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ABSTRACT
Neural networks are frequently used for text classification, but can
be vulnerable to misclassification caused by adversarial examples:
input produced by introducing small perturbations that cause the
neural network to output an incorrect classification. Previous at-
tempts to generate black-box adversarial texts have included varia-
tions of generating nonword misspellings, natural noise, synthetic
noise, along with lexical substitutions. This paper proposes a de-
fense against black-box adversarial attacks using a spell-checking
system that utilizes frequency and contextual information for cor-
rection of nonword misspellings. The proposed defense is evaluated
on the Yelp Reviews Polarity and the Yelp Reviews Full datasets
using adversarial texts generated by a variety of recent attacks. Af-
ter detecting and recovering the adversarial texts, the proposed de-
fense increases the classification accuracy by an average of 26.56%
on the Yelp Reviews Polarity dataset and 16.27% on the Yelp Re-
views Full dataset. This approach further outperforms six of the
publicly available, state-of-the-art spelling correction tools by at
least 25.56% in terms of average correction accuracy.
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1. INTRODUCTION
Deep neural networks (DNNs) have gained popularity in image
classification [17], object recognition [28], and malware detection
[26]. DNNs are also a popular option to solve many tasks in speech
recognition [13], voice synthesis [33], and natural language pro-
cessing [31].
Many use cases of DNNs are life crucial, raising significant safety
and security concerns. Studies have shown that DNNs are vulner-
able to carefully-designed input samples that can trick even high-
performing models. Small perturbations to the inputs can mislead
such networks into making wrong and potentially harmful deci-
sions.
Szegedy et al. [32] first exposed this vulnerability of DNNs in the
context of image classification, by showing that small perturba-
tions to the inputs can cause deep learning classifiers to completely
change their output on a given image. They also showed that the
same perturbation can transfer, fooling a variety of network classi-
fiers. This vulnerability has been shown in the computer vision [11]
[25], speech [1] [5], and NLP domains [6].

Two kinds of attacks have been proposed in NLP: Black-box and
white-box. A black-box attacker is only able to query the target
model and manipulate its input samples by testing and observing
the model’s output [3]. In the white-box setting, the attacker who
generates adversarial examples, possesses complete knowledge of
the target model such as the model’s parameters, along with the ar-
chitecture, training method, input features, and, in some situations,
the training data as well [20].
Researchers have used the fast gradient sign method (FGSM) [11]
for NLP as a white-box attack [10], while others have designed tar-
geted black-box attacks for text classifiers [8] [3], neural machine
translators [37], neural dependency parsers [30], or morphological
tagging [12].
This paper proposes a defense against black-box adversarial attacks
on the text classification task. A spelling correction algorithm that
utilizes frequency and contextual information is used to correct
nonword misspellings. At testing time, the proposed defense de-
tects the contaminated (adversarial) input texts and recovers them
before they are classified by the model.

2. RELATED WORK
Google’s Perspective API1 uses deep learning models to classify
texts and predict whether a message is toxic or not. Hosseini et al.
[14] introduced errors into the Perspective API, by adding a dot or
space between two letters of a word, by deliberately misspelling a
word by repeating a letter or swapping two letters, and by adding
“not” to negate phrases. They concluded that such adversarial ex-
amples greatly undermine the usefulness of DNN-based toxic com-
ment detection systems.
Belinkov and Bisk [3] designed black-box attacks to investigate
the sensitivity of neural machine translation to natural and syn-
thetic noise containing common misspellings. Their natural attack
collects naturally occurring errors from real-world corpora and in-
serts them into adversarial datasets. In addition, four types of syn-
thetic attacks were used: swapping two adjacent letters (one swap
per word), randomizing the order of all the letters in a word except
for the first and the last, completely randomizing letters in words,
and randomly replacing one letter in the word with an adjacent key.
The authors experimented with the char2char [18], Nematus [29],
and charCNN [36] models and used the TED talks (French, Ger-
man, and Czech) to English parallel corpus prepared for IWSLT
2016 [22]. The French corpus BLEU score degraded from 42.5 to

