
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 53, September 2019

21

Software Development Methods – Properties and

Advances

Syed Hamid Hasan
Department of Information Systems

Faculty of Computing and Information Technology
King Abdulaziz University, Jeddah, Saudi Arabia

Usman Ali Khan
Department of Information Systems

Faculty of Computing and Information Technology
King Abdulaziz University, Jeddah, Saudi Arabia

ABSTRACT
It has taken a period of time for evolution of the field of

software development. In order to promote its effectiveness

and efficiency propositions of various models and methods

has been done. In this paper we are going to discuss the

various models and methods, while identifying the latest

industry trends and also discuss their impacts..

Keywords
Methods of Software development, Agile & Life cycle

method, software testing.

1. INTRODUCTION
With the increasing demand of software in today’s world, the

way these software’s are developed is also becoming critical.

Researchers, practitioners, students, educators of software

development are all focusing on this topic. The software

development process has come a long way steadily evolving

over the past 50 years from its humble beginnings. We have

seen propositions of various models and methods (agile

methods and life cycle model etc.) for software development

to make it more effective and efficient. Life cycle model are

the most used currently for software development specifically

for larger software while agile methods are also picking up

gradually. This paper makes an attempt to review the various

methodologies of software development, while highlighting

the latest trends and also discusses the effects of these models

and methods on software development field. This would

prove useful for researchers, practitioners, students and

educators of software development.

2. MODELS AND METHODS OF

SOFTWARE DEVELOPMENT
In this section various software development methods &

models, like agile methods and analysis-coding & life cycle

model have been reviewed. We have identified the strength

and weakness for each model or method. It is noteworthy that

none of them are “mutually exclusive" [1], in fact they are

very commonly used in conjunction with each other specially

when the software to be developed is a real time system or is

integrated, complex and large.

2.1 The Waterfall Methodology
In Waterfall Models we come across a flow that is linearly

sequential. We see progress steadily flowing downward

(similar to a waterfall) through software implementation

phases (Figure 1). It requires finishing of a preceding phase

for the initiation of the subsequent phase. It means one phase

in the process of development process cannot begin without

the previous phase being completed. This approach doesn’t

provide methodology for going back to preceding phases for

handling requests for change. This approach is considered to

be the oldest approach along with being most commonly

recognized approach in development of software.

A. Gathering & Documenting requirement.

B. Designing

C. Coding & Unit testing

D. Testing System

E. UAT(User Acceptance Testing)

F. Fixing issues reported

G. Delivering finished products

Fig 1: Waterfall Model

In projects religiously following Waterfall approach of

development, every step mentioned represent separate stages

in the software developmental process, & every stage must

generally finish before beginning of the following one.

Typically, there exists stage gates between each stages; e.g.,

requirement should be gone over and agreed upon by clients

prior to designing phase beginning.

Like every other method, this approach has it’s advantages

and disadvantages [2]. Some of the advantages are listed

below:

http://melsatar.blog/2018/02/16/the-waterfall-model-a-different-perspective/

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 53, September 2019

22

 There is an agreement on deliverables in initial

phases of the developmental process between Client

& developers. It removes ambiguity from planning

& designing phases.

 We can easily measure progress at any point of time

since, we already know the complete scope of work

in the beginning of the project.

 Through the entire lifecycle of the project, team

members can be engaged in the project or other

activities based on which phase of the project is

active and if they are required to participate in the

specific phase, e.g. while the developers code, the

business analyst could be learning about &

documenting on what are the steps that need to be

carried out. While the testing team can be preparing

scripts for testing based on requirement documents.

 The customer does not need to be present for the

project after the requirement is gathered apart for

schedules status updates, approvals and progress

review.

 Since designing is finished in earlier phases of

development lifecycles, the approach is quite

suitable for projects that require multiple component

designing (maybe simultaneous) for integrating with

systems that are external.

 Lastly, this approach enables software designs to be

completer and more accurate, with its basis on more

comprehensive understandings of the entire set of

deliverables. It results in software designs that are

better and less likely to be suffering from

“piecemeal effect,” which is a phenomenon in

development that occurs when code snippets are

defined & afterward added in applications that are

suited for them or not.

