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ABSTRACT 

Biological network alignment aims to find similar functional 

and topological regions to guide the transfer of biological 

knowledge of cellular functioning from known, well-studied 

species to unknown ones. The proposed aligner (CoreAlign) 

relays on the structural of the Protein-Protein Interactions 

(PPI) network by using network decomposition of what is 

called shells or internal network cores. The proposed aligner 

searches the space of each core to build the Alignment. 

CoreAlign has been compared with many aligners and it has 

competitive results among these aligners in either topological 

or biological measures. 

Keywords 

Protein-protein interactions, PPI, network alignment, protein 

function, network decomposition. 

1. INTRODUCTION 
Nowadays, the real-world phenomenon of binding proteins to 

each other plays a powerful roll in configuring how cells work 

together to perform various functions. This progress helps in 

disease and drug discovery and gives a new insight into 

evolutionary relationships of different species. The huge 

number of these binding events can be modeled as Protein-

Protein Interaction (PPI) networks. The PPI networks can be 

represented as unweighted and undirected graphs        to 

present the much-interconnected nature of the biological 

processes. For each PPI network, proteins are modeled as the 

vertices (V) of the graph and interactions and relationships 

between different proteins in the network are represented by 

graph edges (E). 

The prediction of protein functions in unknown species 

becomes a challenging problem since some of them cannot be 

studied easily by experiments besides ethical constraints 

especially when dealing with human diseases. The main goal 

of PPI network alignment is to try to solve this problem. PPI 

network alignment tries to help in predicting unknown 

functions from known protein functions of the well-studied 

species that became a model like yeast, worm or fly(Faisal, 

Meng, Crawford, & Milenković, 2015). It also facilitates 

discovering evolutionary and functionally conserved 

complexes and pathways. 

PPI network alignment can be divided into local aligners or 

global aligners. Local aligners such as PathBlast (Kelley et al., 

2004), NetworkBlast (Sharan et al., 2005), 

MaWISh(Koyutürk et al., 2006), and AlignNemo (Ciriello, 

Mina, Guzzi, Cannataro, & Guerra, 2012). The purpose of 

these aligners is to detect small, multiple and dense 

subnetworks with a similar structure corresponding to a motif 

protein complexes or a pathway between input networks. 

These aligners are many-to-many node mapping since a node 

can be mapped to many different nodes. 

Global network alignment (GNA) is concerned with finding a 

mapping between input networks that maximizes the overall 

similarity. Many of global aligners called pairwise aligners 

are one-to-one node mapping such as IsoRank (Singh, Xu, & 

Berger, 2007), GRAAL family aligners: {GRAAL(Kuchaiev, 

Milenković, Memišević, Hayes, & Pržulj, 2010), C-

GRALL(Memišević & Pržulj, 2012), H-GRAAL (Milenković, 

Ng, Hayes, & Pržulj, 2010), MI-GRAAL (Kuchaiev & Pržulj, 

2011), and L-GRAAL(Malod-Dognin & Pržulj, 2015)}, 

NETAL(Neyshabur, Khadem, Hashemifar, & Arab, 2013), 

HubAlign(Hashemifar & Xu, 2014), 

ModuleAlign(Hashemifar, Ma, Naveed, Canzar, & Xu, 2016), 

MAGNA(Saraph & Milenković, 2014) and its extended 

framework MAGNA ++(Vijayan, Saraph, & Milenković, 

2015). 

Many network aligners combine network topology with 

external biological information such as the similarities of 

protein sequences such as BLAST bit scores or E-values in 

the cost function to improve their results by taking the 

advantage of both(Clark & Kalita, 2014).  Using Topology 

only may mislead the solution, because the current datasets 

are noisy and incomplete. This problem makes the actual 

complexes may appear disconnected. So combing biological 

information can be more helpful especially when dealing with 

closely related species (Clark & Kalita, 2014). 

Global network aligners can be categorized into two different 

approaches. The first approach such as the GRAAL family, 

NETAL, HubAlign, and ModuleAlign can be called 

traditional methods. These aligners are two-step methods 

because they estimate pairwise node similarity between the 

input networks using a node cost function, then an alignment 

strategy is used to find an alignment with high score taking 

into account the overall aligned node similarity. The second 

approach such as MAGNA and MAGNA ++ are called recent 

aligners they are search-based aligners since they focus on 

maximizing the actual alignment quality. 