1https://www.perspectiveapi.com/
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7.5, while that for the German corpus went down from 33.0 to 4.0
and that of the Czech corpus went from 27.11 to 3.5.
Gao et al. [8] attacked sentiment classification models by designing
a black-box adversary: DeepWordBug. They scored the importance
of tokens in an input sequence using a classifier. A simple algo-
rithm was used to transform high-scoring tokens with four trans-
formation methods: swapping two contiguous letters in the word,
substituting a letter for a random letter, deleting a letter at random,
and inserting a random letter. The approach was tested on eight
text datasets which included a variety of NLP tasks (text classifica-
tion, sentiment analysis and spam detection) targeting a word-level
LSTM model and a charCNN model [36]. Their approach reduced
the model prediction accuracy by 64.38% on average for the Word-
LSTM model and 30.35% on average for the charCNN model.
In 2014, DNNs were shown to be easily exploited by adversarial
attacks [32]. Since then, this discovery has prompted increased re-
search in adversarial defense. In text, an adversarial attack was de-
signed to produce misspelled words [12] [8] [3]. It is natural to ex-
plore whether data processing is useful against such attacks. Recent
studies have found that spelling correction is a relatively effective
method to detect adversarial examples.
Gao et al. [8] used the Python autocorrector2 to mitigate their at-
tacks: Substitute two letters for random letters (Substitute-2) and
delete two random letters (Delete-2). Under the Substitute-2 at-
tack, the Python autocorrector increased the model’s accuracy from
11.90% to 54.54%. Under Delete-2, the model’s accuracy was in-
creased from 14.25% to 33.67%. The prediction accuracy of their
model under no attacks was 88.45%.
Belinkov and Bisk [3] used Google’s spell-checker to correct the
misspellings generated by natural noise, in which they had com-
piled naturally occurring errors from real-world corpora and in-
serted them into the corpus of the targeted model. The BLEU scores
of their vanilla original corpora were 43.3, 38.7, and 26.5 for the
French, German, and Czech corpora respectively.Under their nat-
ural attack, Google’s spell-checker increased the French corpus’
BLEU score from 16.7 (under attack) to 21.4 and the German cor-
pus’ BLEU score from 18.6 to 25.0. However, the Czech corpus’
BLEU score decreased from 12.3 to 11.2.
Gao et al. and Belinkov and Bisk used spell-checkers that were
freely available, but novel spell-checkers have been proposed by
recent papers. Fivez et al. [7] proposed a context-sensitive spelling
correction method for clinical text in English. They collected their
replacement candidates from a reference lexicon based on both
graphical and phonological distance. Within a specified window of
text, their method vectorized each word on each side, applied re-
ciprocal weighting, and summed the vectors. Then, they computed
the cosine similarity with each candidate vector and divided the re-
sult by the edit distance between the misspelling and the candidate.
The authors trained their vectors with the fastText model [4] and
evaluated their method on the MIMIC-III [15] corpus, resulting in
an average correction accuracy of 78.48%.
Lu et al. [21] developed CSpell to correct spelling errors in con-
sumer health questions. They ranked their candidates by ortho-
graphic similarity scores first, then by context scores, followed by
word frequency scores in a sequential order. They calculated the
orthographic similarity score by using a weighted sum of edit dis-
tances, phonetic similarity scores and character overlap similarity
scores. A word’s frequency score is calculated as the word’s fre-
quency in the corpus divided by the number of occurrences of the
most frequent words in this corpus. The context score is computed

2https://github.com/phatpiglet/autocorrect/
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Fig. 1. Scoring the candidates based on four scores: 1- Frequency score; 2-
Preceding bigram frequency score; 3- Succeeding bigram frequency score
and 4- Contextual similarity score.

by multiplying the context vector by both input and output ma-
trices of the Word2vec continuous bag-of-words (CBOW) model
[24]. They tested their method on a test set collected from consumer
health questions submitted to the National Library of Medicine. On
nonword correction, their model scored 0.7644 F1-score.

