Abstract

Today the computation capability of modern computational systems increased. Multi-core processors achieve improved performance with lower power consumption. Dynamic Voltage and Frequency Scaling (DVFS) technique, permits processors to dynamically change their supply voltages and execution frequencies so it can work on many power/energy levels. This scheme is considered as an efficient technique to fulfill the goal of saving energy. This paper, considered scheduling task set on homogeneous multiprocessor platforms using Dynamic Voltage and Frequency Scaling. Achieving minimal overall system energy consumption was our goal. We propose an integrated approach that assigns a dynamic priority to each task in ready queue related to every ready processor based on task deadline and processor load. We are experimentally inspected the effect of our dynamic priority algorithm using feasibility, energy and feasibility/energy performance measurement. Our evaluation results show considerable energy gains with acceptable performance when compared with other well-known heuristics.


Energy-aware Scheduling based Tasks dynamic Priority on Homogeneous Multiprocessor Platforms


34. O. U. P. Zapata and P. M. Alvarez, “EDF and RM Multiprocessor Scheduling Algorithms:
Scheduling for Network-on-Chip Architectures under Real-Time Constraints”, Proceedings of
Networked Data Centers”, In Proceedings of the 6th International Conference on Cloud
real-time systems”, international transactions on operational researches, Volume 24, Issue 1-2,
39. Robert I. Davis,”A Review of fixed priority and EDF scheduling for hard real-time
40. Tom Gu’erout, Mahdi Ben Alay, “Autonomic energy-aware tasks scheduling”, Open
Archive TOULOUSE Archive Ouverte (OATAO), DOI :10.1109/WETICE.2013.29, June 2013,
URL : http://dx.doi.org/10.1109/WETICE.2013.29
Requirements”, Proceedings of the 4th International Real-Time Scheduling Open Problems
Seminar (RTSOPS 2013)
43. Marko Bertogna, “Real-Time Scheduling Analysis for Multiprocessor Platforms”, Ph.D.
44. Akash Kumar, et al., “Energy-aware task mapping and scheduling for reliable
embedded computing systems”, ACM Transactions on Embedded Computing Systems, No. 72,
Volume 13 Issue 2s, January 2014
46. Vasanthamani KANNAIAN, Visalakshi PALANISAMY, “Energy optimized scheduling for
non-preemptive real-time systems”, Turkish Journal of Electrical Engineering & Computer
47. Jing Mei, “Energy-aware task scheduling in heterogeneous computing environments”,
48. Y. C. Lee and A. Y. Zomaya, “Minimizing energy consumption for
precedence-constrained applications using dynamic voltage scaling,” in the 9th IEEE/ACM
allocation for energy efficient video decoding in homogeneous and heterogeneous multicore
Systems Using a Hybrid Genetic Algorithm”, Electronics 2017, 6, 40; doi:
10.3390/electronics6020040.
51. F. A. Armenta-Cano, et al., “Min_c: Heterogeneous Concentration Policy for
Energy-Aware Scheduling of Jobs with Resource Contention”, ISSN 0361-7688, Programming
Energy-aware Scheduling based Tasks dynamic Priority on Homogeneous Multiprocessor Platforms

Index Terms

Computer Science
Control Systems

Keywords

Multi-core processor, Dynamic priority Scheduling, Dynamic Voltage and Frequency Scaling, Energy-Aware Scheduling