
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.16, January 2018

14

Schedulability Analysis for Multiresource Scheduling in

Middleware for Distributed Real Time Systems

Radha Dongre
Sipna College of Engineering and Technology,

Amravati

Anjali Mahajan
Government Polytechnic, Nagpur

ABSTRACT

Distributed Real Time Systems operate in resource-

constrained environments and are composed of tasks that must

process events and provide soft real-time performance. The

main function of a computing system is to provide services to

its users. In order to perform its function, a computing system

uses various resources such as processors, memory,

communication channels, etc. Managing and scheduling these

resources is an important function.

General Terms

Middleware, Distributed real time system

Keywords

Schedulability analysis, real time system

1. INTRODUCTION
Real time systems are characterized by computational

activities with timing constraints. Timing constraints in real

time applications are predominantly soft in that deadlines may

be missed as long as the long run fraction of the processing

time allocated to each task in the application is in accordance

with its utilization. A system design that can guarantee that

deadline misses, if any, are bounded by constant amounts is

sufficient to provide guarantees on long term processor

shares. Hence, scheduling methods that ensure bounded

deadline misses and that can be applied when other methods

cannot are of considerable value and interest[1].

In a real-time system, the scheduling algorithm decides an

order of execution of the tasks and also the quantity of time

allowed to each task in the system so no task (for hard

realtime systems), or a minimum number of tasks (for soft

realtime systems), misses their deadlines. To verify if a

scheduling policy guarantees the fulfillment of the temporal

constraints of a task set, real-time systems designers use

totally different exact or inexact schedulability conditions

(also referred to as schedulability tests). The schedulability

condition indicates if a given task set can be scheduled with a

given scheduling algorithm such that no tasks within the set

miss their deadlines. once a new task is created during a

dynamic real-time system, an online admission management

mechanism that uses a schedulability test, guarantees

predictability if the new task is admitted. Examples of these

kind of systems are those with Quality-of-Service (QoS)

requirements, like multimedia system systems [1] [2],

communication services [3][4], and automated control [5].

Different examples are found on the scheduling of real-time

traffic over networks [6][1], or in open systems environments

[7][8].

The schedulability test is based on the knowledge of the

release times and the execution times of all tasks. The off-line

schedulability test is useful when the system is highly

deterministic, meaning that the release times and the

execution times of all tasks are known, and either do not vary

or vary only slightly. However, for systems in which tasks

may arrive dynamically at run time, it is impossible to provide

an off-line schedulability test. On-line admission controllers

can perform the schedulability test at tasks' arrival times in

dynamic systems. Two popular schedulability test approaches

for end-to-end real-time tasks are time-demand analysis and

schedulable utilization analysis. This research intends to

propose a new approach for schedulability test for real-time

scheduling for a single recourse, CPU. Second objective of

this research work is to find out solution on the problem task

scheduling in real time environment having heterogeneous

resources[9].

Exact schedulability tests typically have time complexities

and should not be adequate for on-line admission management

if the system contains a great deal of tasks or a dynamic work.

In contrast, most of the inexact schedulability tests provide

low complexity sufficient schedulability tests that are suitable

for use in on-line admission management mechanisms to

decide the acceptance of the recently arriving tasks within the

system[10]. If a task set doesn't satisfy a sufficient

schedulability test, it's not known if the task set can be

feasibly scheduled using a given scheduling policy. For this

reason, it's important to determine that inexact schedulability

test provides a far better performance, given the specific task

set parameters.

In realtime operating systems, the scheduler is meant to

produce optimal performance, optimum usage of resources,

and fairness in resource assignment. In contrast, in real-time

operating systems, the scheduler must restrict the non-

determinism related to the concurrent system, and should

offer the means to predict the worst-case temporal behaviour

of the task set. A real-time scheduling algorithm provides an

ordering policy for the execution of the tasks (as within the

non-real-time programming algorithm)[11]. A given real-time

scheduling algorithm may produce feasible or infeasible

schedules. In an exceedingly possible schedule, each job for a

given task set always completes by its deadline. In contrast, in

an infeasible schedule, some jobs might miss a number of

their deadlines. a group of jobs is schedulable in line with a

given scheduling algorithm if, when using the algorithm, the

scheduler always produces a possible schedule. The criterion

used to measure the performance of the scheduling algorithms

for real-time applications is their ability to find feasible

schedules of the given application whenever such schedules

exist. a hard real-time scheduling algorithm is optimal if, for

any feasible task set, it always produces possible schedules

[12].

The scheduling algorithms are often classified as static and

dynamic. in an exceedingly static scheduling algorithm, all

scheduling choices are provided a priori. For a given set of

timing constraints, a table is constructed indicating the

beginning and completion times of every task, such that, no

task misses its deadline[13]. This approach is very

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.16, January 2018

15

predictable, however once the parameters of the tasks change,

the table should be recomputed and also the system restarted.