3. METHODOLOGY
In order to defend a text classifier against black-box adversarial
attacks such as Gao et al.’s, it is recommended to remove noise
from the testing set before feeding test data to the classifier. At
testing time, words that hold the noise must be detected, and the
noise must be removed. To achieve this goal, the misspelled words
must be corrected.
The spell-checkers proposed by Fivez et al. [7] and Lu et al. [21]
are in biomedical domains. The implementation code of Fivez et
al.’s is not publicly available. The analysis conducted in this pa-
per has shown that Lu et al.’s method (CSpell) performs poorly on
misspellings created by the Delete-2 and Substitute-2 attacks (see
Section 6). Gao et al. and Belinkov and Bisk used the Python auto-
corrector and Google’s spell-checker to mitigate attacks. Their re-
sults showed that these popular auto-correctors were not sufficient
to correct misspellings. This highlights the need for an alternative
method that can mitigate more difficult attacks, like Delete-2 and
Substitute-2, and can be applied on all domains. The proposed ap-
proach is motivated by this need.
This paper proposes a method that combines edit distance, fre-
quency counts, and contextual similarity techniques for correcting
misspellings. Before detecting and correcting misspellings, the text
is filtered for numbers, special symbols, dates, email addresses and
hyperlinks. It is worth mentioning that these are reinserted into the
text after the spellings are corrected.
After filtering the dataset, the nonword misspellings are detected
using our corpus as a dictionary. The detection policy is quite sim-
ple, a word in a text is potentially a nonword misspelling if it does
not exist in the dictionary. The proposed method corrects nonword
misspellings by the following procedure:

(1) Generation of a candidate pool: Candidate suggestions for
each detected misspelling are generated by returning all words
from our dictionary that have an edit distance [19] up to a given
threshold.

(2) Scoring Function: Given a misspelled token in a text and a
set of candidate corrections for that token, the scoring func-
tion ranks all suggested candidates based on the following four
scores (see Figure 1):
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Fig. 2. Calculating the contextual similarity (CS) score of a candidate:
Compute the cosine similarity between the candidate’s vector and the aver-
age of the context vectors.

—Candidate Frequency Score (CF): a count of occurrence of
the candidate in the corpus [16].

—Preceding Bigram Frequency Score (PB): a count of how
many times the candidate and the token immediately before
occur in the corpus.

—Succeeding Bigram Frequency Score (SB): a count of how
many times the candidate and one token after occur in the
corpus.

—Contextual Similarity Score (CS): Fivez et al. [7] calculated
contextual similarity scores using neural word embeddings,
taking the context around the misspelling into account. To
calculate the contextual similarity score for a candidate, this
paper uses a similar approach. The cosine similarity between
the context vector and the candidate vector is computed. The
context vector is the average of the vectors associated with
the words around the misspelling. Figure 2 demonstrates the
procedure for calculating the contextual similarity score of a
candidate. If the cosine similarity is less than zero or if there
is no vector corresponding to the candidate, the contextual
similarity is set to zero. If a word does not have a corre-
sponding vector, the processing moves to the next word in
the same direction.

(3) Winner candidate: After computing and normalizing the four
scores, the final score of the candidate is their sum:

f inal score =CF +PB+SB+CS. (1)

where CF is the Candidate Frequency Score, PB is the Pre-
ceding Bigram Frequency Score, SB is the Succeeding Bigram
Frequency Score, and CS is the Contextual Similarity Score.
The candidate with the highest score is chosen as the correct
spelling.

Fivez et al. used the cosine similarity with word vectors between
context and candidates to calculate context scores. However, they
ignored the importance of n-gram frequencies. Lu et al. computed
the context score differently by multiplying the context vector by
both the input and the output matrices of the Word2vec CBOW
model. Although they utilized the unigram frequency in their pro-
posed model, they ignored the bigram frequency.
The approach used in this paper considers frequency information
(word unigrams), the order of the words (word bigrams), and the
flexibility of the context (the contextual information) to outperform

Table 1. Datasets details.
Statistics Yelp Polarity Yelp Full
Total number of training samples 560,000 650,000

Total number of testing samples 38,000 50,000

Average sample length in words 135.9 137.5

Average token length in letters 4.08 4.09

these two latest spell-checkers as well as others and also mitigate
adversarial attacks.

