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ABSTRACT 

Abalones are sea snails or molluscs otherwise commonly 

called as ear shells or sea ears. Because of the economic 

importance of the age of the abalone and the cumbersome 

process that is involved in calculating it, much research has 

been done to solve the problem of abalone age prediction 

using its physical measurements available in the UCI dataset. 

This paper reviews the various methods like decision trees, 

clustering, SVM using Tomek links, CGANs and CasCor used 

in an attempt to solve it. Furthermore, in contrast to previous 

research that saw this as a classification problem, this paper 

approaches it as a linear regression problem and analyses the 

results. 
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1. INTRODUCTION 
Abalones are endangered marine snails that are found in the 

cold coastal waters worldwide, majorly being distributed off 

the coasts of New Zealand, South Africa, Australia, Western 

North America, and Japan [1]. They are considered a delicacy 

and a highly nutritious food and extensively consumed in 

certain parts of Latin America, France, New Zealand, 

Southeast Asia, China, Vietnam, Japan, and Korea. They are 

also commercially farmed as a source of mother-of-pearl. The 

shells of abalone are used for decorative purposes owing to 

their iridescence. This makes abalone a highly sought after 

commodity and economically significant. 

The price of an abalone is positively correlated to its age.[2] 

However, determining the age of an abalone is a highly 

involved process. Rings are formed in the inner shell of the 

abalone as it grows, usually at the rate of one ring per year. 

Getting access to the rings of an abalone involves cutting the 

shell. After polishing and staining, a lab technician examines 

a shell sample under a microscope and counts the rings. 

Because some rings are hard to make out using this method, 

1.5 is traditionally added to the ring count as a reasonable 

approximation of the age of the abalone. Knowing the correct 

price of the abalone is important to both the farmers and 

consumers while knowing the correct age is important to 

environmentalists who seek to protect this endangered 

species. Due to the inherent inaccuracy in the manual method 

of counting the rings and thus calculating the age, researchers 

have tried to employ physical characteristics of the abalone 

such as sex, weight, height and length to determine its age. 

The corresponding dataset is found at UCI’s repository. [3] 

Most of the research on the dataset has seen the abalone age 

prediction problem being categorized as a classification 

problem, that is, assigning a label to each example in the 

dataset. The label in this case is the number of rings of the 

abalone, which is a real number. This leads the classifier to 

distinguish among many classes and is thus bound to do 

poorly as can be seen in Zhengjie Wang’s results [4]. To 

improve upon this approach, the number of classes is reduced. 

However, doing so beats the purpose of easing the process of 

calculating age (and thereafter price), especially in the 

absence of concrete data about the degree of correlation 

between age and price. For instance, two ages belonging to 

one of the reduced class but nonetheless causing a large 

variation in price would render the reduced class model 

useless. To overcome the problems associated with the 

classification model, this paper experiments with regression 

models and analyses the performance. Mean Absolute Error 

(MAE) is used as the evaluation metric to downplay the 

significance of outliers (too young or too old abalones, which 

are rare in nature) and because it allows us to make a 

straightforward conclusion: a MAE below 0.5 would 

guarantee that the regressor has made a correct and useful 

prediction 

2. DATASET ANALYSIS 
The abalone dataset is a dataset that contains measurements of 

physical characteristics of different abalones. It has 4177 

instances. The physical characteristics along with the unit of 

its measurement in brackets are (Table 1) [3]:  

Table 1. Description of variables in the abalone dataset 

Index Attribute Measuring unit Description 

- Sex - 
It can be either one of Male, Female or Indeterminate (Infant). Abalone 

gender is not determined at birth but rather when they mature a little [5] 

1 Length mm Longest shell measurement 

2 Diameter mm Perpendicular to length 

3 Height mm Height of abalone with meat in shell 

4 Whole weight grams Weight of the whole abalone 
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Index Attribute Measuring unit Description 

5 Shucked weight grams Weight of just the meat 

6 Viscera weight grams Gut weight (after bleeding) 

7 Shell weight grams Weight of shell after being dried 

8 Rings - This is the dependent variable (label). Number of rings + 1.5 gives age 

 

Figure 1 shows the distribution of rings in the abalone dataset. 

