
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 51, September 2019

45

XGFX: eXtensible Game Framework through XMPP

Aditya Borikar
Information Technology

Pune Institute of Computer Technology
Pune, India

ABSTRACT

XMPP is the open standard for messaging and presence. It

stands for Extensible Messaging and Presence Protocol, a set

of protocols known for their wide range of application in

Instant Messaging through presence, multi-party chat,

voice/video calls, and generalized routing of XML data. An

idea for a gaming framework has been developed and

illustrated in this paper as a prototype for secure decentralized

gaming servers trying to obtain easy transmission of data

through XML. The concept introduced is meant to operate

between client and server enabling data transmission through

multiple servers hosting different domain-name similar to

emails. XMPP is extended by a set of protocols called XMPP

Extension Protocols (XEP). These XEPs allow developers to

develop a generic middleware between gaming servers and

gaming stations using XEPs such as publish/subscribe

(pubsub), group management and Jingle.

General Terms

Gaming Framework, Server-Client Communication, XGFX,

XEP, XMPP.

Keywords

XGFX, Jingle, XEP, XMPP, Games, Pubsub

1. INTRODUCTION
This paper introduces an approach to configure gaming

servers through XMPP, the highly preferred framework for

Instant Messaging. XMPP is a set of protocols which allow

asynchronous transmission of data between server-client

along with client-client transmission. As online gaming is on

high demand, modern gaming servers are developed in order

to handle heavy congestion to switch quickly between

multiple gaming worlds, establish voice or text channels from

player-to-player and server configuration for server-server and

server-client communication. Instant Messaging(IM) servers

and Gaming Servers(GS) have similarities between them

which are discussed in this documentation.

How XMLs serve as the building block of XMPP:

The information exchange in any XMPP implementation is

based upon a connection established through XML stream.

The smallest unit of information that is transmitted across the

connection is called a stanza which is a well formed piece of

XML. There are three types of stanzas: Message, Presence

and Info/Query.

1) Message: The <message/> stanza is a ‘push’

mechanism where one entity pushes information to

another entity,similar to the communications that

occur in a system such as email. All message

stanzas will possess a ‘to’ attribute that specifies the

intended recipient of the message, unless the

message is being sent to the bare JID of a connected

client’s account. Upon receiving a message stanza

with a ‘to’ address, a server SHOULD attempt to

route or deliver it to the intended recipient.

<message from=”romeo@montague.net”

to=”juliet@capulet.com”>

<body> Take me back !</body> …[Payload]

</message>

2) Presence : The <presence/> stanza is a specialized

‘broadcast’ or ‘publish-subscribe’ mechanism,

whereby multiple entities receive information (In

this case, network availability information) about an

entity to which they have subscribed. Presence

information is disclosed only to other entities the

user has already approved in order to protect the

privacy of XMPP users.

<presence from=”romeo@example.net”>

 <status>Available</status>

…[Payload]

 </presence>

3) Info/Query(IQ) : Info/Query, or IQ, is a ‘request-

response’ mechanism, similar in some ways to the

Hypertext Transfer Protocol [HTTP]. The semantics

of IQ enable an entity to make a request of, and

receive a response from, another entity. The data

content of the request and response is defined by the

schema or other structural definition associated with

the XML namespace that qualifies the direct child

element of the IQ element, and the interaction is

tracked by the requesting entity through the use of

‘id’ attribute.

Requesting Responding

Entity Entity

------------- ---------------

| <iq id=’1’ type=’get’> |

| [...payload…] |

| </iq> |

| -------------> |

| <iq id=’1’ type=’result’> |

| [...payload…] |

| </iq> |

| <-------------- |

Host resolution on an XMPP network:

The location of an entity can be uniquely identified on a

network using Jabber ID(JID). A JID consists of the following

attributes.

mailto:romeo@montague.net
mailto:romeo@example.net

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 51, September 2019

46

 1) Localpart

 2) Domainpart

 3) Resourcepart

And is structured as : local@domain/resource

 eg : juliet@example.com/balcony

2. XGFX Environment

Figure 1 : XGFX Environment

1) Hardware Layer.

Servers will be used to host domain names across

the network. XGFX would use a real-time Ejabberd

server owned by ProcessOne. Ejabberd makes

extensive use of Erlang. The compliance of

Ejabberd orders to RFC-6120 along with RFC-6121

which enable establishing successful data

transmission across TCP.

The Hardware Layer consists of three major parts:

1. XMPP Server such as Ejabberd, Openfire.

2. Transmission Hardware consisting of Wifi router,

LAN cables.

2) Gaming Console which can interpret XMPP stanzas

through XMPP client library Smack.

Network Layer.

XGFX would establish connection using Transport

Control Protocol(TCP), Websockets or

Bidirectional-streams Over Synchronous

HTTP(BOSH). An XMPP client can be configured

by using Smack. Smack is a client side XMPP

library written in Java SE which would enable a

gaming console to make use of XMPP framework.

