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ABSTRACT 

Distributed Real Time Systems operate in resource-

constrained environments and are composed of tasks that must 

process events and provide soft real-time performance. The 

main function of a computing system is to provide services to 

its users. In order to perform its function, a computing system 

uses various resources such as processors, memory, 

communication channels, etc. Managing and scheduling these 

resources is an important function.   
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1. INTRODUCTION 
Real time systems are characterized by computational 

activities with timing constraints. Timing constraints in real 

time applications are predominantly soft in that deadlines may 

be missed as long as the long run fraction of the processing 

time allocated to each task in the application is in accordance 

with its utilization. A system design that can guarantee that 

deadline misses, if any, are bounded by constant amounts is 

sufficient to provide guarantees on long term processor 

shares. Hence, scheduling methods that ensure bounded 

deadline misses and that can be applied when other methods 

cannot are of considerable value and interest[1]. 

In a real-time system, the scheduling algorithm decides an 

order of execution of the tasks and also the quantity of time 

allowed to each task in the system so no task (for hard 

realtime systems), or a minimum number of tasks (for soft 

realtime systems), misses their deadlines. To verify if a 

scheduling policy guarantees the fulfillment of the temporal 

constraints of a task set, real-time systems designers use 

totally different exact or inexact schedulability conditions 

(also referred to as schedulability tests). The schedulability 

condition indicates if a given task set can be scheduled with a 

given scheduling algorithm such that no tasks within the set 

miss their deadlines. once a new task is created during a 

dynamic real-time system, an online admission management 

mechanism that uses a schedulability test, guarantees 

predictability if the new task is admitted. Examples of these 

kind of systems are those with Quality-of-Service (QoS) 

requirements, like multimedia system systems [1] [2], 

communication services [3][4], and automated control [5]. 

Different examples are found on the scheduling of real-time 

traffic over networks [6][1], or in open systems environments 

[7][8]. 

The schedulability test is based on the knowledge of the 

release times and the execution times of all tasks. The off-line 

schedulability test is useful when the system is highly 

deterministic, meaning that the release times and the 

execution times of all tasks are known, and either do not vary 

or vary only slightly. However, for systems in which tasks 

may arrive dynamically at run time, it is impossible to provide 

an off-line schedulability test. On-line admission controllers 

can perform the schedulability test at tasks' arrival times in 

dynamic systems. Two popular schedulability test approaches 

for end-to-end real-time tasks are time-demand analysis and 

schedulable utilization analysis. This research intends to 

propose a new approach for schedulability test for real-time 

scheduling for a single recourse, CPU. Second objective of 

this research work is to find out solution on the problem task 

scheduling in real time environment having heterogeneous 

resources[9].  

Exact schedulability tests typically have time complexities 

and should not be adequate for on-line admission management 

if the system contains a great deal of tasks or a dynamic work. 

In contrast, most of the inexact schedulability tests provide 

low complexity sufficient schedulability tests that are suitable 

for use in on-line admission management mechanisms to 

decide the acceptance of the recently arriving tasks within the 

system[10]. If a task set doesn't satisfy a sufficient 

schedulability test, it's not known if the task set can be 

feasibly scheduled using a given scheduling policy. For this 

reason, it's important to determine that inexact schedulability 

test provides a far better performance, given the specific task 

set parameters. 

In realtime operating systems, the scheduler is meant to 

produce optimal performance, optimum usage of resources, 

and fairness in resource assignment. In contrast, in real-time 

operating systems, the scheduler must restrict the non-

determinism related to the concurrent system, and should 

offer the means to predict the worst-case temporal behaviour 

of the task set. A real-time scheduling algorithm provides an 

ordering policy for the execution of the tasks (as within the 

non-real-time programming algorithm)[11]. A given real-time 

scheduling algorithm may produce feasible or infeasible 

schedules. In an exceedingly possible schedule, each job for a 

given task set always completes by its deadline. In contrast, in 

an infeasible schedule, some jobs might miss a number of 

their deadlines. a group of jobs is schedulable in line with a 

given scheduling algorithm if, when using the algorithm, the 

scheduler always produces a possible schedule. The criterion 

used to measure the performance of the scheduling algorithms 

for real-time applications is their ability to find feasible 

schedules of the given application whenever such schedules 

exist. a hard real-time scheduling algorithm is optimal if, for 

any feasible task set, it always produces possible schedules 

[12]. 

The scheduling algorithms are often classified as static and 

dynamic. in an exceedingly static scheduling algorithm, all 

scheduling choices are provided a priori. For a given set of 

timing constraints, a table is constructed indicating the 

beginning and completion times of every task, such that, no 

task misses its deadline[13]. This approach is very 
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predictable, however once the parameters of the tasks change, 

the table should be recomputed and also the system restarted. 

In dynamic scheduling algorithms, the scheduling decisions 

are taken at run-time based on the priorities of the tasks. 

These priority values are used to decide the execution order of 

the tasks. Priority values can be assigned statically or 

dynamically, depending on the dynamic scheduling algorithm. 