Some of the GRAAL family relays on the usage of the 

graphlets (section 2.3). GRAAL(Kuchaiev et al., 2010) used a 

greedily seed-and-extend strategy. H-GRAAL(Milenković et 

al., 2010) used the Hungarian algorithm to solve the 

maximum weight bipartite matching problem(West, 2001), 

while  MI-GRAAL and C-GRAAL use the concept of shared 

network neighbors in their cost function. Another GNA 
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method is NETAL(Neyshabur et al., 2013) which is a 

traditional pairwise aligner that iteratively updates its node 

similarity scores. MAGNA(Saraph & Milenković, 2014) and 

MAGNA ++ (Vijayan et al., 2015) use a genetic algorithm to 

directly optimize node or edge conservation during the 

construction of alignment. 

The proposed algorithm (CoreAlign) is a pairwise global 

aligner that uses the concept of k-cores or k-shells network 

decomposition on the smallest PPI network. The search space 

of CoreAlign is the nodes of each shell that are ordered by 

betweenness centrality. The aligner then builds a similarity 

function between the given two networks using the graphlet 

degree vector (GDV) to construct the final alignment. 

The rest of this paper is organized as the following: section 2 

gives a related background such as network decomposition, 

betweenness centrality, and graphlets and orbits. Section 3 

presents the proposed algorithm. Section 4 contains the results 

and discussion. Section 5 is the conclusion.  

2. RELATED BACKGROUND 
When visualizing biological networks, the existence of some 

proteins with high connectivity called hubs is observed. Also, 

there are some proteins with low connectivity called 

peripherals, and bottleneck proteins that can have any type of 

connectivity can exist in any PPI network. The hubs tend to be 

connected to each other. The bottlenecks have a high value of 

betweenness centrality (the number of shortest paths passing 

through a node). bottleneck proteins gain their importance by 

containing some of the topology and functionality of a 

biological network(Hashemifar & Xu, 2014). 

2.1 Network Decomposition 
K-core or k-shell decomposition is a common method that has 

been used to analyze social networks (Liu, Ren, Guo, & Chen, 

2014) and to investigate proteins(Janjić & Pržulj, 2012). K-

core decomposition of a network is a way to have an insight 

into its central structure by dividing a network into some 

shells or cores. The first core represents the whole network 

while the k-most core is a subgraph of the main network that 

consists of proteins that are intensively interconnected to each 

other. This core has only proteins with connections equal to or 

greater than k. The proteins which included in k-core usually 

tend to be hubs, but as illustrated in figure 1, it is not 

necessary to contain all the hubs or even the biggest hubs of 

the network in it. For example, there is a peripheral hub in the 

first core with a degree equals five but it is not as important as 

the hubs that exist in the fourth core with degrees equal four 

or five.  

As illustrated in figure 1, all nodes in the given network have 

been assigned a core number. The first core represents the 

whole network. This core contains eight nodes in blue not 

concluded in the next core, which later will be referred to as 

the first core nodes. These nodes contain one peripheral hub 

with degree four and seven nodes with degree one. The 

second core has five nodes with degrees two and three. The 

third core has four nodes in black with degrees four and five. 

Finally seven nodes with degrees four, five and six exist in the 

fourth core, which is the k-most core.  

 

Fig 1: A four-level decomposition of a network. The 4-core 

is the most core of the given network. 

Algorithm 1 shows the steps to extract the cores of a network 

and the nodes belonging to each core. 

Algorithm 1: K-core network decomposition 

Input: network G. 

Output: all the cores of network G. 

Step1: start with d=1 and C=1. 

Step2: repeat until no proteins remained in the network. 

a. Remove proteins with degree ≤ d. 

b. Do the following if there are any removed proteins. 

i. Omit the connections of excluded nodes. 

ii. Assign them a core = C. 

c. C=C+1. 

d. d=d+1 

Figure 2 shows a real network RNorvegicus (RN) which 

contains 1657 proteins and 2330 interactions. After Applying 

algorithm 1 (K-core network decomposition), the RN network 

can be divided into five cores. The 5-most core of this 

network has only 19 nodes and their inner interactions as 

shown in figure 3. The few interactions among the most core 

proteins link many of the hubs of the network, so it can 

represent the important nodes in the network. 

 

Fig 2: The RNorvegicus (RN) PPI Network. 
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Fig 3: The 5-most core of RN network. 