Smack is improving as developers are constantly

attempting to implement newer and better XEPs.

3) Service Layer.

The service layer consists of XEP implementations

which will allow the client to interpret the stanzas

received from the network layer. The service layer

takes care of end-to-end encryption and Discovery

management and contact management through

XMPP Roster. Smack-extensions has APIs required

to configure the services necessary to implement the

XEPs constituting XGFX.

4) Software Implementation.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 51, September 2019

47

The game integration with XMPP can be carried out

by configuring game clients with Smack. Smack

currently establishes connection through TCP and

BOSH. It still lacks support for websockets but as

desktop gaming environments can be connected to

XMPP server using Smack’s TCP connection it is

currently the best library in the market to implement

XMPP in a gaming console.

The Smack’s Parser implementation is based upon

StAX, best suitable for this pull,streaming parser

type mechanism. XML parsing needs to be efficient

because the entire XMPP framework is based upon

it. So improved parsers directly refer to a better

implementation.

Various XEPs serving distinct features involved in games are

as follows :

XEP Extension Description Usage

XEP-0012 Last Activity Gamer’s online

status feature [11]

XEP-0027 Current Jabber

OpenPGP Usage

OpenPGP allows

data encryption

satisfying privacy

and security

concerns. [12]

XEP-0030 Service

Discovery

Allows client to

discover presence

information and

features served

by other XMPP

entity. [13]

XEP-0045 Multi-User Chat Will allow the

gaming consoles

to exchange

messages in the

context of a room

or channel. [14]

XEP-0054 vcard-temp vcards are meant

to be used similar

to electronic

business cards

which can be

used to manage

gamer’s profile.

[15]

XEP-0060 Publish-subscribe This allows

XMPP entities to

create nodes and

publish them onto

the network. This

is the base for

other XEPs such

as UserTune and

Geolocation.[16]

XEP-0082 XMPP Data and

Time Profiles

This is the

standardization to

numerous date

and time formats

to avoid anomaly.

[17]

XEP-0124 Bidirectional-

streams Over

Synchronous

HTTP (BOSH)

Uses multiple

synchronous

HTTP

request/response

pairs without

requiring polling

and emulates the

semantic of TCP

connection. [18]

XEP-0166 Jingle Enables session

management that

enables voice

chat, video chat

and file transfer

over TCP. [19]

XEP-0172 User Nickname Allows user to

manage game

handles for

avatars. [20]

XEP-0206 XMPP over

BOSH

Allows XEP-

0124 to transport

XMPP stanzas.

[21]

XEP-0288 Bidirectional

Server-to-server

connection

Allows server-to-

server

connections to be

used to send and

receive stanzas in

a bidirectional

fashion. [22]

XEP-0363 HTTP File

Upload

Allows a file to

be placed on

HTTP server

which can later

be downloaded

again. [23]

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 51, September 2019

48

3. XMPP IN MARKET
A number of Gaming servers already use XMPP. Some of the

games using XMPP Server which have gained considerable

popularity are as follows :

Users Game/

Community

Description Since

~34 million Nintendo

Switch

Uses

Ejabberd for

Push

Notification

s

2019

~1 million EVE Online Uses XMPP

for in-game

chats

2018

~250

million

Fortnite A

cooperative

survival

game using

XMPP for

presence,

push,

whispers

and group

chat

2017

~16 million Neverwinter Using

XMPP for

chat,

presence,

group chat

2013

~40 million Origin XMPP is

used

internally

for buddy

and chat

system.

2011

~27 million League Of

Legends

Uses XMPP

for chat and

game

invitations

2009

The Jabber Unity Networking framework has similar to

XGFX but is a paid tool. XGFX will show a way to

developers all over the globe to integrate Gaming Frameworks

with XMPP.

4. PERFORMANCE
The performance results of XMPP server are provided by the

ProcessOne XMPP Community (PXC) using Tsung over

Ejabberd Server.

About Tsung - It is a tool to perform distributed load testing

on an XMPP server and is released under GPLv2 license. It

can simulate thousands of virtual users concurrently which

creates significant load on the machine. These statistics are

published as Tsung Load Testing results. It goes well will

TCP, UDP, Web-socket, TLS/SSL (with or without

certificate) IPv4 and IPv6. [8]

Benchmark shows that we reached 2 million concurrent users

after one hour. We were logging in about 33k users per

minute, producing session traffic of a bit more than 210k

XMPP packets per minute (this includes the stanzas to do the

SASL authentication, binding, roster retrieval, etc). Maximum

number of concurrent users is reached shortly after the 2

million concurrent users mark, by design in the scenario. At

this point, we still connect new users but, as the first users

start disconnecting, the number of concurrent users gets

stable.[9]

As we try to reproduce common client behavior we setup

Tsung to send “keepalive pings” on the connections. Since

each session sends one of such whitespace pings each minute,

the number of such requests grows proportionately with the

number of connected users. And while idle connections

consume few resources on the server, it is important to note

that in this scale they start to be noticeable. Once you have

2M users, you will be handling 33K/sec of such pings just

from idle connections. They are not represented on the graphs,

but are an important part of the real life traffic we were

generating.[9]