The paper [12] introduced the first real-time scheduling 

algorithms for one processor (Rate-Monotonic and Earliest 

deadline First), and developed their corresponding 

schedulability analysis. RM assigns the highest priority to the 

task with the littlest amount, and EDF assigns priorities to the 

tasks considering the proximity of each instance of a task with 

its deadline, so that the task with the closest relative deadline 

receives the highest priority. Liu and Layland demonstrated 

that RM and EDF are optimal for fixed and dynamic priority 

algorithms, respectively. 

2. GLOBAL SCHEDULAR 
Moreover, global scheduling is particularly useful in case of 

open dynamic systems, where tasks may dynamically enter 

and leave the system. In fact, with static partitioning, every 

time a task enters the system, it must be allocated to a 

processor, and optimal allocation is an NP-Hard problem[14]. 

Therefore, admission control and allocation become difficult 

and time consuming. Also, when a task leaves the system, 

there may be the need for re-allocation and load balancing, 

and this reintroduces migration overhead. On the other hand, 

under global scheduling a task is not allocated to a processor. 

Therefore, when a task wants to enter the system, the only 

remaining problem is admission control, i.e. to understand if 

the task can be admitted into the system without jeopardizing 

the guarantee on the already admitted real-time tasks. This test 

is commonly referred to as schedulability test. In this paper 

we propose schedulability tests based on utilization and 

density bounds, which are polynomial in the number of tasks. 

Using a technique similar to the one used in [15] for the EDF 

case, we then propose a schedulability test that, bounding the 

interference imposed on a task, is able to succesfully 

guarantee a larger portion of schedulable task sets, especially 

in presence of heavy tasks (i.e. tasks whose utilization is 

greater than 0.5). The global scheduling algorithm is given 

below 

begin  

for    =  1 to    (  periodic task)  

while there is a free processor    and an unassigned tasks do  

 pick higher priority task  

 assign (  ,   )  

 if task executed within deadline return “success” 

  else return “failure”  

 endif  

endwhile   

Endfor 

To achieve desired quality of service scheduling permits 

optimum allocation of resources among given tasks during a 

finite time.  Formally, scheduling problem involves tasks that 

must be scheduled on resources subject to some constraints to 

optimize some objective function. The aim is to make a 

schedule that specifies when and on that resource every task 

are going to be executed [16]. It’s remained a subject of 

research in numerous fields for decades, may it be scheduling 

of processes or threads in an operating system, job shop, flow 

shop or company scheduling in production environment, 

printed circuit board assembly scheduling or scheduling of 

tasks in distributed computing systems like cluster, grid or 

cloud. 

In recent years, distributed computing paradigm has gained 

abundant attention due to high scalability, reliability, and data 

sharing and low-cost than single processor machines. Cloud 

computing has emerged because the most popular distributed 

computing paradigm out of all others within the current 

situation. It provides on-demand access to shared pool of 

resources in a self-service, dynamically scalable and metered 

manner with guaranteed Quality of service to users. To 

produce guaranteed Quality of Service (QoS) to users, it's 

necessary that jobs should be efficiently mapped to given 

resources. If the required performance isn't achieved, the users 

will hesitate to pay. 

2.1 Schedulability Test 
A schedulability test defines a mathematical condition that's 

used to verify whether or not the task set meets its sequential 

restrictions for a given scheduling algorithm. The inputs of the 

test are the temporal parameters of the task set. A test is said 

to be sufficient within the sense that a task set is schedulable 

if it satisfies the test. However, if the task set doesn't satisfy 

the sufficient test, it's not known whether or not the task set 

are often schedulable using that scheduling algorithm. A test 

is claimed to be necessary if all schedulable task sets satisfy 

the test. Otherwise, if a given task set satisfies the test, we 

cannot say that it's schedulable. Actual tests offer a necessary 

and ample condition. The exact schedulability tests offer 

solely a sufficient (but not necessary) schedulability 

condition.  

Schedulability tests depend on the scheduling algorithm 

chosen and the knowledge of the parameters of the task set. 

The schedulability test in dynamic scheduling algorithms is 

often performed off-line or on-line. If the test is executed off-

line, there should be complete data of the set of tasks that are 

to be executed within the system along with the timing 

constraints imposed on each task (e.g., deadlines, precedence 

restrictions, execution times) before the execution of the 

system. During this case, the arrival of recent tasks isn't 

allowed whereas the system is executing, and therefore the 

tasks cannot change their timing constraints. In contrast, if the 

scheduling test is performed on-line, new arrivals are allowed 

at any time and therefore the tasks will change their timing 

constraints throughout the execution of the system. In this 

test, the scheduler decides dynamically, by means of an 

admission control mechanism, if the acceptance of those new 

tasks won't cause alternative tasks to miss their deadlines. 

The utilization bound, for a given real time scheduling 

algorithm, is the value such that any task set, whose utilization 

factor is no larger than is schedulable under that scheduling 

algorithm. Utilization-based schedulability conditions verify if 

the utilization of the task set doesn't exceed the utilization 

bound. 

3. COMPARISON OF 

SCHEDULABILITY ANALYSIS  
We compare two methods for performing schedulability  

tests: Earliest deadline First(EDF) and Fixed Priority(FPT), 

when they are used in implemented admission  control  

service. 