2.2 Betweenness Centrality  
Betweenness centrality (    ) measures how often each node 

from a given graph appears on the shortest path between two 

nodes in that graph. Because of the existence of different 

shortest paths between any given two nodes in a graph, the 

betweenness centrality of node u is given by: 

         
       

   
                                                                

     

 

Where        is the number of shortest paths from   to   
passing through node  , and     is the count of shortest paths 

from node   to node  . If the graph is undirected, the equation 

is divided by two(MathWorks, n.d.). 

2.3 Graphlets and Orbits 
Graphlets are induced subgraphs, which are non-isomorphic 

and small connected as shown in figure 4. Graphlets are used 

as a topological measure to find the similarity between nodes 

in different networks (Kuchaiev et al., 2010) by using the 

graphlet degree vector (GDV) of a node or node signature. 

 

Fig 4: The 2-4 node graphlets, G0, G1, G2 … G8, and their 

corresponding 14 automorphism orbits. Nodes of the same 

orbit have the same shade. 

As shown in figure 5, the GDV of a node represents the shape 

of the neighborhood around that node. The GDV of two 

different nodes can be used to compute how topologically 

they are similar. Equation 2 is one of many forms that can be 

used to compute the topological similarity T between any two 

nodes in the given networks. 

       
 

  
 

        
    

   

      
    

          
    

   
                 

  

   

 

Where T is the similarity between node u and v, and   
  

and   
  are the occurrence of orbit i around node u 

respectively. 

As represented in figure 5, node   has four direct neighbors, 

which called its degree represented by orbit 0 from G0. G1 

graphlet contains two orbits: orbit 1 and orbit 2. Orbit 1 equals 

zero since it does not exist around node u, while orbit 2 

occurred five times. The next graphlet G2 contains only orbit 

3, which equals one since node   only found once shaping a 

triangle. The occurrence of each orbit is computed to express 

each node neighborhood. 

 

Fig 5: An illustration of the signature of node  , (a) the 

degree of node   represented by orbit 0 from G0, (b) orbit 

3 from G2, (c) orbit 11 from G6, and (d) the complete 2-4 

GDV of node  . 

3. PROPOSED WORK 
The proposed algorithm (CoreAlign) strategy is to search for 

suitable seeds to initiate the alignment and then extend the 

alignment by searching neighborhoods of these seeds. 

The aligner needs a network file for each of the two networks, 

and any similarity score file where larger values indicate a 

higher similarity between proteins of the given networks.  

This similarity can be any topological or biological or a 

combination of both such as GDV signature, E-value, etc. 

In CoreAlign, The topological similarity between protein   

from the first network and protein   from the second network 

is measured using a 2-4 node graphlet degree signature 

according to equation 2. 

For the biological similarity, a pre-introduced measure used in 

L-GRAAL aligner (Malod-Dognin & Pržulj, 2015) is used. It 

is formulated as the following: 

       
            

                   
                                             

The CoreAlign objective function, S, combines both of the 

above topological and biological similarities when mapping 

proteins between two networks, based on a balancing 

parameter        . For topological similarity, only     is 

used, while for biological similarity only     is used. The 

proposed algorithm similarity function is computed according 

to equation 4. 

                                               

The proposed algorithm (CoreAlign):  

Input: G1, G2, similarity scores                    

Step 1: for the smallest network G1, run the K-core algorithm 

to assign each node with a core number,     

Step 2: compute betweenness centrality (      for the nodes 

of both networks by equation 1. 

Step3: start with    = k-most core. 

a. Repeat until no unaligned nodes        exist. 

i. Find seed    , where                      . 
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ii. Find if there is already aligned neighbors 

    where                          . 

iii. If    is not empty and           still have 

unaligned neighbors         . 

1. Find                      

2. Align node u to node v. 

iv. Else  

1. find               ),where 

                                

2. Align node u to  . 

v. Repeat if node   has unaligned neighbors     

1. Findnode      , 

where                        . 

2. Do the same as step ii and iii from step a. 

b.         

After reading the networks and having the final similarity 

scores, S, CoreAlign runs algorithm 1 to compute how many 

cores exist in the smallest network G1. K-core network 

decomposition algorithm assigns a core number to each node 

in the network. The nodes of each core are then ordered by 

betweenness centrality (     . 