In dynamic scheduling algorithms, the scheduling decisions

are taken at run-time based on the priorities of the tasks.

These priority values are used to decide the execution order of

the tasks. Priority values can be assigned statically or

dynamically, depending on the dynamic scheduling algorithm.

The paper [12] introduced the first real-time scheduling

algorithms for one processor (Rate-Monotonic and Earliest

deadline First), and developed their corresponding

schedulability analysis. RM assigns the highest priority to the

task with the littlest amount, and EDF assigns priorities to the

tasks considering the proximity of each instance of a task with

its deadline, so that the task with the closest relative deadline

receives the highest priority. Liu and Layland demonstrated

that RM and EDF are optimal for fixed and dynamic priority

algorithms, respectively.

2. GLOBAL SCHEDULAR
Moreover, global scheduling is particularly useful in case of

open dynamic systems, where tasks may dynamically enter

and leave the system. In fact, with static partitioning, every

time a task enters the system, it must be allocated to a

processor, and optimal allocation is an NP-Hard problem[14].

Therefore, admission control and allocation become difficult

and time consuming. Also, when a task leaves the system,

there may be the need for re-allocation and load balancing,

and this reintroduces migration overhead. On the other hand,

under global scheduling a task is not allocated to a processor.

Therefore, when a task wants to enter the system, the only

remaining problem is admission control, i.e. to understand if

the task can be admitted into the system without jeopardizing

the guarantee on the already admitted real-time tasks. This test

is commonly referred to as schedulability test. In this paper

we propose schedulability tests based on utilization and

density bounds, which are polynomial in the number of tasks.

Using a technique similar to the one used in [15] for the EDF

case, we then propose a schedulability test that, bounding the

interference imposed on a task, is able to succesfully

guarantee a larger portion of schedulable task sets, especially

in presence of heavy tasks (i.e. tasks whose utilization is

greater than 0.5). The global scheduling algorithm is given

below

begin

for = 1 to (periodic task)

while there is a free processor and an unassigned tasks do

 pick higher priority task

 assign (,)

 if task executed within deadline return “success”

 else return “failure”

 endif

endwhile

Endfor

To achieve desired quality of service scheduling permits

optimum allocation of resources among given tasks during a

finite time. Formally, scheduling problem involves tasks that

must be scheduled on resources subject to some constraints to

optimize some objective function. The aim is to make a

schedule that specifies when and on that resource every task

are going to be executed [16]. It’s remained a subject of

research in numerous fields for decades, may it be scheduling

of processes or threads in an operating system, job shop, flow

shop or company scheduling in production environment,

printed circuit board assembly scheduling or scheduling of

tasks in distributed computing systems like cluster, grid or

cloud.

In recent years, distributed computing paradigm has gained

abundant attention due to high scalability, reliability, and data

sharing and low-cost than single processor machines. Cloud

computing has emerged because the most popular distributed

computing paradigm out of all others within the current

situation. It provides on-demand access to shared pool of

resources in a self-service, dynamically scalable and metered

manner with guaranteed Quality of service to users. To

produce guaranteed Quality of Service (QoS) to users, it's

necessary that jobs should be efficiently mapped to given

resources. If the required performance isn't achieved, the users

will hesitate to pay.

2.1 Schedulability Test
A schedulability test defines a mathematical condition that's

used to verify whether or not the task set meets its sequential

restrictions for a given scheduling algorithm. The inputs of the

test are the temporal parameters of the task set. A test is said

to be sufficient within the sense that a task set is schedulable

if it satisfies the test. However, if the task set doesn't satisfy

the sufficient test, it's not known whether or not the task set

are often schedulable using that scheduling algorithm. A test

is claimed to be necessary if all schedulable task sets satisfy

the test. Otherwise, if a given task set satisfies the test, we

cannot say that it's schedulable. Actual tests offer a necessary

and ample condition. The exact schedulability tests offer

solely a sufficient (but not necessary) schedulability

condition.

Schedulability tests depend on the scheduling algorithm

chosen and the knowledge of the parameters of the task set.

The schedulability test in dynamic scheduling algorithms is

often performed off-line or on-line. If the test is executed off-

line, there should be complete data of the set of tasks that are

to be executed within the system along with the timing

constraints imposed on each task (e.g., deadlines, precedence

restrictions, execution times) before the execution of the

system. During this case, the arrival of recent tasks isn't

allowed whereas the system is executing, and therefore the

tasks cannot change their timing constraints. In contrast, if the

scheduling test is performed on-line, new arrivals are allowed

at any time and therefore the tasks will change their timing

constraints throughout the execution of the system. In this

test, the scheduler decides dynamically, by means of an

admission control mechanism, if the acceptance of those new

tasks won't cause alternative tasks to miss their deadlines.

