Abstract

This paper highlights the design of finite impulse response (FIR) filter with the help of an evolutionary optimization technique, particularly multiple constant multiplication. The Finite Impulse Response (FIR) Filter is the necessary part for coming up with an economical digital signal process system. Multiple constant multiplication technique cannot be directly applied to direct kind and block filtering has large latency due to the collection of partial results making incompatible for transposed form. So this technique provides a way to implement block filtering using MCM by direct form. This method uses common sub-expression sharing algorithm across all multiplications which reduce number of arithmetic operations to calculate inner products. This eventually reduces computational complexity. For this purpose, the coefficient of the filter are encoded by Canonic Signed Digit (CSD) that is used for multiplication. FIR filter supported canonical signed digits illustration of coefficient so as to attenuate the power consumption and quick implementation of the filter. Performance of the proposed filter has been analyzed in terms of its area, power and speed. The look of FIR filter is planned to implement using Xilinix tool.
References

1. Basant K. Mohanty, Senior Member, IEEE, Pramod K. Meher, Senior Member, IEEE, Somaya Al-Maadeed, Senior Member, IEEE, and AbbesAmira, Senior Member, IEEE "Memory
Footprint Reduction for Power-Efficient Realization of 2-D Finite Impulse Response Filters"

2. Xin Lou, Student Member, IEEE, YaJunYu, Senior Member, IEEE, and Pramod Kumar
Meher, Senior Member, IEEE "Analysis and Optimization of Product-Accumulation Section for
Efficient Implementation of FIR Filters" IEEE Transactions On Circuits And Systems—I: Regular
Papers 2016 IEEE

7, no. 3, 2017, pp. 217 - 228

4. Kenny Johansson, Oscar Gustafsson, Linda S. DeBrunner, and Lars Wanhammar,
"Minimum Adder Depth Multiple Constant Multiplication Algorithm for Low Power FIR Filters"
2011 IEEE

5. Mathias Faust and Chip-Hong Chang, "Bit-Parallel Multiple Constant Multiplication using
Look-Up Tables on FPGA" 2011 IEEE

6. Mamta N. Ahuja Prachi Palsodkar "Design Of Efficient Add/Shift Algorithm For Multiple
Constant Multiplication" 2015 Fifth International Conference on Communication Systems and
Network Technologies

7. Basant Kumar Mohanty, Senior Member, IEEE, and Pramod Kumar Meher, Senior
Member, IEEE "A High-Performance FIR Filter Architecture for Fixed and Reconfigurable
Applications" IEEE Transactions On Very Large Scale Integration (VLSI) Systems, Vol. 24, No. 2,
February 2017

8. Jongsun Park, Woopyo Jeong, Hamid Mahmoodi-Meimand, Student Member, IEEE,
Yongtao Wang, Hunsoo Choo, and Kaushik Roy, Fellow, IEEE "Computation Sharing
Programmable FIR Filter for Low-Power and High-Performance Applications" IEEE Journal Of

9. Tero Rissa, Riku Uusikartano, and Jarkko Niittylahti "Adaptive FIR Filter Architectures for
Run-Time Reconfigurable FPGAs" 2002 IEEE

10. Zhangwen Tang, Jie Zhang and Hao Min "A High-Speed, Programmable, Csd
Coefficient Fir Filter" IEEE Transactions on Consumer Electronics, Vol.48, No. 4, November
2002

International Conference On Recent Trends In Electronics Information & Communication
Technology, May 19-20, 2017, India

12. Deepa Yagain and A. Vijaya Krishna "Design of Synthesizable, Retimed Digital Filters
Using FPGA Based Path Solvers with MCM Approach: Comparison and CAD Tool" Hindawi
Publishing Corporation VLSI Design Volume 2014, Article ID 280701, 18 pages
http://dx.doi.org/10.1155/2014/280701

13. Mitsuru Yamada Akinori Nishihara "High-speed FIR Digital Filter with CSD Coefficients
Implemented on FPGA" 2001 IEEE.

14. Levent Aksoy, Student Member, IEEE, Eduardo da Costa, Paulo Flores, Member, IEEE,
and José Monteiro, Member, IEEE "Exact and Approximate Algorithms for the Optimization of
Area and Delay in Multiple Constant Multiplications" IEEE Transactions On Computer-Aided
Index Terms

Computer Science
Information Sciences

Keywords

Multiple constant multiplications (MCM), Canonic Signed Digit (CSD), FIR filter.