Each of our experiments is characterized by a pair (m, n) 

where m is the number of processors and n is the task set size. 

We considered 40 different utilization levels {0.025m, 0.5m, . 

. . 0.975m,m} for each experiment (m, n). 15 experiments 

were conducted with m ∈ {2, 4, 6} and n ∈ {10, 20, 40, 60, 

80} to compare the acceptance ratios of EDF and FPT tests.  

We present the acceptance ratios of the experiments with 
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parameters (m = 4, n = 20), (m = 4, n = 40), (m = 6, n = 20) 

and (m = 6, n = 80) in Figure 1 to Figure 4 , respectively.  

 

Figure 1 Acceptance Ratio of EDF and FPT tests for m=4, 

n=20 

Each graph in Figure 1 to Figure 4 presents the acceptance 

ratio for both tests. The x-axis is the system utilization U/m 

for utilization level U and the y-axis represents the acceptance 

ratio. The acceptance ratios of both FPT and EDF tests are 

around 100% at relatively low utilization level (e.g., U ≤ 

0.5m) and 0% at very high utilization level (e.g., U > 0.8m). 

We plot the acceptance ratio in Figure 1 to Figure 4 for the 

utilization levels between 0.5m and 0.8m. 

 

 
 

Figure 2:  Acceptance Ratio of EDF and FPT tests for  

m=4, n=40 

The acceptance ratios for both EDF test and FPT test are 

higher when the task set size increases for a given m. Notice 

that the acceptance ratio for both FPT and EDF tests in Figure 

2 and Figure 4 are relatively “healthier” than that of in Figure 

1 and Figure 3, respectively. A taskset with smaller 

cardinality having total utilization U has relatively higher 

number of high-utilization tasks in comparison to that of a 

taskset with larger cardinality having total utilization U. With 

higher number of high utilization tasks, the global FP 

scheduling suffers[14], and consequently, relatively smaller 

number of (low cardinality) tasksets passes both FPT and 

EDF tests in Figure 4 and Figure 6.  

 
Figure 3 Acceptance Ratio of EDF and FPT tests for m=6, 

n=20 

The improvement in acceptance ratio of the EDF test over the 

FPT test is noticeable at higher utilization level (e.g., 0.55m ≤ 

U ≤ 0.75m) in all the four cases in Figure 1 to Figure 4. Both 

priority assignment policy and schedulability test play very 

important roles in determining the global FP schedulability of 

a task set at large utilization levels. The improvement in 

acceptance ratio of the EDF test at higher utilization levels is 

due to our improved priority assignment policy. For example, 

the acceptance ratio of the EDF test is around 30% higher 

than that of FPT test at utilization level 0.7m in Figure 4.  

The EDF test outperforms the FPT test for tasksets with 

relatively larger cardinality for a given number of processors. 

The difference between the acceptance ratios of the EDF test 

and FPT test in Figure 2 and Figure 4 is considerably larger 

than that of in Figure 1 and Figure 3, respectively. The 

improvement of the EDF test over the FPT test increases 

when both task set cardinality and number of processors 

increases. The difference between the acceptance ratios of the 

EDF test and the FPT test at higher utilization level in Figure 

4  is considerably larger than that of in Figure 1. When the 

number of tasks in a task set at a particular utilization level is 

relatively larger, there are relatively fewer tasks with large 

density. And, separating tasks based on the “highest-density” 

criterion of the FPT test is not that effective. Our proposed 

separation criterion for EDF test reduces the pessimism of 

interference on a lower priority tasks to a larger extent in 

comparison to the criterion of separating “highest-density” 

tasks of the FPT test. Thus, with increasing number of task set 

size, the EDF test performs significantly better than the FPT 

test.  

The task set size (i.e., parameter n) in addition to parameters 

m and U has significant impact on global scheduling. The 

EDF test outperforms the FPT test for large n (i.e., where 

there are fewer large-density tasks in a task set). However, the 

performance of the EDF test with relatively smaller n is also 

significant; for example, the acceptance ratio of the EDF test 

is around 5% to 8% higher than that of the FPT test between 

utilization level 0.55m and 0.7m in Figure 3. Any 

improvement in acceptance ratio of the EDF test implies 

relatively lower demand on total processing capacity which in 

turn could significantly cut the cost of mass production of 

actual systems with relatively fewer numbers of processors.  

The total  synthetic  utilization  of all subtasks  on each 

processor was changed systematically in different 

experiments,  and randomly  generated  60 task sets for each 

total synthetic  utilization  per processor.  Note that  the total  

synthetic  utilization  is calculated  assuming there  is a 

current instance  of each (aperiodic  or periodic) task  on a 

processor which is different from the instantaneous synthetic  
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utilization  on the processor at run time.  Each set of tasks 

includes 4 aperiodic tasks and 5 periodic tasks with similar 

characteristics to the workloads used in earlier experiments.  

All tasks were made equally critical in this set of experiments. 

 
Figure 4 Acceptance Ratio of EDF and FPT tests for m=6, 

n=80 
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