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ABSTRACT  
Sum of subset (SSP) is an important problem of complexity 

theory and cryptography in computer science. The SSP 

involves searching from a given set of distinct integers to find 

all the subsets whose sum of elements equal to certain integer 

capacity. The importance of this algorithm is that, it can be 

applied to create a better decryption technique and in many 

others. The proposed algorithm is able to find all solutions of 

SSP from a given set of integers. Simulation shows that the 

algorithm takes less number of steps as compared to 

traditional back tracking algorithm. 
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1.  INTRODUCTION  
The Subset-Sum Problem (SSP) is one the most fundamental 

NP-complete problems [2] and simple of its kind. Given a set 

of n data items with positive weights and a given capacity, 

SSP is use to find out all the subset whose sum is equal to 

given capacity. SSP is useful in solving many real life 

problems that includes, decision version of SSP with unique 

solutions represent a secret message in a SSP-based 

cryptosystem [1]. It is also applicable in combinatorial 

problem [8], scheduling problem [11], 0-1 integer problem 

[10] and bin packing algorithm [9]. The Subset-Sum Problem 

is often thought of as a special case of the Knapsack Problem, 

where the weight of a data item is proportional to its size. 

Therefore, algorithms for the Knapsack Problem can be 

applied for SSP automatically. 

1.1 Brief History  
There exists some algorithms which provide the solution of 

SSP but the time complexity of these algorithms is very high. 

A naive algorithm solves the SSP in O(n2n), as the algorithm 

finds all possible subsets and evaluates them to obtain the 

solution.   

An improved algorithm suggested by Horowitz and Sahni in 

1974, achieves the solutions in time O(n2n/2)and the exact 

algorithm for solving this have not been improved since then 

[1]. Some dynamic programming algorithms give faster 

solutions to a special case of SSP, where the capacity is 

relatively small and many other algorithms have been 

proposed under different heuristics [7]. 

 

 

 

 

 

 

2. DEFINITION  
Given an instance S = {x1, x2, . . . , xn} of SSP, is a set of n 

distinct positive numbers such that,  to find all combinations 

of this numbers (usual called subset) whose sum is equal to 

some integer capacity ‘C’. Where set S is the input vector, 

containing x1, x2, . . . , xn are the data elements and ‘C’ is the 

given capacity. The desire solutions can be expressed by 

either a fixed or variable sized vector. Here, in this paper 

variable sized solution vector is used. 

 

2.1 Mathematical Definition 

Given the input vector, x1…….xn taken in ascending order 

and a capacity C such that 

 

        , where xi >0 and 1 ≤  i ≤  n ……….(1) 

 
    

 
         , where yi = 1...…………….(2) 

 

x1 ≤ C………………………….………………(3) 

 

2.2 Notations 
The notations used in this algorithm are given in table 1. 

 
Table 1. List of Notations 

Symbols Definition 

C Capacity 

S[ ] Input vector   

SE Search 

T Total 

A[ ] Set-A  

R Remain Set 

 P(R) Power Set of Remain Set 

B[ ] Set-B 

NE Next Element 

NS Next Search 

 

Search: Initially search value is equal to the capacity. 

However, at each recursion step the capacity value is re 

calculated and assign to SE.   

 

Total: It is the sequential addition of data item of S. And the 

value of addition of the data items is assigned to T and the 

value of T ≤ SE.  

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Cryptography
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Algorithm for ‘Total’  

 

/* n= Size of input array S[ ] */ 

/* calculate1 is a variable */ 

for (i = 0;  i < n;  i++) 

{ 

          calculate1 = calculate1 + S[i]; 

          if ( calculate1 ≤ SE) 

                { 

                       T = calculate1; 

                } 

         else 

               break; 

} 

 

Algorithm 1 

 
Set-A: the set-A contains the data elements of set S whose 

summation must be less than or equal to SE and assigned to T.  

 
Algorithm for ‘Set-A’ 

 

/* n= Size of input array S[ ] */ 

/* calculate2 is a variable */ 

 

for (i = 0;  i < n;  i++) 

{ 

          calculate2 = calculate2 + S[i]; 

          if ( calculate2 ≤ SE) 

                { 

                        A[i] = S[i]; 

                } 

          else 

               break; 

} 

 

Algorithm 2 

 
Remain Set: Remain set contains the elements whose 

individual element are less than or equal to SE.  