4. EXPERIMENTS
The proposed method is implemented using Python [34] with Edit-
distance 0.5.23, Pandas [23], Numpy [35], and PyTorch 0.4.0 [27]
libraries.

4.1 Corpora
Two large-scale text datasets from Zhang et al. [36] are used in the
experiments : Details of the datasets are listed in Table 1.

(1) Yelp Reviews Polarity dataset: This dataset was built from the
2015 Yelp Dataset Challenge. It is constructed by considering
reviews with 1 and 2 stars as negative, while reviews with 3
or more stars are positive. It has 280,000 training samples and
19,000 testing samples for each polarity.

(2) Yelp Reviews Full dataset: This dataset was also built from the
2015 Yelp Dataset Challenge. It is constructed by randomly
taking 130,000 training samples and 10,000 testing samples
for each review star from 1 to 5.

4.2 Text Classification Model
To evaluate the proposed approach, several experiments on the
Word-level LSTM model of Gao et al. [8] were conducted . This
model is a Bi-directional LSTM which contains an LSTM in both
directions, reading from first word to last and from last word to
first.

4.3 Word Embeddings
The Word2vec with Continuous Bag-of-Words (CBOW) model
[24] trained on this paper’s corpora with ten epochs and a window
size of two was used to generate word vectors of 300 dimensions.

4.4 Dictionary
Since the used corpora were collected from Yelp reviews, which are
drafted by the general public, the authors of this paper first filtered
them for numbers, special symbols, dates, email addresses and hy-
perlinks. Next, they ran the TextBlob4 autocorrector on them to
correct potential misspellings before utilizing the data for the dic-
tionary. In addition, they added English contractions to the dictio-
nary so that tokens with English contractions such as “would’ve”
will not be detected as a misspelling. They obtained a list of all
English contractions from Wikipedia5.

3https://pypi.org/project/editdistance
4https://textblob.readthedocs.io/en/dev/index.html
5https://en.wikipedia.org/wiki/Wikipedia:List_of_

English_contractions
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Table 2. A comparison between the accuracy of the original testing set with no spelling corrections and the accuracy after spelling
corrections are applied by the defense.

Dataset Original Data Acc Corrected Original Data Acc
Yelp-Polarity 0.93750 0.93750
Yelp-Full 0.60938 0.60156

4.5 Context Vectors
As mentioned in Section 3, the contextual similarity scores are cal-
culated by computing the cosine similarity between the context
vector and the candidate vector. The context vector is the average
of the vectors associated with the words around the misspelling. In
the experiments, the context words are determined to be the four
words before the misspelling and the four words after it.

4.6 Adversarial Attacks
The adversarial texts used in the experiments are generated using
the DeepWordBug method proposed by Gao et al. [8]. Two attacks
introduced by Gao et al. are used: (1) Insert Transformer: Insert one
random character to the word; and (2) Flip Transformer: Substitute
one character for a random character.
Besides, two stronger attacks of Gao et al’s are utilized: (1) Flip-
2 Transformer: Substitute two characters for two random charac-
ters; and (2) Remove-2 Transformer: Delete two characters from
the word.
In addition to Gao et al.’s attacks, more adversarial samples are
created using the attacks proposed by Belinkov and Bisk [3]. Two
kinds of attacks are used: (1) Natural noise where naturally oc-
curring misspellings were harvested from the EF-Cambridge Open
English Learner Database corpus [9] and inserted into the testing
corpus by replacing some words with a frequently encountered
misspelled version; and (2) Swap two adjacent characters in the
word (one swap per word). Since Belinkov and Bisk’s attacks are
designed for neural machine translation and not for classification
models, Gao’s combined scoring function is first utilized to deter-
mine the important tokens for the prediction and then Belinkov and
Bisk’s attacks are applied to replace the important tokens with mis-
spelled versions.
To correct the misspellings generated by all transformers, the edit
distance is sat to be up to two. All the adversarial texts are gener-
ated using Gao et al’s BiLSTM model and their combined scoring
function.

