

Input-1

S4={2,4,11,14,18,20,24,29,32,35,38,41,45,47,49,

51,56,57,63,66,69,73,77,79,82,84,91,95,97,99,

100,102,104,110,118,122,134,140,150,152,158,160,164

,166,170,180,190,192,194,200}

Input-2

S5= {1,2,3,4,5,6,7,8,9,10}

Input-3

S6={2,11,20,23,28,29,32,33,35,38,40,41,45,48,49,51,56

,57,63,66}

Input-4

S7={1,3,10,17,25,27,28,31,33,34,35,38,42,44,45,46,47,

49,51,55,56,57,61,67,68,69,74,79,82,89}

Input-5

S8={1,2,4,9,14,20,30,31,35,37,38,40,42,44,47,48,

50,52,55,56,57,58,59,60,62,65,68,70,72,79,81,88,

89,91,92,93,94,97,99,100}

Input-6

S9={1,2,3,11,19,22,27,29,32,33,34,35,38,42,43,45,47,4

9,51,54,56,57,60,67,68,69,73,79,88,89,91,95,97,99,101,

102,104,110,119,122,133,140,150,152,

158,160,164,166,172,185}

Apendix-3: Simulation
The Simulation is Base on C programming Language, The

outcome of our experiment shown below:

 */

Solution:

8. REFERENCES
[1] Yuli Ye, “Priority Algorithms for the Subset-

Sum Problem” Master of Science Thesis, Graduate

Department of Computer Science University of

Toronto”2006”.

[2] M. Garey and D. Johnson.Computers and Intractability

: a Guide to the Theory of NP completeness.

Freeman, 1979.

[3] L. Escudero, S. Martello, and P. Toth. A framework for

tightening 0 - 1 programs based on extensions of

pure 0-1 KP and SS problems.Lecture Notes in

Computer Science, 920:110–123, 1995.

[4] M.Garey and D. Johnson.Computers and Intractability

: a Guide to the Theory of NP completeness.

Freeman, 1979.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.5, November 2017

25

[5] O. Ibarra and C. Kim. Fast approximation algorithms

for the knapsack and sum of subset problem.

Journal of the ACM, 22:463– 468, 1975.

[6] H. Kellerer, R. Mansini, U. Pferschy, and M.

Speranza. An efficient fully polynomial

approximation scheme for the subset-sum problem.

Journal of Computer and System Sciences, 66:349–

370, 2003.

[7] H. Kellerer , U. Pferschy, and D. Pisinger. Knapsack

Problems. Springer, 2004.

[8] D. Pisinger. An exact algorithm for large multiple

knapsack problems. European Journal of Operational

Research, 114 : 528–541, 1999.

[9] A. Caprara and U. Pferschy. Packing bins with

minima l slack. Technical report, University of

Graz, 2002.

[10] B. Dietrich and L. Escudero. Coefficient reduction

for knapsack constraints in 0-1 programs with VUBs.

Operations Research Letters, 9:9–14, 1990.

[11] J. Hoogeveen, H. Oosterhout, and S. van de Velde. New

lower and upper bounds for scheduling around a

small common due date. Operations Research, 42 :

102–110-1994.

IJCATM : www.ijcaonline.org