Some of the disadvantages that the Waterfall approach

presents are listed below:

 The primary area that mostly falls short of the

optimum level is the requirement gathering

effectiveness. To gather & document requirement so

that they are meaningful for customers is frequently

the hardest phase in software development, based on

our observations. Clients are usually intimidated

with detail & specifics, presented to them initially

during the projects, while the approach warrants

minutest levels of detail. Additionally, clients aren’t

normally capable of visualizing applications based

on requirement documents. We can help with

mockups & wireframes, but it is undeniably quite

difficult for clients or end users for to imagine the

end product based on the written documents and

other elements of requirement gathering phases.

 One more disadvantage that the Waterfall approach

of development poses is dissatisfied customers with

end results when the project is finally completed.

Since all the deliverables have their basis on the

requirement document the customer may not really

have an exact ide of the end product and might

require certain changes which might be too

costly/difficult in implementing.

2.2 Agile

This is a team based & iterative approach of software

development. The emphasis of this approach on rapidly

delivering applications with components that are completely

functional. Instead of creating schedules & tasks, the duration

of the projects are split or “time-boxed” into stages knows as

“sprints.” There is a specified duration for every sprint

(mostly in weeks) and associated deliverables are decided, at

the beginning of every sprint. Priority of the deliverables is

done based on their value to business which the customer

defines. In case the deliverables of a particular sprint is not

completed, activities are re-planned and prioritized . The miss

in attaining completion of the sprint is used as a lesson for

planning of the forthcoming sprint.

Post completion of work, it’s evaluated and reviewed by the

client & project teams, via end of sprint & daily build demo

sessions. Agile approach requires extensive level of

involvement from the clients for the entire duration of the

project which is intensified at time of reviews.

A few of the positives that Agile approach presents are:

 Clients have regular & early opportunity for seeing

work deliveries, and making changes & decisions

through the entire duration of the project

development.

 Clients possess high sense of control when they

work directly & extensively with project teams

through the project entire duration of the project

development.

 When specific applications have time to market as a

bigger concern instead of full feature release that

was initial agreed at launch, this approach is capable

of quickly producing basic versions working

software that can be enhanced in later iteration of

the project.

 The focus of development is more on the user,

possibly because of extra & frequent interaction by

the client.

The disadvantages of the Agile approach are:

 Even though higher degrees of client involvements

could be great for the project, but could be

problematic for clients who don’t have inclination

or bandwidth to participate in the developmental

efforts so extensively.

 This approach is best suited for project & teams

where members can be dedicated to the projects and

not hopping between multiple projects.

 Since Agile is focused upon time-boxed deliveries

& regularly reprioritizing, possibilities are some

delivery timelines may be missed. Additionally

forthcoming sprints (post what were initially

planned) could be required, increasing cost of the

project. Additionally, client engrossment usually

could lead to request for additional feature for the

entire duration of the project. This would again have

additional cost & time implications.

 Working relationships are really close in Agile

approaches. They are easily manageable if team

members have the same locations are close by for

regular physical interactions. This may not be

https://www.seguetech.com/blog/2013/05/09website-wireframes-do-you-need-them

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 53, September 2019

23

possible always. Technology does offer tools like

collaboration application and video & voice

conferencing tools but they may not be as effective

as physical presence.

 Agile development’s iterative nature could result in

recurrent refactorization when full system scopes of

are not taken into consideration during the initial

design & architecture. If this refactoring need is

ignored, then overall system quality could be

compromised or reduced. It is more noticeable when

implementations are larger-scaled, or where there

extensive level of integration within the systems.

3. MODELS BASED ON LIFE CYCLE
Eventually, models based on Life Cycle or the Life-Cycle

Models were introduced that were aimed at bringing order and

control into the process of software development. This model

divided the process of software development into defined

phases such as Analyzing, Designing, Coding, Testing and

Implementing [3]. On the basis of the workflows involved the

life cycle models may be further classified into Iterative (like

Spiral) model, Progressive (like Phased) model and

Sequential(like PV, traditional V and waterfall) Models

(Figure 2, Figure 3).

3.1 Iterative Model
This model is designed for overcoming waterfall model

drawbacks. Starting with initial planning, ending with

deployment the process has interactive cycles in the middle.

The elementary idea of this methodology is developing

systems via iterative cycles and carried out in incremental

time portions, this allows software developing team in taking

advantages of learnings arrived during previous

developmental cycles and older system versions. It is a

combination of mini waterfall or V-Shaped models (Figure 6).