4.7 Performance Evaluation
Classification accuracy is used as the metric to evaluate the perfor-
mance of the proposed defensive model. Higher accuracy denotes
a more effective model.

5. RESULTS
Following the example of previous studies (e.g., Alzantot et al. [2])
that have worked on adversarial examples, the proposed approach
is tested on a subset (the first 1280 samples) of the Yelp Reviews
Polarity and the Yelp Reviews Full datasets. First, the defense is
evaluated on clean data with no adversarial attacks. Table 2 shows
a comparison between the accuracy of the model with the original
testing set with no defense (no spelling corrections applied) and the
accuracy of the model with the original testing set after spelling cor-
rections were applied by the defense. On the Yelp Reviews Polarity
dataset, the defense does not affect the accuracy of the clean data.

On the other hand, the accuracy of the Yelp Reviews Full dataset
has a 00.78% reduction which is negligible.
The attacks of Gao et al. and Belinkov and Bisk are then used to
convert the same subsets, the first 1280 samples of the two datasets,
to adversarial examples. As a result, the model’s classification ac-
curacy fell dramatically. The accuracy of the Yelp Reviews Polarity
dataset went from an average of 93.75% to 62.10%, and the ac-
curacy of the Yelp Reviews Full dataset went from an average of
60.93% to 40.23%.
The proposed defense has been experimented with four types of
Gao et al’s attacks and two types of Belinkov and Bisk’s attacks,
setting the maximum attack power (number of modified characters
in the input sequence) to be 30 and having one isolated experiment
for each attack. The effectiveness of the proposed defense is eval-
uated under these attacks and the results are summarized in Table
3.

5.1 The Effectiveness of the Defense
Table 3 shows that the proposed defense recovered most of the ad-
versarial examples generated by the Insert attack. Although Insert
transformer has the largest degradation in the adversarial data ac-
curacy in both datasets, the defensive model was effectively able to
counter it, recover most of its adversarial examples, and improve
the accuracy by 35.15% on the Yelp Reviews Polarity dataset, and
22.65% on Yelp Reviews Full dataset.
On the Yelp Reviews Polarity dataset, the attack that flipped one
character to a random character (Flip) and the attack that flipped
two characters to two random characters (Flip-2) had almost iden-
tical effects on the classification accuracy of the model. In both
attacks, the defense recovered the attacked data and improved the
accuracy equally to 88.28%. Similarly, on the Yelp Reviews Full
dataset and under Flip and Flip-2, the defense increased the accu-
racy of the model by an average of 17.96%.
Remove-2 attack (removes two characters from the word) had the
least perturbation effect on the classification accuracy. The adver-
sarial data scored the highest accuracy when the transformer was
Remove-2. A straightforward explanation for this is that the aver-
age number of token characters in both datasets is 4, and hence
to generate an adversarial sequence that is visually or morpho-
logically similar to its original sequence, removing two characters
from tokens was restricted. The number of perturbed tokens gen-
erated by Remove-2 attack is much smaller than the number of
perturbed tokens generated by the other attacks. Among the four
attacks, Remove-2 is the hardest attack to defend against. Under
the Remove-2 attack, the proposed defense improved the classifi-
cation accuracy by an average of 10.94%.
The natural attack that replaces some words with misspelled ver-
sions scored slightly higher in terms of adversarial accuracy. This
attack pulls natural misspellings from a parallel corpus and then
replaces the important tokens in the adversarial corpus with mis-
spelled versions. Important tokens with no natural misspelled ver-
sions are kept as they are. As a result, the number of adversarial to-
kens inserted by the natural attack is lower than the number of per-
turbed tokens generated by the other attacks (except for Remove-2).
This explains the increase of the undefended base model’s accuracy
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Table 3. Effectiveness of the defense technique on the Yelp Reviews Polarity Dataset (top) and the Yelp Reviews Full Dataset (bottom). Acc
is the classification accuracy of the LSTM model. The defensive model corrected the adversarial data and the corrected version is given in
the Corrected Data column. Percent Increase is the percent increase of the accuracy after recovering the data. The accuracy of the original
data was 0.9375 for all cases on the top table, and 0.6093 for all cases in the bottom table. All results are under maximum attack power i.e.