It can be seen that the dataset is skewed with majority 

examples having rings in the range of 7-14 with very few 

examples having rings above 20. The exact number of 

examples in ascending order of number of rings in the 

examples is: (1, 1, 15, 57, 115, 259, 391, 568, 689, 634, 487, 

267, 203, 126, 103, 67, 58, 42, 32, 26, 14, 6, 9, 2, 1, 1, 2, 0, 

1). 

 

Figure 1: Distribution of Rings Variable 

The minimum, maximum, mean, median, standard deviation 

and interquartile range of all the numeric attributes along with 

dependent variable of the dataset is calculated and plotted 

using a boxplot for easy visualisation of outliers. Due to the 

larger range of “Rings” variable, an unnormalized boxplot 

renders the other variables’ boxplots incomprehensible by 

squeezing their ranges. To bring all the variables on the same 

scale, they are normalized such that they all have zero mean 

and standard deviation 1. Figure 2 shows this boxplot. The 

attributes Length and Diameter have almost the same 

normalized range while there are a few outlying values for the 

Height attribute which might make the task of regression 

difficult. All the Weight attributes also have almost the same 

normalized range. The Rings label is not analyzed since it will 

be used in an unnormalized form for the regression to obtain a 

proper value of MAE. 

Next, the relation among the variables and between the 

variables and label is analyzed. The normalized attribute 

values for each example are first passed through a logit 

function to fit them in the range (0,1) which removes any 

negative values that may be there after normalization. A 

parallel plot (Figure 3) is constructed which plots these values 

of all attributes and it is coloured based on the value of the 

label (Rings). Dark brown represents less rings while dark 

blue represents higher number of rings. The parallel plot 

reveals significant correlation between each of the attributes 

and the label for each of the examples; similar colour shades 

are grouped together at several attributes for similar values.  

This suggests that the prediction model will be fairly accurate. 

However, there are a few examples which do not follow the 

above trend. Dark blue lines mixed with lighter blue lines on 

the right and some blue lines in between the brown ones 

suggest these examples will be difficult to predict correctly. 

 

Figure 2: Normalized Boxplot 

 

Figure 3: Parallel plot 

Figure 4 specifically looks at the values of correlation among 

the numeric attributes and between the numeric attributes and 

label. Apart from the index starting at zero, the order of 

attributes is as shown in Table 1 (the Rings label forms the 

last column and last row). It can be clearly seen that the 

different attributes have a strong correlation with each other 

which confirms the analysis of the parallel plot. However, the 

correlation of the attributes with the label is markedly less 

contradicting the findings of the parallel plot. Based on the 

correlation of the attributes with the label, it can be concluded 

that Shell Weight is the most important attribute for 

prediction. 
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Figure 4: Annotated Correlation Heatmap 

3. LITERATURE REVIEW 
The abalone dataset was first published in 1995. Since then, 

copious amounts of research using many different algorithms 

and methods has been done, first among them being decision 

trees. In 1999, CLOUDS, a decision tree based algorithm was 

used to achieve a 26.4% accuracy on the abalone test dataset. 

[6] Typically in classification problems, the algorithm for 

selecting a split point for the dataset at each internal node 

involves sorting the values of each numeric attribute, 

calculating the gini index (an evaluation metric for decision 

tree based classifiers) at each possible split point and selecting 

the split point with the minimum gini value. This brute force 

method was found to be computationally expensive and 

challenging [6]. Thus, CLOUDS used a better approach called 

SSE [6] in which the range of each attribute in the dataset was 

divided into intervals using quantiling techniques, an 

estimation of gini values at the boundaries of these intervals 

was made and compared with the minimum of the actual gini 

values at the boundaries. Thereafter, the brute force method 

was applied only in the intervals where the estimated gini 

value was less than the minimum gini value. This method was 

found to require at most only two read operations (opposed to 

the many needed for sorting technique implemented on 

smaller memories) on the dataset and was highly accurate in 

predicting the correct gini value as would be obtained by the 

brute force approach. However, using SSE did not lead to any 

significant improvement in classification accuracy or tree size 

for abalone dataset over the sorting technique, which obtained 

an accuracy of 26.3%[6]. C4.5 is another decision tree 

technique which achieved only 21.5% accuracy.[4] 

