
International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.16, January 2018 

18 

Energy-aware Scheduling based Tasks dynamic Priority 

on Homogeneous Multiprocessor Platforms 

Shahira M. Habashy 
Electronic and Communication Department 

Engineering Collage, Helwan University, Cairo, Egypt 

 

ABSTRACT 
Today the computation capability of modern computational 

systems increased. Multi-core processors achieve improved 

performance with lower power consumption.  Dynamic 

Voltage and Frequency Scaling (DVFS) technique, permits 

processors to dynamically change their supply voltages and 

execution frequencies so it can work on many power/energy 

levels. This scheme is considered as an efficient technique to 

fulfill the goal of saving energy. This paper, considered 

scheduling task set on homogeneous multiprocessor platforms 

using Dynamic Voltage and Frequency Scaling. Achieving 

minimal overall system energy consumption was our goal.  

We propose an integrated approach that assigns a dynamic 

priority to each task in ready queue related to every ready 

processor based on task deadline and processor load. We are 

experimentally inspected the effect of our dynamic priority 

algorithm using feasibility, energy and feasibility/energy 

performance measurement. Our evaluation results show 

considerable energy gains with acceptable performance when 

compared with other well-known heuristics. 

Keywords 
Multi-core processor, Dynamic priority Scheduling, Dynamic 

Voltage and Frequency Scaling, Energy-Aware Scheduling  

1. INTRODUCTION 
Chip Multi-Processors (CMPs) that submit more than one 

processing core on a single chip have rapidly become 

prevalent. Pioneer chip makers now have CMPs with 2, 4 or 8 

cores [1,2]. Further, comprehensive research is underway to 

build chips with prospect hundreds of cores [3,4]. Energy 

consumption was considered as one of the main encourage 

factors leading to CMP architectures. It was the unendurable 

ever-increasing frequency and power density orientations of 

traditional single core architectures. As a result, CMPs 

become close fitting with Dynamic Voltage and Frequency 

Scaling (DVFS) as it provide multiple operating point steps 

[5-7]. Processor energy consumption effected by two 

components: dynamic and static power. The first refers to the 

power that is wasted due to switching activity, while the 

second is related to leakage current. A simple way for 

reducing dynamic power is to employ Dynamic Voltage 

Frequency Scaling (DVFS) [8]. DVFS alternates the processor 

supply voltage and the clock frequency simultaneously, which 

result in the ability for energy consumption reducing. Shutoff 

the processor cores while they are idle was considered as a 

method for reducing the static power consumption [9-12]. 

Applying the mechanism of dynamic shutdown of processor 

cores required a supported hardware. The energy-efficient 

scheduling problem of hard real-time systems with DVFS 

and/or dynamic shutdown-capable processors used to decrease 

energy consumption however, guarantee that all the real-time 

tasks meet their deadlines. Task scheduling process on 

multiprocessor scheme can be categorized into two classes, 

namely, partition-based scheduling and global scheduling. In 

partition-based scheduling, each task is allocated immobile to 

one processor. Partition based scheduling allows scheduling to 

be established by mature uniprocessor analysis techniques. In 

global scheduling, there is monosyllabic job queue from 

which jobs are sent to any ready processor according to a 

global priority scheme [13]. Tasks in real time system must be 

processed and produced functionally correct results in a 

defined time manner. This requires that the tasks, delivered to 

the system, have known timing parameters. A lot of these 

real-time tasks are periodic and the processing time of each 

task instance must be completed before the end of the task’s 

period, it's called the task deadline. Traditionally, a periodic 

real-time task τi has a model which is characterized by its 

period Ti and its worst-case computation time Ci. Ensuring 

that each task will complete before its deadline must be done. 

An admission control and a scheduling policy should be used 

to ensure that criteria for the real-time system. The admission 

control can be considered as an algorithm that uses scheduling 

policy and makes sure that tasks will meet their deadlines. A 

task set that is meet its deadline is called feasibly scheduled.  

In the other hand the scheduling policy main job, is 

determining which task to be processed next. Task utilization 

is defined as Ci /Ti and the task set utilization is the sum of all 

the tasks’ utilization of the task set. The admission control 

compares the utilization of the tasks in the task set and 

determines a set of m tasks that will not miss their deadline 

[14-18]. The problem of scheduling periodic preemptive task 

set on an identical multiprocessor platform considering DVS 

capability aiming to minimize energy consumption, is 

presented in this research. We assign dynamic priorities for 

each task in ready queue related to every ready processor. 

Those priorities depend on each processor load and task dead 

line. Each task priority can be changed during task scheduling 

period related to that task start executing on different 

processor and that processor load. Global multiprocessor 

scheduling using dynamic reclaim can be considered as an 

open problem. In contrast, avoiding task migrations overhead 

is incentive, which let as focus on the partitioned approach. 

Lectures show that task allocation has an effective and 

significant impact on the system overall energy consumption. 