the number of modified characters in the input sequence: 30.
Attack Adversarial Data Acc Corrected Data Acc Percent Increase

Yelp Reviews Polarity Dataset
Insert 0.5625 0.9140 0.3515
Flip 0.5703 0.8828 0.3125
Flip-2 0.5781 0.8828 0.3047
Remove-2 0.7421 0.8593 0.1172
Natural 0.6562 0.8671 0.2109
Swap 0.6171 0.9140 0.2968
Average 0.6210 0.8866 0.2656

Yelp Reviews Full Dataset
Insert 0.3750 0.6015 0.2265
Flip 0.3750 0.5468 0.1718
Flip-2 0.3671 0.5546 0.1875
Remove-2 0.4921 0.5937 0.1016
Natural 0.4062 0.5390 0.1328
Swap 0.3984 0.5546 0.1562
Average 0.4023 0.5650 0.1627

when tested under the Natural attack compared to the other attacks.
Under this attack, the defense increased the model’s accuracy by
21.09% and 13.28% for the Yelp Reviews Polarity dataset and the
Yelp Reviews Full dataset, respectively.
According to Belinkov and Bisk, the Swap attack switches two ad-
jacent characters in the word with one constraint: the length of the
word has to be greater than or equal to 4. This constrains the num-
ber of adversarial tokens generated by the Swap attack, causing the
accuracy of the base undefended model under the Swap attack to be
higher than the accuracies found when the base model is subjected
to the Insert, Flip, and Flip-2 attacks. Under the Swap attack, the
defense increased the model’s accuracy for the Yelp Reviews Po-
larity dataset and the Yelp Reviews Full dataset by 29.69% and
15.62%, respectively.

5.2 Convolutional Neural Networks
To show that the defense works on varied types of models apart
from the word-level BiLSTM model, several experiments have
been conducted with the character-level Convolutional Neural Net-
work of Zhang et al. [36]. The character-level CNN of Zhang et al.’s
used one-hot encoded characters as inputs to a nine-layer network
with six convolutional layers and three fully-connected layers. The
performance of the character-level CNN is evaluated under the Flip
and Flip-2 attacks. The results are briefly summarized in Table 4.
The accuracy of the CNN model after deploying the defense is also
shown in Table 4. It is noted that the defense is effective in recov-
ering the adversarial samples and in mitigating their effect on the
CNN model’s performance.
It is also noted that the character-level CNN is more resistant to
adversarial samples (misspellings) than the word-level BiLSTM.
Under the same attacks, Flip and Flip-2, the average performance
of the word-level BiLSTM decreased by 30.07% while that of the
character-level CNN reduced by only 10.94%. The models that are
based on word-embeddings seem to be vulnerable to misspellings
created by introducing unknown words.
This supports the conclusion from previous research that deep
character-level CNNs trained on large scale datasets do not require

Table 4. Effectiveness of the defensive character-level CNN. Acc is
the classification accuracy of the CNN model. The defensive model

corrected the adversarial data and the corrected version is given in the
Corrected Data column. The accuracy of the original data was 0.9453
for Yelp Reviews Polarity Dataset, and 0.5859 for Yelp Reviews Full

Dataset. All results are under maximum attack power 30.
Attack Adversarial Data Acc Corrected Data Acc

Yelp Reviews Polarity Dataset
Flip 0.8359 0.9453
Flip-2 0.8046 0.9375

Yelp Reviews Full Dataset
Flip 0.5312 0.5625
Flip-2 0.4531 0.5156

knowledge about the syntactic or semantic structure of words. In-
stead, they can naturally learn and identify abnormal combinations
of characters, including misspellings [36].

6. AUTOCORRECTION
Two natural questions now arise. Are spell-checkers sufficient for
detecting and recovering adversarial data, and is a new spell-
checker necessary? To test, six tools are used to correct the same
misspellings produced by the Flip-2 and Remove-2 attacks that
used in Table 3. These tools are listed below:

(1) Google’s spell-checker: The first suggestion for every detected
misspelling is accepted .