Fig 2: Progressive Model

It’s utilized for applications that are shrink-wrap & hefty

systems that have smaller segments or built-in phases. It can

also be utilized for systems that have divided component, like

ERP systems. Where the beginning could be with budget

modules in initial iterations which can be progressed into

inventory modules & so on.

Fig 3: Progressive V-Model

Positive aspects Negative aspects

 Producing value for business

in early phases of development

cycle.

 Scarce resources are better

used by properly incrementing

definitions.

 Option for accommodating

change request is available

between increment cycles.

 Focus is on value for client

more as opposed to approaches

that re linear.

 Issues & changes in the

project detected earlier.

 Heavy documentation

required.

 Following of processes set

quite restrictive.

 Increments are defined on

the basis of feature

dependencies and function.

 Client involvement is lot

more in comparison to linear

approached methods.

 There could be a problem in

partitioning of features and

functions.

 There could be issues in

integration of modules among

iterations if not properly

considered during the project

planning and development

phases.

If we were to simply list the phases of an Iterative model [4]

we would have

a. Requirement Analysis Phase,

b. Design Phase,

c. Implementation & Testing phase and

d. Review Phase.

The process starts with the analysis of the requirements that

leads to design and follows with implementation and testing.

However, after each cycle a review of the software is done to

check if it meets the requirements and if it can be released. If

the review phase is a success the software is delivered, else it

goes back into the cycle.

3.2 Spiral model
Here in-stage-prototyping and designing elements are

combined in order to achieve advantages of bottoms-up and

top-down approaches. The methodology has features of

waterfall & prototyping models combined. This method is

best suited and preferred for complicated, expensive and large

scale projects. It utilized the primary structure of the waterfall

approach like it’s order and phases but the addition of

simulation and prototypes is done to the planning phases

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 53, September 2019

24

along with risk assessment phases (Figure 4).

Fig 4: Spiral Model

It utilized in projects with large systems & applications that

have built-in smaller segment or phases.

Pros Cons

 Better estimation (of

schedules & budgets etc.) is

offered by this approach as it

is able to identify critical

issues at early stages.

 Developers are involved at

early stages.

 System development is in

phases post risk management.

 High time & cost for

reaching final products.

 Special skills are required

for evaluating the assumptions

& risks.

 Product are quite

customized that limit re-

usability of products.

3.3 Progressive Development
The model of progressive development is also called

incremental delivery or phased implementation. It delivers the

software with limited functionality that is termed as the

interim version (a common practice in software development),

that results in reduced time to market [4]. Models like the

PV, traditional V or waterfall may be used for development in

each of the phases inside the life cycle of progressive model

[4]. Following are the benefits of using the Progressive

Development model [1]:

 The software can be used and accessed by the customers

right at the first delivery

 Testing becomes more comprehensive as the features &

functionality with the highest priority functionality is

delivered first.

Yet, it is a difficult task of defining the interim version of the

package, specifically since there are no detailed user

guidelines and requirement for this stage.

3.4 Sequential Model

In the Sequential model, there is smooth progress of

developmental efforts through phases that are very well

demarcated [4] e.g. PV Model, Traditional V and the waterfall

models.

3.4.1 PV model
In the PV model is the testing is done in the reverse order

after the completion of coding, with testing being associated

with each developmental activity. Each testing activity is

further divided into two sub-activities test Plan & Test

execution. The Test plan or the specification is developed for

every developmental activity s) are developed along with each

development activity as depicted in Figure 5 [1]. In

comparison to the traditional V model the testing in PV model

can be done at a much earlier stage, resulting reduction of

developmental & testing periods which is one of its

advantage.

Fig 5. The PV Model

3.4.2 Traditional V-Shape model
It can be called waterfall model extended. However, rather

than linear downward movement, post coding &

implementation phases the process steps get directed upwards,

the process map gives the form of letter V(shown below)

hence the name. Primary difference between Waterfall and V-

model is that test planning is done earlier in comparison to

waterfall model (Figure 6).

Fig 6: Traditional V-Model

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 53, September 2019

25

The usage may be summarized as:

 Clearly known & defined Software requirement

 Well known tools and technologies for Software

development.

Pros Cons

 Easy & Simple in using

 Specific deliverables in each

phase

 Greater success chance in

comparison to waterfall

model because of early test

plan development.

 Works well for where

requirements are easily

understood.

 Product validation &

verification in early

developmental stages.

 Similar to waterfall model

quite inflexible.