K-means clustering algorithm run on a preprocessed dataset 

with reduced classes (8 classes), all numeric attributes and 

with one-fourth of the dataset left out for testing results in an 

accuracy of 61.78% [7] The experiment also helps in 

determining the relative contribution of different attributes to 

the classification accuracy (in increasing order of importance): 

Sex, Length, Height, Whole weight, Shell weight, Viscera 

weight, Diameter, Shucked weight. [7] 

An Ordinary Least Squares (OLS) regression model that takes 

manipulated attributes as input for estimation of number of 

rings (and hence age) along with an ordered probit model for 

classification of the estimated value into three classes was 

found to work well in classifying abalones with rings in the 

range of 3 to 14 for those three classes. However, the 

regressor was not accurate in its estimation. [2] 

Neural networks, CasCor, CasPer and Conditional Generative 

Adversarial Networks (CGANs) have all been employed to 

solve the abalone problem too.[4]  For all of these methods, 

the categorical attribute ‘Sex’ was converted into a numeric 

attribute in scale with the other attributes. A three layer neural 

network having eight units in input layer (one for each 

attribute), 29 units in the output layer (one for each class) and 

1000 hidden units that uses Batch SGD for backpropagation 

and runs on a cross-validated dataset (divided in the ratio 

6:2:2) obtained an accuracy of 25.99% on the test dataset.[4] 

Cascade Correlation (CasCor) is a supervised learning 

architecture for neural networks that begins with a minimum 

number of units and automatically adds and trains new units 

individually. Thus, it has a dynamic topology. CasCor learns 

faster than traditional neural networks and does not require 

backpropagation. Moreover, since the input weights of a unit 

are frozen once it is added, it enables the CasCor network to 

incrementally detect more complex features. [8] Using this 

architecture with 100 hidden units (but a similar neural 

network), a classification accuracy of 24.43% was obtained on 

the abalone dataset which is a significant improvement on the 

19.73% obtained using traditional neural network with the 

same number of hidden units. [4] Extrapolating the results, it 

can be safely concluded that using CasCor will show an 

improvement over an identical traditional neural network. 

CasPer is an improvement over CasCor that solves its 

generalization problem and tendency to create large networks. 

This is done using different learning rates on different units 

and employing RPROP. Using just the RPROP gradient 

descent in CasPer as an improvisation, an accuracy of 30.78% 

was obtained with just 50 hidden units. [4] 

GAN is a generative model consisting of two models trained 

simultaneously: a generative model G and a discriminative 

model D.[9] The generative model is trained so as to improve 

the quality of the data it generates from the noise that it takes 

as input. The discriminative model takes the data generated by 

G and learns to classify it as real (belonging to the original 

dataset) or fake (created by G). Theoretically, an equilibrium 
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is reached when G is able to replicate the training data and D 

always outputs ½, representing it is not sure about the origin 

of input data. CGAN is a conditional version of GAN which 

aims to build a generative model which can generate data 

conditioned on specified class labels. This is done by adding a 

condition as input to both G and D. [10] 

Due to the skewed nature of the abalone dataset, many 

techniques have been used to augment the dataset and make it 

more evenly distributed. CGAN was used to condition GAN 

on the classes that have lesser examples in the abalone dataset 

possibly with the belief that the resulting overall increase in 

the number of instances will also prove advantageous. 

However, on training the mixed (original instances plus 

instances generated by CGAN) dataset consisting of 29000 

examples by CasPer, it was found that accuracy actually dips 

to 16.29% on the test set. [4] It can be concluded here that 

since GANs have been proved to generate meaningful data [9] 

but not to remove noise [4] which is something that CasPer 

can do [4], the CGAN used may have amplified the noise in 

the original abalone dataset due to which the performance of 

CasPer decreased. 