 

                             

 

Algorithm for ‘Remain-Set’  

 

/* n= Size of input array S[ ] */ 

/* Capacity = Entered by the user */ 

 

for (i = 0;  i < n;  i++) 

      { 

          calculate3 = calculate3 + S[i]; 

          j = i; 

          if ( calculate3 ≥ SE) 

                break; 

      } 

for (i = j;  i < n;  i++) 

      { 

           if ( S[i] ≤ capacity) 

                { 

                        R[i] = S[i]; 

                } 

           else 

                break; 

      } 

 

Algorithm 3 

 

R' is a power set of R, which contains subsets of R. the 

summation of the elements in individual subset is less than or 

equal to SE. xi is the subset of R 

 

                                      

 

Example 

 

R= {2, 3, 5, 7 }       SE  = {8} 

 

R' = {(2), (3), (5), (7), (2, 3), (2, 5), (3, 5)} 

 

Here we not consider (3, 7), etc. as element of R' because the 

value of (3, 7) become 10 after add “3+7”, which is ≥’SE’. 

 

Set-B: In each iteration, Set-B contains one element of R' and 

in the second iteration, Set-B contains second element and so 

on.  

 
Algorithm for ‘Set-B’ 

 

mlength of R'[ ] 

 

for  1 to m 

           do BR' [ ]      /* Here pass one by one each      

                                          element of R' into B */ 

 

Algorithm 4 
 

Next Element: the NE contains the summation of all the 

element of the Set-B for a particular iteration.  

      

 

   

 

 

Next Search: NS contains a value that becomes the capacity 

for the next level. That is NS become the value of SE for next 

level. 

 

              
 

Final Matrix: The final matrix is important to calculate the 

solutions of SSP. When T = = SE we get a solution of SSP. 

Final Matrix has three columns (Level, Set-A, Set-B) and n 

rows where “n=number of levels”.   

 

Solution: The element, which appear odd number of time in 

the final matrix, that become a solution of SSP. 

 

2.3 Algorithm  
The propose algorithm describe below in Algorithm-5: 

Algorithm for ‘SSP’  

 

/* S [ ], is an input array, B[ ] is an array of  Set-B  

    Initial flag=1, flag2=1 */ 

 

void main 

{ 

     read S , C ; 

     SSP (C); 

} 

 

SSP ( SE )               /* From step-1 to step-6 */ 
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{ 

Step-1:  

        

       if  S[0] > ‘SE’ && level == 1 

                    exit ;        

       else if S[0] > ‘SE’      

                   return previous level at step-5 

       else  

                   continue ; 

Step-2: 

       calculate A [] 

       calculate ‘T’ 

 

Step-3: 

       if  flag2 == 0 

           { 

                   calculate R with “<” condition 

                   flag2 = 1; 

           } 

      if flag ≠ 0 

                   calculate R with “≤” condition 

      calculate R' 

Step-4: 

       if ‘T’= = ‘SE’ 

           { 

                    if R' = = null && level = = 1 

                           { 

                                    flag = 0; 

                                    Solution ( ) ; 

                            } 

                    else 

                           { 

                                    flag = 1; 

                                    Solution ( ) ; 

                            } 

            }  

 Step-5: 

      if R'= = null && level = = 1 

          exit; 

      if R'= = null && level ≠ 1 

          return previous level at step-5; 

      else 

          send one by one each element to Set-B from R' 

 

Step-6: 

      calculate NE 

      calculate NS 

      if B[0] = = NE = = NS 

            flag2 = 0; 

      SSP ( NS );     

 

/* NS become SE value for next level */                               

 

Solution () 

{                                                               

 Step-7: 

     calculate Final Matrix 

 

Step-8: 

     calculate solution    

     if flag = = 0 

         exit; 

     else if flag = = 1 

         return ; 

} 

Algorithm 5 

3. ANALYSIS OF ALGORITHM 
The space complexity of this algorithm is: 

 

                       
 

Time complexity need to be calculate during future work. 

 

3.1 Comparison  
The Figure-1 shows a comparison between the traditional 

backtracking algorithms and propose algorithm. This 

comparison done by taking a fixed input sequence and 

variable capacity. The result shows that the propose algorithm 

batter than traditional backtracking algorithm. There is 50 

elements in input vector. Where “x-axis” represents the 

capacity and “y-axis” represents number of lines executed. 

The element of this Input vector for this experiment described 

in appendix-2 as input-1.   

 

 
 

Fig 1: Comparison between naive Algorithm and Propose 

Algorithm by different capacity but same input vector 

 
The Figure-2 shows a comparison between the traditional 

backtracking algorithms and propose algorithm. This 

comparison is done by taking variable size input vector and 

fixed capacity. The result shows that the propose algorithm 

batter than traditional backtracking algorithm. Here “x-axis” 

represents size of input vector and “y-axis” represents number 

of lines executed. The input elements for this experiment are 

describe in appendix-2 from input-2 to input-6.   

 
 

Fig 2: Comparison between naive and Propose Algorithm 

by different input size vector and same capacity 
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4. CONCLUSION AND FUTURE WORK  
The proposed algorithm ‘sum of subset’ problem provides all 

solutions of a given set of input vector and certain capacity. 