 Scope adjustment is costly &

difficult.

 No prototypes available early

since software development is

in implementation phase only.

 No clear path to tackle issues

identifies in testing phase.

 Time consuming & Costly

along with requiring a detailed

plan.

3.4.3 Waterfall model
This model like the PV and the traditional V models have a

sequential phases that have a downward flow, hence the name

“Waterfall”. Even though specific projects may have different

phases, but, in general they include “requirement analysis,

program designing, coding, testing and Operations” [6]. The

process of development is very well documented as it is a

requirement to have the documents signed off for each phase

before proceeding for the next phase [7]. However, the system

proves to be inefficient and ineffective when dealing with

changing requirements of the customers. Thus have the same

advantages and disadvantages like the PV model with the

addition that if there is an issue found then the last phases

must be worked upon. This causes extended timelines and

budgets [8].

3.5 Agile Methods
This method is very similar to the iterative model that focuses

on incremental specification. Designing and implementing

[1], which additionally requires complete integration to testing

& development [9]. As per the “Manifesto for Agile Software

Development”, the method values:

 Interactions and individuals over tools and processes,

 Building functional software over preparing extensive

documentations,

 Collaborating with customers over negotiating contracts,

and

 Being change ready over just following plans.

The idea is producing high quality and cost effective software

in time, while accommodating the changing requirements of

the users as well. XP or extreme Programming is the most

dominant of the various agile methods of software

development. While some of the others are feature driven

developments, dynamic system method, adaptive

development, scrum, lean development and crystal

development methods [10]. Right after a brief period of

planning, XP quickly moves to analysis, designing and

implementing as depicted in Figure 7 [11]. Using a 1 to 4

week time box, it is ensured that delivery of a enhanced and

new software is done post every iteration. Practices and

principles of XP include On-site customer presence,

sustainable pace, continuous integration, collective ownership,

pair programming, refactoring, test-first developments, simple

design, small releases and incremental planning [12, 1].

Fig 7: Agile Method - XP-Based

TDD (Test-driven development), or the concept of “writing

test cases that then dictate or drive the further development of

a class or piece of code” [13] is an essential part of the XP

core practices. E.g., Parasoft Corporation requires writing of a

minimum 1 test prior to each task of coding [14]. With the

ability to change the implementation of a class and to test it

again with minimum time & effort, TDD proves to be a

powerful tool in dealing with changing requirements of the

customer in the project [13]. It was noted by Beck & Andres

[12] that respect, courage, feedback, simplicity and

communication is encouraged by XP. It was proved by Talby

et al. [9], with the help of qualitative and quantitative data,

productivity and development quality is improved by agile

software developments. In order to maximize success, it is

recommended that, while using agile methods, organization

must:

(i) Manage Defects,

(ii) Plan activities on Quality

(iii) Utilize professional testers and

(iv) Pay a great deal of attention to designing of tests

executing the activities.

4. LATEST TRENDS
After reviewing the most common models and methods of

software development we can clearly see 3 emerging trend in

field. First, we find that the Agile methods are steadily

gaining upon the models based on Life cycle. We see a

number of benefits offered by the Agile methods when

compared to the life cycle model. We can obtain functional

software a lot faster through Agile methods. They are more

adaptable to the changes in the user requirements and

encourage far better coordination between the stakeholders of

the process namely, Project managers, end users, testers,

developers and business analysts. It has been described as:

“Agile is a systemic change. It drives cost down, quality up

and service levels higher by making the entire process leaner,

the entire staff more responsible, and the customer more

involved” [15]. Additionally, we see a number of empirical

studies indicating:

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 53, September 2019

26

a. The commonly used models based on Life Cycle

prove to be ineffective and inefficient for developing

complex and large systems [16], and

b. The recent techniques of development like prototyping

and Agile methods improve productivity and

development quality, significantly.

In fact, a number of established software development

companies that have been depending on the Life cycle

methods, are nudging towards the Agile methodologies by

experimenting with these methodologies [17, 18].

Secondly, we find software testing to have become an integral

part of the process of software development. Software testing

has become is essential to ensure software quality [19].

Conventionally, we view testing to be an independent and

separate phase that comes in the end of the process of

software development. Conversely, testing has been

established as an activity that goes in sync with the

development process instead of being the last activity of the

process. This change has been brought about with the

evolution of software development technology. Testing has

been argued in [7] as “an integral activity in software

development” & it is suggested that “testing should be

included early in software development”. In [20] it is also

suggested “testing should be performed throughout the

software life cycle”.