Other methods that have been used to remove the imbalance 

in the data distribution are Synthetic Minority Oversampling 

Technique (SMOTE) and Tomek links. In SMOTE, the 

minority class is oversampled by taking each minority class 

example and generating synthetic examples along the lines 

joining any or all of its k minority class nearest neighbours. 

[11] Tomek links is an undersampling method wherein two 

instances that belong to two different classes and are nearest 

neighbours of each other form a Tomek link. Based on what is 

required, either only the majority class sample or both 

samples of the link are removed. During research on 

combining both SMOTE and Tomek links, SVM was used as 

a binary classifier on a modified abalone dataset (with one 

class positive and all others negative). It was found that 

classification accuracy of SVM on the modified dataset after 

negative examples have been removed using Tomek links was 

99.26% [12]. 

4. METHODOLOGY 
The first step towards applying linear regression to predict the 

age of the abalone was to numerically code the Sex variable in 

the dataset. For this, the following approach was undertaken: 

1. Two new attributes were created in place of Sex. 

Let them be S1 and S2 

2. The Sex value of each example was checked.  

3. If it is Male, then S1 is equated to 1 and S2 to 0 

4. If it is Female, then S1 is 0 and S2 is 1 

5. If it is Indeterminate, both are kept 0. [12] 

The attributes were not normalized before training because 

most of them distribute in the range (0,1). [5] Nonetheless, a 

dataset with normalized attributes was trained on the best 

performing linear regression model later to validate the claim. 

The label was never normalized as was done in Dataset 

Analysis to ensure proper calculation of MAE. 

 

 

 

 

Table 2: Rationale behind model selection 

Model Rationale 

OLS 

This is the most basic regression model. 

It was selected so that other models’ 

performance could be compared with 

OLS. 

RANSAC 

Robustness regression is a type of 

regression that tries to fit a model in the 

presence of corrupt data and outliers 

[13]. This is a type of model that is a 

suitable fit for the skewed abalone 

dataset. RANSAC falls under the type 

robustness regression models. 

Huber 

Huber is another model under robustness 

regression and was used so that the best 

of robust regression models could be 

known. 

Ridge 

Ridge was used to see the effects of 

penalties on the abalone dataset. Other 

models like Lasso, LassoLars and 

ElasticNet were also tried.  

 

Table 2 enlists the linear regression models selected along 

with the rationale behind the selection. All of these models 

were implemented using scikit library of Python. 

All the models were run seven times till the performance no 

longer improved (with varied hyperparameters, where 

applicable) and the best performance of each model reported 

(in Table 3). For all of the models, techniques like SMOTE 

and 10-fold Cross-Validation were used to improve the 

quality of the dataset and the performance of the model. 

CGANs were not used to synthesize samples because the 

author believes that CGANs amplifies the noise in the dataset 

too which results in deterioration of performance.For the 

models without CV and without synthesized data, the dataset 

was divided in the ratio of 80:20 (in order) for training and 

testing purposes respectively.  SMOTE has limitations due to 

which it cannot synthesize samples for labels having only one 

sample in the original data. Hence, examples having labels 

between 3 and 19 (including both) were synthesized (keeping 

the k_neighbours parameter 10 for better performance) and 

only labels within this range in the original as well as SMOTE 

data were used for training models. The data imbalance was 

removed by bringing the total examples for each label having 

less than 600 examples initially to 600 which is comparable to 

the majority class. The training and testing data was created 

with 80:20 ratio such that each class had approximately equal 

representation. 10-fold Cross Validation meant that the dataset 

was split in the ratio 90:10 and the reported error was 

averaged over the ten folds. 

5. RESULTS AND DISCUSSION 
Table 3 lists the Mean Absolute Error for the various models 

with the corresponding hyperparameters in brackets, where 

applicable. The results for 10 fold CV have been averaged 

over the ten folds. 