Simulation shows that the algorithm takes less number of 

steps as compared to traditional Naive algorithm. In future 

Time complexity of this algorithm can be analyze.  

 
Apendix-1: Example 
 

/* Level = Recurrence */ 

                                       
            

 

Step-1: 

Level-1 

Search Set-A Total Set-B N.E N.S 

30      

 

Step-2: 

Level-1 

Search Set-A Total Set-

B 

N.E N.S 

30 {2,4,5,7,11} 29    

 

Step-3: 

Level-1 

Search Set-A Total Set-

B 

N.E N.S 

30 {2,4,5,7,11} 29    

 

Remain-Set R' 

{ 13 ,17 ,21 ,25 } {13 ,17 ,21 ,25 , (13,17) } 

 

Step-4 

/* ‘T’ ≠ ‘SE’, So this step skip */ 

 

Step-5 

Level-1 

Search Set-A Total Set-

B 

N.E N.S 

30 {2,4,5,7,11} 29 13   

 

Remain-Set R' 

{ 13 ,17 ,21 ,25 } {13 ,17 ,21 ,25 , (13,17) } 

 

Step-6 

Level-1 

Search Set-A Total Set-

B 

N.E N.S 

30 {2,4,5,7,11} 29 13 13 12 

 

Remain-Set R' 

{ 13 ,17 ,21 ,25 } {13 ,17 ,21 ,25 , (13,17) } 

 

/* Recurrence call again */ 

 

Step-1: 

Level-2 

Search Set-A Total Set-B N.E N.S 

12      

 

Step-2: 

Level-2 

Search Set-A Total Set-B N.E N.S 

12 {2,4,5} 11    

 

Step-3: 

Level-2 

Search Set-A Total Set-B N.E N.S 

12 {2,4,5} 11    

 

Remain-Set R' 

{ 7,11 } {7, 11 } 

 

Step-4 

/* ‘T’ ≠ ‘SE’, So this step skip */ 

 

Step-5 

Level-2 

Search Set-A Total Set-B N.E N.S 

12 {2,4,5} 11 7   

 

Remain-Set R' 

{ 7, 11 } {7, 11 } 

 

Step-6 

Level-2 

Search Set-A Total Set-B N.E N.S 

12 {2,4,5} 11 7 7 6 

 

Remain-Set R' 

{ 7, 11 } { 7, 11 } 

 

/* Recurrence call again */ 

 

Step-1: 

Level-3 

Search Set-A Total Set-B N.E N.S 

6      

 

Step-2: 

Level-3 

Search Set-A Total Set-B N.E N.S 

6 {2,4} 6    

 

Step-3: 

Level-3 

Search Set-A Total Set-B N.E N.S 

12 {2,4,5} 11    

 

Remain-Set R' 

{ 5 } { 5 } 

 

Step-4 

Level-3 

‘T’ == ‘SE’ 

          Set flag=1; 

          goto step-7; 

 

Step-7 

Level-3 

FINAL MATRIX 

Level Set-A Set-B 

1 { 2, 4, 5, 7, 11 } {13} 

2 { 2, 4, 5 }  {7} 

3 { 2, 4 } { } 

 

Step-8 

Solution= { 2, 4, 11, 13 } 
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Return step-5 

 

/* This process continue according to algorithm until       

     get all solution */ 

 

 
Apendix-2: Describe Input vector ‘S’ for    

Experiment  

 
Input-1 

S4={2,4,11,14,18,20,24,29,32,35,38,41,45,47,49, 

51,56,57,63,66,69,73,77,79,82,84,91,95,97,99, 

100,102,104,110,118,122,134,140,150,152,158,160,164

,166,170,180,190,192,194,200} 

 

Input-2 

S5= {1,2,3,4,5,6,7,8,9,10} 

 
Input-3 

S6={2,11,20,23,28,29,32,33,35,38,40,41,45,48,49,51,56

,57,63,66} 

 

Input-4 

S7={1,3,10,17,25,27,28,31,33,34,35,38,42,44,45,46,47,

49,51,55,56,57,61,67,68,69,74,79,82,89} 

 

Input-5 

S8={1,2,4,9,14,20,30,31,35,37,38,40,42,44,47,48, 

50,52,55,56,57,58,59,60,62,65,68,70,72,79,81,88, 

89,91,92,93,94,97,99,100} 

 

Input-6 

S9={1,2,3,11,19,22,27,29,32,33,34,35,38,42,43,45,47,4

9,51,54,56,57,60,67,68,69,73,79,88,89,91,95,97,99,101,

102,104,110,119,122,133,140,150,152, 

158,160,164,166,172,185} 

 

 
Apendix-3: Simulation  
The Simulation is Base on C programming Language, The 

outcome of our experiment shown below: 

 

        
                                                    
                       
            */ 

 

Solution: 
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