At all time, ejabberd health was fine. Typically, when

ejabberd is overloaded, TCP connection establishment time

and authentication tend to grow to an unacceptable level. In

our case, both of those operations performed very fast during

all bench, in under 10 milliseconds. There was almost no

errors (the rare occurrences are artefacts of the benchmark

process).[9]

Good health and performance are confirmed by the state of

the platform. CPU and memory consumption were totally

under control, as shown in the graph. CPU consumption stays

far from system limits. Memory grows proportionally to the

number of concurrent users.[9]

We also need to mention that values for CPUs are slightly

overestimated as seen by the OS, as Erlang schedulers stay a

bit of busy waiting when running out of work.[9]

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 51, September 2019

49

[9]

 Figure 2 : Concurrent Users and Traffic

[9]

Figure 3 : Connection time and error count

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 51, September 2019

50

[9]

Figure 4 : Ejabberd node CPU and memory

5. CONCLUSION
Thus we conclude that XMPP is not merely a set of protocols

for defining behavior of XML, and its potential reaches far

beyond the horizons of Instant Messaging. As there is a surge

in online server-based games, XMPP is a feasible solution

because of the similarities between IM servers and Gaming

servers. We found out that numerous XMPP (XEPs) allow

easy transmission of information through Transmission

Control Protocol. We have listed a number of XMPP

applications in modern games which show that XMPP can be

scaled as per the breadth of Gaming needs. ProcessOne’s

Ejabberd and IgniteRealtime’s Openfire, both XMPP servers

are concluded as best taking consideration of their compliance

with current XEPs. Hence, we believe that this approach will

be of immense help to open-source gaming servers satisfying

all major requirements and a significant step towards the

development of advanced Game Engines.

6. ACKNOWLEDGEMENT
I am happy to acknowledge the efforts of the entire XMPP

community and the founder of XSF(XMPP Standards

Foundation) Peter Saint Andre for developing highly scalable

and robust XMPP architecture and for RFC 6120 (XMPP

Core) and RFC 6121 (XMPP : Instant Messaging and

Presence).

7. REFERENCES
[1] Peter Saint Andre , “XMPP : The Definitive Guide,

Building Real-time Applications with Jabber

Technologies”.

[2] Peter Saint Andre, “Extensible Messaging and Presence

Protocol (XMPP) : Core”.

[3] Peter Saint Andre, “Extensible Messaging and Presence

Protocol (XMPP) : Instant Messaging and Presence”.

[4] Daniel Schuster, Thomas Springler, Istvan Koren,

Markus Endler, “Creating Applications for Real-Time

Collaboration with XMPP and Android on Mobile

Devices.

[5] Oracle Java Documentation, “Why StAX?” .

[6] XMPP Standards Foundation (XSF), “Online Games

using XMPP”.

[7] Jive Software, “WhitePaper”.

[8] Tsung Erlang Projects, “Documentation”.

[9] ProcessOne’s Ejabberd, “Documentation”.

[10] XMPP Standards Foundation (XSF), “Instant

Messaging”.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 51, September 2019

51

[11] Jeremie Miller, Thomas Muldowney, Peter Saint-Andre,

“XEP-0012: Last Activity”.

[12] Thomas Muldowney, “XEP-0027: Current Jabber

OpenPGP Usage”.

[13] Joe Hildebrand, Peter Millard, Ryan Eatmon, Peter Saint-

Andre, “XEP-0030: Service Discovery”.

[14] Peter Saint-Andre, “XEP-0045: Multi-User Chat”.

[15] Peter Saint-Andre, “XEP-0054: vcard-temp”.

[16] Peter Millard, Peter Saint-Andre, Ralph Meijer, “XEP-

0060: Publish-Subscribe”.

[17] Peter Saint-Andre, Tobias Markmann, “XEP-0082:

XMPP Date and Time Profiles”.

[18] Ian Pateron, Dave Smith, Peter Saint-Andre, Jack

Moffitt, Lance Stout, Winfried Tilanus, “XEP-0124:

Bidirectional-streams Over Synchronous HTTP

(BOSH)”.

[19] Scott Ludwig, Joe Beda, Peter Saint-Andre, Robert

McQueen, Sean Egan, Joe Hildebrand, “XEP-0166:

Jingle”.

[20] Peter Saint-Andre, Valerie Mercier, “XEP-0172: User

Nickname”.

[21] Ian Pateron, Dave Smith, Peter Saint-Andre, Jack

Moffitt, Lance Stout, Winfried Tilanus, “XEP-0206:

XMPP Over Bosh”.

[22] Philipp Hancke, Dave Crindland, “XEP-0288:

Bidirectional Server-to-Server Connections”.

[23] Daniel Gultsch, “XEP-0363: HTTP File Upload”.

IJCATM : www.ijcaonline.org