Thirdly, we discovered that because of the increasing

importance of testing in the software development, testers

have started to play a crucial role in the process as well. We

see roles of testers expanding in 2 ways to include:

1. Quality Assurance [21] and code validation &

verification [22]

2. Now engagement of testers is throughout and much

earlier in the process of software development, and

this adds many benefits to the performance of the

project team.

For example, in [23] quantitative evidence is presented to

establish that without compromising on the software quality;

the cycle time & cost effectiveness and project performance

is improved by initiating testing at a much earlier time in the

process of software development. It also enables catching of

defects earlier on, which reduces development cost. As it is

much more expensive to fix defects found at the later stages

of the software development [24].

5. EFFECTS
The latest trends of software development techniques

prevalent have major impact and effects especially on the

International Software research community. Firstly, with the

adoption of agile methods by major organizations more

empirical studies are required for clarification of the effects on

these methodologies [25]. We may be research on the

following questions:

1. What is agile method’s impact on Product Quality?

2. What is agile method’s impact on Job satisfaction of

the team members?

3. What is agile method’s impact on working relationship

of team members?

4. What is agile method’s impact on schedule and project

budget adherence?

5. What is agile method’s impact on project success

levels?

If the answers and these questions are better understood then

development companies would be able to make better

decisions on implementing the agile methods of software

development.

Secondly, with software testing assuming a critical role in the

software development we would require empirical studies for

answering the following questions from research:

1. Which is the best possible approach to integrate

testing into the process of software development?

2. What should be the intensity, frequency and

magnitude of testing employed in a development

project?

3. How would project success be affected by adopting

the above-mentioned approaches of testing?

Thirdly, owing to the increased vitality of software testers in

development process, we need empirical studies to answer the

following:

1. How is the working life of the testers impacted by the

growing importance of their role in the process of

software development?

2. What is the impact of this change on the working

relations of developers and testers?

3. Which additional skillset is required for preparing the

testers for their expanded and new role?

6. CONCLUSION
The paper reviewed methodologies of software development,

highlighted the emerging trends and discussed the effects and

impact of these trends on software development. The paper

contributes in three major ways:

a. Discussion about the methodologies of software

development would help students and educators in

gaining a deeper understanding of these methodologies.

b. Highlighting of the emerging trends in the field would

help guide development practitioners in making better

career, tactical development and strategic decisions.

c. The discussion on impact and effects can be helpful for

future researchers in field software development.

We do hope the paper would help in generating relevant

actions, inspiring creativity and instilling knowledge for the

betterment of the software development field.

7. REFERENCES
[1] Sommerville, I. (2011) Software engineering, 9th edition.

Boston, MA: Addison-Wesley ISBN 10: 0-13-703515-2

[2] W. W. Royce, Managing the development of large

software systems: concepts and techniques, Proceedings

of the 9th international conference on Software

Engineering, p.328-338, March 1987, Monterey,

California, USA.

[3] Navid Hashemi Taba (2012) Improving Software

Quality Using a Defect Management-Oriented

(DEMAO) Software Inspection Model, 2012 Sixth Asia

Modelling Symposium, DOI 10.1109/AMS.2012.51

[4] Xihui Zhang, Tao Hu, Hua Dai and Xiang Li, ‘Software

Development Methodologies, Trends and Implications:

A Testing Centric View, Information Technology

https://dl.acm.org/citation.cfm?id=41801
https://dl.acm.org/citation.cfm?id=41801
https://dl.acm.org/citation.cfm?id=41801
https://dl.acm.org/citation.cfm?id=41801
https://dl.acm.org/citation.cfm?id=41801
https://ieeexplore.ieee.org/author/38494976400
https://ieeexplore.ieee.org/xpl/conhome/6242777/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6242777/proceeding
https://doi.org/10.1109/AMS.2012.51
http://ascidatabase.com/author.php?author=Xihui&last=Zhang
http://ascidatabase.com/author.php?author=Tao&last=Hu
http://ascidatabase.com/author.php?author=Hua&last=Dai
http://ascidatabase.com/author.php?author=Xiang&last=Li

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No. 53, September 2019

27

Journal, Volume 9 (8): 1747-1753, 2010.