(2) CSpell: Open-source distributable stand-alone spelling correc-
tion tool [21].

(3) TextBlob: An implementation of Peter Norvig’s spelling cor-
rector 6.

6http://norvig.com/spell-correct.html
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Table 5. The average increase in the classification accuracy of the
LSTM model after recovering the adversarial data of Flip-2 and

Remove-2 using the defense and the six spelling correctors.
Method Yelp Polarity Yelp Full
Aspell 04.02% 01.94%
Python Autocorrector 05.59% 02.30%
Hunspell 07.54% 03.37%
CSpell 08.90% 03.51%
TextBlob 10.15% 04.39%
Google’s spell-checker 10.97% 06.25%
Proposed Method 21.09% 13.70%

(4) Hunspell7: A popular open source spell checker used by
OpenOffice.org, Mozilla Firefox, Thunderbird, and Google
Chrome.

(5) Aspell8: Another popular open source spell checker, which can
be used as either an independent spell checker or as a library.

(6) Python Autocorrector.

The results of using these six spelling correctors to recover adver-
sarial texts are reported in Table 5. By comparing the results of
using the defense with the results of using the six spelling correc-
tors (Table 5), the authors claim that their defense is more effective
than Google’s spell-checker, TextBlob, CSpell, Hunspell, Python
Autocorrector and Aspell.
TextBlob is a probabilistic tool that finds the candidate sugges-
tion with the highest probability. CSpell uses phonetic similarity,
character overlap, contextual information and unigram frequency to
rank its candidates. Hunspell uses n-gram similarity, morphological
analysis, and stemming to improve its suggestions. These tools use
frequency information to propose suggestions, making them more
useful than the other tools.
Python Autocorrector and Aspell depend on dictionaries to find re-
placements. The lack of frequency information when making sug-
gestions leads to lower performance than the correctors that use
probabilities to determine suggestions.

6.1 Correction Accuracy
After correcting the misspellings generated by the Flip-2 and
Remove-2 attacks that used in Table 3 and Table 5, the num-
ber of misspelled tokens that were amended correctly were cal-
culated. Table 6 compares the performance of the defense to the
performance of each of the six spelling correctors: Google’s spell-
checker, TextBlob, CSpell, Hunspell, Python Autocorrector and
Aspell.
The results indicate that the proposed approach outperforms the six
spelling correction tools and improves the correction accuracy by
an average of at least 25.56% compared to Google’s spell-checker,
the best tool among the six spelling correction tools. Thus, the pro-
posed spell-checker is better than all the others at its intended im-
mediate task as well.

7. CONCLUSION
This paper proposes a defense against black-box adversarial attacks
based on spelling corrections. Utilizing word frequency and con-

7http://hunspell.github.io/
8http://aspell.net/

Table 6. The average correction accuracy for misspellings created by
the hardest two attacks, Flip-2 and Remove-2, using the defense and

the six spelling correctors.
Method Yelp Polarity Yelp Full
Aspell 10.15% 06.59%
Python Autocorrector 12.27% 09.53%
Hunspell 15.43% 14.92%
CSpell 17.94% 15.50%
TextBlob 21.24% 18.98%
Google’s spell-checker 26.34% 25.00%
Proposed Method 51.80% 50.66%

textual information made a powerful technique to correct nonword
misspellings. After testing the defense on adversarial samples, it
successfully improves the model’s classification accuracy from an
average of 62.10% to an average of 88.66% on the Yelp Reviews
Polarity dataset, and from an average of 40.23% to an average of
56.50% on the Yelp Reviews Full dataset. The results also show that
the proposed approach outperforms six of sate-of-the-art and pop-
ular spelling checkers, Google’s spell-checker, TextBlob, CSpell,
Hunspell, Python Autocorrector and Aspell, and improves the cor-
rection accuracy by at least 25.56%. Future work will involve en-
sembling the defense with adversarial training. In addition, it is
worthwhile to investigate how the defense model handles real-word
misspellings.
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