Abstract

Medical data is an exponential growth in all the hospitality service area. Genome is an special type of data which deals with the small unit of medical cells. Various matching operation over the genome data is required because of some medical issues arise in various cases. DNA matching, sequence matching, pattern analysis and matching is so called requirement in this area. There are some techniques such as BLAST, HBLAST, RMAP is involved and performed by past researcher. The technique use pre-processing and other filteration, sequence finding is performed. Past approach finds limitation where the large data processing, sequence detection and combine score generation for overall data processing is not performed. In this paper proposed approach is given which work towards the enhancement of previous approach extended with compressive sensing usage for pre-fetching of data and its filteration. It make use of compressive sensing with which a noise removal, filtering process is executed and thus a refined data is observed for Hadoop processing Mapping approach. Our proposed technique executed with different data set of sequence, count of data present in millions and it gives an effective results while comparing with existing scenario. A further implementation on security
usage can performed by us.

References

1. Miss. Anju Ramesh Ekre1, Prof. Ravi. V. Mante, “Hadoop Based Clustering System For Genome Sequencing”, 2016 Second International Conference on Science Technology Engineering and Management (ICONSTEM).
7. Dimitrios Milioris, “Classification in Twitter via Compressive Sensing”, IEEE International Conference on Computer Communications (INFOCOM), Apr 2015, Hong Kong, Hong Kong SAR China.
A Hybrid Approach for Sequence Alignment over Genome Data using Compressive Sensing and HBLAST

Index Terms

Computer Science

Information Sciences

Keywords

BLAST, Compressive sensing, big data, protein DB, sequence alignment