The utilization bound, for a given real time scheduling

algorithm, is the value such that any task set, whose utilization

factor is no larger than is schedulable under that scheduling

algorithm. Utilization-based schedulability conditions verify if

the utilization of the task set doesn't exceed the utilization

bound.

3. COMPARISON OF

SCHEDULABILITY ANALYSIS
We compare two methods for performing schedulability

tests: Earliest deadline First(EDF) and Fixed Priority(FPT),

when they are used in implemented admission control

service.

Each of our experiments is characterized by a pair (m, n)

where m is the number of processors and n is the task set size.

We considered 40 different utilization levels {0.025m, 0.5m, .

. . 0.975m,m} for each experiment (m, n). 15 experiments

were conducted with m ∈ {2, 4, 6} and n ∈ {10, 20, 40, 60,

80} to compare the acceptance ratios of EDF and FPT tests.

We present the acceptance ratios of the experiments with

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.16, January 2018

16

parameters (m = 4, n = 20), (m = 4, n = 40), (m = 6, n = 20)

and (m = 6, n = 80) in Figure 1 to Figure 4 , respectively.

Figure 1 Acceptance Ratio of EDF and FPT tests for m=4,

n=20

Each graph in Figure 1 to Figure 4 presents the acceptance

ratio for both tests. The x-axis is the system utilization U/m

for utilization level U and the y-axis represents the acceptance

ratio. The acceptance ratios of both FPT and EDF tests are

around 100% at relatively low utilization level (e.g., U ≤

0.5m) and 0% at very high utilization level (e.g., U > 0.8m).

We plot the acceptance ratio in Figure 1 to Figure 4 for the

utilization levels between 0.5m and 0.8m.

Figure 2: Acceptance Ratio of EDF and FPT tests for

m=4, n=40

The acceptance ratios for both EDF test and FPT test are

higher when the task set size increases for a given m. Notice

that the acceptance ratio for both FPT and EDF tests in Figure

2 and Figure 4 are relatively “healthier” than that of in Figure

1 and Figure 3, respectively. A taskset with smaller

cardinality having total utilization U has relatively higher

number of high-utilization tasks in comparison to that of a

taskset with larger cardinality having total utilization U. With

higher number of high utilization tasks, the global FP

scheduling suffers[14], and consequently, relatively smaller

number of (low cardinality) tasksets passes both FPT and

EDF tests in Figure 4 and Figure 6.

Figure 3 Acceptance Ratio of EDF and FPT tests for m=6,

n=20

The improvement in acceptance ratio of the EDF test over the

FPT test is noticeable at higher utilization level (e.g., 0.55m ≤

U ≤ 0.75m) in all the four cases in Figure 1 to Figure 4. Both

priority assignment policy and schedulability test play very

important roles in determining the global FP schedulability of

a task set at large utilization levels. The improvement in

acceptance ratio of the EDF test at higher utilization levels is

due to our improved priority assignment policy. For example,

the acceptance ratio of the EDF test is around 30% higher

than that of FPT test at utilization level 0.7m in Figure 4.

The EDF test outperforms the FPT test for tasksets with

relatively larger cardinality for a given number of processors.

The difference between the acceptance ratios of the EDF test

and FPT test in Figure 2 and Figure 4 is considerably larger

than that of in Figure 1 and Figure 3, respectively. The

improvement of the EDF test over the FPT test increases

when both task set cardinality and number of processors

increases. The difference between the acceptance ratios of the

EDF test and the FPT test at higher utilization level in Figure

4 is considerably larger than that of in Figure 1. When the

number of tasks in a task set at a particular utilization level is

relatively larger, there are relatively fewer tasks with large

density. And, separating tasks based on the “highest-density”

criterion of the FPT test is not that effective. Our proposed

separation criterion for EDF test reduces the pessimism of

interference on a lower priority tasks to a larger extent in

comparison to the criterion of separating “highest-density”

tasks of the FPT test. Thus, with increasing number of task set

size, the EDF test performs significantly better than the FPT

test.

The task set size (i.e., parameter n) in addition to parameters

m and U has significant impact on global scheduling. The

EDF test outperforms the FPT test for large n (i.e., where

there are fewer large-density tasks in a task set). However, the

performance of the EDF test with relatively smaller n is also

significant; for example, the acceptance ratio of the EDF test

is around 5% to 8% higher than that of the FPT test between

utilization level 0.55m and 0.7m in Figure 3. Any

improvement in acceptance ratio of the EDF test implies

relatively lower demand on total processing capacity which in

turn could significantly cut the cost of mass production of

actual systems with relatively fewer numbers of processors.