Other penalized regression methods which were tried were 

Lasso, LassoLars and ElasticNet. All of these performed 

similar to Ridge regression with their best performance being 

a bit lower than the performance of OLS. On seeing Table 3, 

it is clearly visible that RANSAC is the best-performing 

model across all conditions. A normalized dataset trained on  
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RANSAC yielded a performance of 1.338. (shown in Figure 5) 

Figure 5: RANSAC on normalized dataset 

Table 3: Results 

Method Without SMOTE With SMOTE With 10 fold CV 

OLS 1.500 1.875 1.636 

RANSAC 1.332 (min_samples = 30) 1.830 (min_samples = 20) 1.583 (min_samples = 30) 

Ridge 1.499 (alpha = 0.1) 1.882 (alpha = 0.01) 1.627 (alpha = 0.01) 

Huber 1.399 (epsilon = 1) 1.885 (epsilon = 1) 1.605 (epsilon = 1) 

 

Table 4 shows the scatter plots of predicted rings versus actual 

rings for the various models and techniques used. Comparing 

Figures 6, 9, 12, and 15, it can be seen that the leftmost and 

rightmost points in OLS are a bit more spaced out than in 

Huber and RANSAC, with the points in RANSAC being the 

most condensed. Also, the scatter plot for Ridge is similar to 

the one for OLS. Even though RANSAC is the best 

performing model and it takes care of low-valued outliers, it 

still does not perform satisfactorily on the higher-valued 

outliers. 

The scatter plots for SMOTE show points within the range 

which was selected for synthetic examples generation and 

there are visibly more points than in the corresponding scatter 

plots without SMOTE. Huber, Ridge and OLS seem to 

malfunction with all of them predicting negative number of 

rings for a few examples. This may be due to the attributes of  

the synthetic examples being weird. In comparison to the plots 

without SMOTE, the points in the plots with SMOTE are 

more vertically spread out. 

The rightmost column of Table 4 shows the best model for 

each regression algorithm from among the ten models of the 

ten folds with the MAE for that model printed on top of the 

scatter plot. All of the models have a MAE around 1.0-1.1 

which is significantly less than the best RANSAC model 

(1.332). However, these models represent only 10% of the 

data, have predictions having considerable difference from the 

actual value  and may not generalize effectively. That being 

said, they do show the possibility of achieving a better 

performance.

Table 4: Scatter plot visualization of results 

 

Figure 6: OLS without SMOTE 

 

Figure 7: OLS with SMOTE 

 

Figure 8: OLS CV best model 
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Figure 9: RANSAC without SMOTE 

 

Figure 10: RANSAC with SMOTE 

 

Figure 11: RANSAC CV best model 

Figure 12: Ridge without SMOTE 

 

Figure 13: Ridge with SMOTE 

 

Figure 14: Ridge CV best model 

 

Figure 15: Huber without SMOTE 

 

Figure 16: Huber with SMOTE 

 

Figure 17: Huber CV best model 

 

6. CONCLUSION AND FUTURE WORK 
In the task of predicting age of an abalone (by predicting 

number of rings) through its physical characteristics, the 

RANSAC regression model works best with a MAE of 1.332. 

Huber regressor does a pretty good job in comparison (MAE= 

1.399) while penalized regression models cannot outperform 

OLS (MAE=1.5). All over, robustness regression models do a 

good job in dealing with outliers present in the abalone 

dataset. 

Techniques such as SMOTE and Cross Validation do not 

improve the performance of the models with RANSAC 

performing the best here too achieving a MAE of 1.830. This 

cements its position as the best model. Normalization of 

attributes seems to result in the same performance as 

unnormalized data. 

The scatter plots for individual folds of cross validations show 

that Mean Absolute Error can be brought down below 1 for 

certain arrangements of data, the best being 0.936. However, 

it also shows that the error is still above the acceptable limits 

in some regions. It is the author’s belief that given an 

adequate and balanced dataset, RANSAC along with SMOTE 

and Cross Validation can achieve the goal of Mean Absolute 

Error less than 0.5 across all the labels. 
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