The betweenness centrality,      is computed for the given 

networks G1 and G2 according to equation 1, CoreAlign uses  

     to select the seeds from each core of the smaller network 

G1. The betweenness centrality is also used to order the 

neighbors of these seeds to choose the next node to be 

aligned. 

To construct the final solution, the proposed aligner starts 

from the k-most core. A seed is chosen to initiate the 

alignment. This seed u is the node with the maximum 

betweenness centrality value in the current core only. A 

suitable unaligned node v from the network G2 is chosen 

based on the previously computed similarity scores between 

the two networks. The two nodes u and v from G1 and G2 are 

aligned to each other. 

CoreAlign greedily searches the neighbors of seed u that 

belong to the current core to align first based on the 

betweenness centrality. To find a suitable match for each node 

x in the neighborhood of seed u, the aligner identifies already 

aligned neighbors of node x. Then it looks up to their matched 

nodes from the second network G2, after that, it finds their 

unaligned neighbors in G2 to choose a suitable unaligned 

node   among them. The chosen node y has the maximum 

similarity value with node x, otherwise, choose node   from 

the remained unaligned nodes in G2 based on the similarity 

function S.    

After aligning all the nodes of the current core, the aligner 

steps into the lower core and so on until the whole network 

nodes in all cores of G1 is aligned to unique nodes in G2. 

4. RESULTS AND DISCUSSION 

4.1 Datasets 
For evaluating the resulting alignments the BioGRID dataset 

is used. Its PPI networks are manually curated obtained from 

yeast two-hybrid and affinity capture, so interactions may be 

direct or indirect. It consists of eight PPI networks: HSapiens 

(13276 proteins and 110528 interactions), DMelanogaster 

(7937 proteins and 34753 interactions, SCerevisiae (5831 

proteins and 77149 interactions), AThaliana (5897 proteins 

and 13381 interactions), MMusculus (4370 proteins and 9116 

interactions), CElegans (3134 proteins and 5428 interactions), 

SPombe (1911 proteins and 4711 interactions) and 

RNorvegicus (1657 proteins and 2330 interactions).  

4.2 Evaluation Metrics 
Several metrics can be used to evaluate alignment quality and 

similarity. They are divided into two categories: topological 

similarity metrics and biological similarity metrics. The use of 

both metrics becomes important since topological quality is 

not sufficient in all cases(Elmsallati, Clark, & Kalita, 2016). 

To assess the topological similarity, edge correctness (EC) 

and symmetric substructure score (S3) is used. Previously 

edge correctness (EC) was used widely, but recently 

symmetric substructure score (S3) becomes the latest 

evaluation metric. The S3 measure was proposed in MAGNA 

method (Saraph & Milenković, 2014).  

For the second category: Biological similarity or functional 

coherence (FC), the KEGG Orthology (KO) annotations 

(Kanehisa, Goto, Sato, Furumichi, & Tanabe, 2012) retrieved 

via the UniProt mapping service (Bateman et al., 2017) is 

used.  

Edge correctness (EC) is the percentage of the number of 

edges in the first network that has been preserved by the 

alignment.  

   
       

              
                                                           

Where       is the conserved edge and it is formulated as: 

                                                              

Symmetric substructure score (S3) was introduced to 

overcome the failure of EC to measure the quality of sparse 

regions in the first network to dense regions in the second 

network. S3 considers mapping sparser regions to denser one 

and also mapping denser to sparser regions. 

   
       

                            
                           

KEGG Orthology (KO) annotations are used for the 

integration of pathways and genomic information. It is known 

that orthologous genes are assigned the same KO annotation. 

The KO measure is computed as the number of shared KO 

annotations between the first network and aligned proteins 

from the second network. 

                         
    

                                  

4.3 Evaluation of Experiment 
The proposed algorithm (CoreAlign) is compared with several 

algorithms that are popular and available such as NETAL 

(Neyshabur et al., 2013), ModuleAlign (Hashemifar, Ma, & 

Naveed, 2016), MAGNA++ (Vijayan et al., 2015) and 

HubAlign (Hashemifar & Xu, 2014). The comparison shows 

the effectiveness of the proposed algorithm CoreAlign. The 

compared methods are run with their initial or recommended 

setting. NETAL used two iterations to compute similarities 

and 0.01 for the weight of interaction and similarity score. 