The total synthetic utilization of all subtasks on each

processor was changed systematically in different

experiments, and randomly generated 60 task sets for each

total synthetic utilization per processor. Note that the total

synthetic utilization is calculated assuming there is a

current instance of each (aperiodic or periodic) task on a

processor which is different from the instantaneous synthetic

0

20

40

60

80

100

120
0

.5

0
.5

4

0
.5

8

0
.6

2

0
.6

6

0
.7

0
.7

4

0
.7

8

A
cc

e
p

ta
n

ce
 R

at
io

Utilization/m

FPT

EDF

0

20

40

60

80

100

120

0
.5

0
.5

4

0
.5

8

0
.6

2

0
.6

6

0
.7

0
.7

4

0
.7

8

A
cc

e
p

ta
n

ce
 R

at
io

Utilization/m

FPT

EDF

0

20

40

60

80

100

120

0
.5

0
.5

4

0
.5

8

0
.6

2

0
.6

6

0
.7

0
.7

4

0
.7

8

A
cc

e
p

ta
n

ce
 R

at
io

Utilization/m

FPT

EDF

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.16, January 2018

17

utilization on the processor at run time. Each set of tasks

includes 4 aperiodic tasks and 5 periodic tasks with similar

characteristics to the workloads used in earlier experiments.

All tasks were made equally critical in this set of experiments.

Figure 4 Acceptance Ratio of EDF and FPT tests for m=6,

n=80

4. REFERENCES
[1] N. C. Audsley. 2001 On Priority Assignment in Fixed

Priority Scheduling. Info. Proc. Letters, 79(1):39–44.

[2] T. P. Baker. 2006 An Analysis of Fixed-Priority

Schedulability on a Multiprocessor. Real-Time Systems,

32(1-2):49–71.

[3] S. Baruah. 2007 Techniques for multiprocessor global

schedulability analysis. In Proc of RTSS, pages 119–128.

[4] M. Bertogna and M. Cirinei. 2007 Response-Time

Analysis for Globally Scheduled Symmetric

Multiprocessor Platforms. In Proc. of RTSS, pages 149–

160.

[5] M. Bertogna, M. Cirinei, and G. Lipari. 2009

Schedulability Analysis of Global Scheduling

Algorithms on Multiprocessor Platforms. IEEE

Transactions on Parallel and Distributed Systems,

20(4):553–566.

[6] B. Brandenburg, J. Calandrino, and J. Anderson. 2008

On the Scalability of Real-Time Scheduling Algorithms

on Multicore Platforms: A Case Study. Proc. of RTSS.

[7] R. Davis and A. Burns. 2011 A Survey of Hard Real-

Time Scheduling for Multiprocessor Systems. Accepted

forpublication in the ACM Computing Surveys.

[8] J. C. Palencia and M. G. Harbour. 2008 Schedulability

Analysis for Tasks with Static and Dynamic Offsets. In

RTSS.

[9] S. Ramos-Thuel and J. P. Lehoczky. 2013 On-line

scheduling of hard deadline aperiodic tasks in fixed-

prioriry systems. In RTSS.

[10] B. Sprunt, L. Sha, and L. Lehoczky. 2009 Aperiodic task

schedul-ing for hard real-time systems. The Journal of

Real-Time Systems, 1(1):27–60.

[11] A. Srinivasan and J. Anderson. 2002 Optimal Rate-based

Scheduling on Multiprocessors. In Proceedings of the

34th ACM Symposium on Theory of Computing.

[12] J. Strosnider, J. P. Lehoczky, and L. Sha. 1995 The

deferrable server algorithm for enhanced aperiodic

responsiveness in real-time environments. IEEE

Transactions on Computers, 44(1):73–91.

[13] S. Wang, Y. Wang, and K. Lin. 2010 Integrating the

Fixed Priority Scheduling and the Total Bandwidth

Server for Aperiodic Tasks. In Proceedings of the

International Conference on Real-Time Computing

Systems and Applications.

[14] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and J.

Hansen. 1999 A scalable solution to the multi-resource

QoS problem. In Proc.of IEEE Real-Time Systems

Symposium, Phoenix, AZ, USA.

[15] J. M. Lopez, J. L. Diaz, M. Garcia, and D. F. Garcia.

2000 Worst-case utilization bound for EDF scheduling

on real-time multiprocessor systems. In Proc. 12th

Euromicro Conf. Real-Time Systems, pages 25–33.

[16] A. Srinivasan and J. Anderson. 2002 Optimal rate-based

scheduling on multiprocessors. In Proc. 34th ACM

Symposium on Theory of Computing, pages 189–198.

ACM.

0
20
40
60
80

100
120

0
.5

0
.5

6

0
.6

2

0
.6

8

0
.7

4

0
.8

A
cc

e
p

ta
n

ce
 R

at
io

Utilization/m

FPT

EDF

IJCATM : www.ijcaonline.org