[5] Ahmed Mateen, Muhammad Azeem Akbar, Mohammad

Shafiq, ‘AZ Model for Software Development’,

International Journal of Computer Applications (0975 –

8887) Volume 151 – No.6, October 2016

[6] Munassar, N. M. A. and Govardhan, A. 2010. A

Comparison between Five Models of Software

Engineering. IJCSI International Journal of Computer

Science Issues, Vol. 7, Issue 5, pp: 94-101, September

2010.

[7] Bassil Y. 2012. A simulation model for the waterfall

software development life cycle. International Journal of

Engineering & Technology, 2(5): 1-7.

[8] Majumdar A., Masiwal, G. and Chawan, P. M. 2012.

Analysis of Various Software Process Models,

International Journal of Engineering Research and

Applications, Vol. 2, No. 3, 2012, pp: 2015-2021

[9] Hurst, J. 2014. Comparing Software Development Life

Cycles, SANNS Software Security.

[10] Taya, S. and Gupta, S. 2011. Comparative Analysis of

Software Development Life Cycle Models, IJCST Vol. 2,

Issue 4, Oct.-Dec. 2011.

[11] Shmuel Ur, Elad Yom-Tov and Paul Wernick, An Open

Source Simulation Model of Software Development and

Testing, Hardware and Software, Verification and

Testing, Lecture Notes in Computer Science, Springer,

vol. 4383, pp. 124-137, 2007

[12] B. Boehm and K.J. Sullivan, “Software Economics:

Status and Prospects,” Special Millenium Issue,

Information and Software Technology, 2000.

[13] Leung, H., and Fan, Z., Software Cost Estimation.

Handbook of Software Engineering, Hong Kong

Polytechnic University 2002

[14] Alan M. Davis, Edward H. Bersoff and Edward R.

Comer, A Strategy for comparing Alternative Software

Development Life Cycle Models, IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING,

VOL. 14, NO. 10, OCTOBER 1988

[15] Y. Chernak, "Validating and improving test-case

effectiveness," Software, IEEE , vol.18, no.1, pp.81-86,

Jan/Feb 2001doi: 10.1109/52.903172

[16] M. V. Mantyla, C. Lassenius, " What Types of Defects

Are Really Discovered in Code Reviews?," Software

Engineering, IEEE Transactions on , vol.35, no.3,

pp.430-448, May-June 2009 doi: 10.1109/TSE.2008.71

[17] D. E. Perry, A. Porter, M. W. Wade, L. G. Votta, and J.

Perpich, " Reducing inspection interval in large-scale

software development," IEEE Transactions on Software

Engineering, 28(7), 695-695-705.

doi:10.1109/TSE.2002. 1019483

[18] O. Laitenberger, and J. DeBaud,"An Encompassing Life

Cycle Centric Survey of Software Inspection," Journal of

Systems and Software, Vol. 50, 2000, pp. 5-31.

[19] A. Porter, H. P. Siy, C. A. Toman, and L. G., "An

experiment to assess the cost-benefits of code inspections

in large scale software development,"IEEE Transactions

on Software Engineering, 23(6), 1997, 329-329-346.

doi:10.1109

[20] M. Agrawal, K. Chari, "Software Effort, Quality, and

Cycle Time: A Study of CMM Level 5 Projects,"

Software Engineering, IEEE Transactions on , vol.33,

no.3, pp.145-156, March 2007 doi: 10.1109/TSE.2007.29

[21] D. L Parnas, and M. Lawford, "Inspection's role in

software quality assurance," IEEE Software, 20(4), 16-

16-20. doi:10.1109/MS.2003.1207449

[22] C. K. Tyran, "A Software Inspection Exercise for the

Systems Analysis and Design Course," Journal of

Information Systems Education, 17(3), 2006, Pp. 341-

351.

[23] T. Dyb, B.A. Kitchenham, M. Jrgensen, "Evidence-

Based Software Engineering for Practitioners", IEEE

Software, vol. 22, no. 1, pp. 58-65, 2005.

[24] T. Berling, T. Thelin, "An Industrial Case Study of the

Verification and Validation Activities", Proc. 9th Int'l

Software Metrics Symp., pp. 226-238, 2003.

[25] A. Aurum, H. Petersson, C. Wohlin, "State-of-the-Art:

Software Inspections after 25 Years", Software Testing

Verification and Reliability, vol. 12, no. 3, pp. 133-154,

2002.

IJCATM : www.ijcaonline.org