MAGNA++ is set to optimize S3 with 2000 in the population 

size and run it over 15000 generations. HubAlign is run with 

default       . ModuleAlign uses the parameter       . 
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CoreAlign is run for SCerevisiae (yeast) and HSapiens 

(human) PPI networks using topological similarity only. As 

illustrated later, CoreAlign is tested on the remaining six pairs 

of PPI networks topologically and biologically as well. 

Figure 6 represents the edge correctness (EC) of the 

alignments generated by the previously mentioned aligners. It 

shows that CoreAlign results are comparable to ModuleAlign 

over different species. CoreAlign results are better than 

MAGNA++ and HubAlign which has the lowest scores. 

NETAL has the highest scores since it uses topological 

information only when construction the alignment. 

 

Fig 6: EC of NETAL, ModuleAlign, MAGNA ++, 

HubAlign, and CoreAlign. 

In figure 7, the S3 results of all mentioned aligners are given. 

NETAL has the best results. After NETAL, CoreAlign results 

are comparable to MAGNA++ which was set to optimize S3 

measure. CoreAlign results exceed HubAlign results in 

overall species. ModuleAlign has the lowest scores. 

 

Fig 7: S3 of NETAL, ModuleAlign, MAGNA ++, 

HubAlign, and CoreAlign. 

The biological measure, KO is presented in figure 8. 

CoreAlign outperforms all aligners except HubAlign. NETAL 

and MAGNA++ fail to have biological fit since they rely on 

the topological information only. HubAlign which has the 

highest scores in the KO metric fails to have sufficient 

topological fit. 

 

Fig 8: KO of NETAL, ModuleAlign, MAGNA ++, 

HubAlign, and CoreAlign. 

The results of the aligners show that a high topological fit can 

be achieved at the expense of a better biological fit and the 

verse is true. NETAL focuses on maximizing the topological 

fit but failed to have acceptable results for function coherence. 

CoreAlign results are found good enough for both topological 

and biological assessments over the different species. 

4.3.1 Evaluation of parameter   
The proposed aligner, CoreAlign, makes use of the parameter 

  to balance between topological similarity (T) and biological 

similarity (B). The effect of using the parameter    on the 

quality of network alignment is studied. CoreAlign is applied 

to the same dataset with different values of   between 0 and 1 

and the change on EC, S3 and KO measures are reported.  

It is obvious that changing   to combine both topological and 

biological information has a little influence on topological 

metrics such as EC and S3. It is also noticed that changing the 

parameter   has an impact on biological metric KO as 

illustrated in figure 11. 

Figure 9 shows the effect of changing the parameter   on the 

edge correctness (EC) metric. The impact of decreasing   

from 1 to 0.1 is not noteworthy. The EC decreases only when 

     which represents the use of the biological similarity 

only. 

The influence of the parameter   on S3 is represented by 

figure 10. The same as the EC measure, no remarkable change 

is observed when    changed from 1 to 0.1, but when using 

only biology information    =0, the S3 decreases. 
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Fig  9: EC of CoreAlign over six species RNorvegicus 

(RV), SPombe (SP), CElegans (CE), MMusculus (MM), 

AThaliana (AT) and DMelanogaster (DM). 

 

Fig  10: S3 of CoreAlign over six species RNorvegicus 

(RV), SPombe (SP), CElegans (CE), MMusculus (MM), 

AThaliana (AT) and DMelanogaster (DM). 

As shown in figure 11, the effectiveness of changing the 

parameter    on the biological measure KO is recorded. It is 

noticed that when decreasing   to balance between the 

topological similarity and the biological similarity, the 

alignments become better. The more the use of sequence 

similarity, the better the results are achieved. The best score 

was obtained when     . 

 

Fig  11: KO of CoreAlign over six species RNorvegicus 

(RV), SPombe (SP), CElegans (CE), MMusculus (MM), 

AThaliana (AT) and DMelanogaster (DM). 

5. CONCLUSION 
This paper introduces a global method called CoreAlign for 

aligning pairwise networks. It mixes the idea of network 

decomposition with some of the topological features such as 

betweenness centrality and graphlets. CoreAlign has been 

implemented and tested using some of the networks from the 

BioGRID dataset. The resultant alignments are evaluated by 

using different topological and biological measures. A 

comparison with current popular GNA methods shows that 

the proposed aligner outperforms many of them and can deal 

with large networks easily. 
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