Also a speed control scheme can achieve good improvement 

in reducing the energy consumption. At that point, a simple 

scheme can be used to scale up the effective task utilization 

by a factor related to the processor speed. This paper 

considers on line scheduling problem (where tasks arrive to 

the system dynamically). We present an analysis to that 

difficult (online scheduling) problem. In our work, we used 

feasibility and energy consumption to measure the system 

performance. Assigning tasks to schedule on a multiprocessor 

system, is our aim, with low energy consumption while 

preserving feasibility. Lectures introduced an additional 

hybrid scheme (called feasibility/energy scheme) which 

inherent tradeoff between feasibility and energy 



International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.16, January 2018 

19 

performances. It’s measured as the percentage of feasible 

tasks to the total system energy consumption. This scheme 

upholds techniques with low energy consumption and high 

feasibility performance. 

The result shows that our proposed algorithm achieved better 

feasibility/energy measurement compared to other heuristic 

algorithms. The rest of this paper is organized as follows. We 

summarize previous research related to this work in Section 2. 

Section 3 describes the processor, task, and energy models 

that we are used in this paper. In Section 4, Multiprocessor 

admission control and scheduling policy are introduced. 

Section 5, discusses our solution approach. Section 6, presents 

the experimental evaluation of our proposal-dynamic priority 

task scheduling algorithm. We conclude the paper in Section 

7.  

2. RELATED WORK  
Lecture survey [19] introduced three methods for optimizing 

energy consumption in multi-cores system. First method 

depends on designing an algorithm usage DVFS and dynamic 

energy management techniques. Second method implements 

thermal aware scheduling. Third method bases mainly on 

asymmetric aware scheduling. Yao, and et al. [20] introduced 

a static scheduling technique. They assume knowing the 

average switch activity previously, Then the technique used 

DVFS/DPM. The result shown 70% minimizing in energy 

consumption.  Aydin, and et al. [21] implemented DVFS 

technique to manage dynamic power. At the operating mode, 

they statically predestined the power consumption and 

performance of the processor. Coskun, and et al. [22] Mapped 

tasks and cores with the aid of integer linear programming 

(ILP). They depend on setting voltage and frequency. Stavrou 

and Trancoso [23] introduced a model based on assigning a 

new dispatch threads to each core. This model did not restrict 

migration and the result showed acceptable performance. 

Coskun, and et al. [24] Suggested a unique technique based on 

asymmetric aware scheduling. The algorithm distinguished 

between slow and fast cores then, assigned threads to cores in 

order to maximize total system performance. Kessaci, and et 

al. [25] Proposed two models of multi-objective parallel GA. 

Those models are based on multi-start GA and island GA. 

Energy aware scheduling approaches are hybridized to 

improve the system performance. Xin Huang, and et al. [26], 

introduced a novel scheduling algorithm based on Dynamic 

voltage and frequency scaling (DVS) technique. This 

algorithm can save energy by 3% to 12%. Xuan T. Tran [27] 

proposed an approach aimed to improve energy-efficient 

scheduling policy. The proposed technique yields 

considerable energy savings in the system while the 

performance is not traded off. Tran Thi Xuan, and 

Tien Van Do [28], investigated a job scheduling problem 

implemented to multicore system. They applied a Dynamic 

Power Management technique. Their numerical results show 

that scheduling policy must investigate machine parameters 

for achieving best efficiency. Navonil Chatterjee, and et al. 

[29], proposed energy aware dynamic task scheduling for 

multi-core platform using task deadline. The simulation 

results show reduction in communication energy by 28% 

compared to communication-aware energy that based on 

nearest neighbor algorithm. The proposed algorithm 

performed an intelligent resource allocation and improved the 

rate of deadline for real-time dynamic applications. Ying Li, 

and et al. [30], proposed an Accelerated Search (AS) 

algorithm which depends on Dynamic Programming (DP). 

The proposed algorithm considered data migration energy and 

guaranteed probability technique. They used multi-core 

architectures which supported Dynamic Voltage and 

Frequency Scaling scheme. The experimental results 

demonstrated 30.7% maximum improvement in the system 

performance. Neetesh Kumar, and Deo Prakash Vidyarthi 

[31], introduced a new technique based on managing CPU 

cycle and latency cycle. Energy consumption at the core level 

was scaled by using Dynamic voltage frequency scaling 

(DVFS) technique. Experimental results, show exhibited 

scalable and energy efficient over other contemporary models. 

3. SYSTEM MODEL AND 

ASSUMPTIONS 

3.1 Processor and Power Model 
The processor model used in this paper consist of a 

homogeneous multi-core processor which has m processors 

{p1, ..., pm}. Each processor can be operated at frequency 

ranged from fmin to fmax. All the processors are supplied from 

the same clock signal. This last assumption inverts many 

current processors such as NVIDIA’s Tegra 2 processor. We 

cannot consider run time frequency scaling because it is 

required large coordinated scaling across all cores during a 

single domain and which led to endure high overhead. Using 

varying processor voltage model resulted dynamic power 

consumption function. This function was proportional to f α, 

where α is a constant [32].  The processor leakage power is a 

non-negative constant and denoted by β2. Then, the accurate 

power consumption function is (β1f
α+β2)   eq. 1. From [33], 

the power consumption function constant values, can be 

estimated to be α = 3.94565, β1 = 3.89462 × 10−26 and β2 = 

0.8453 × 10−9.  

 

3.2 Task Model 
A task set consists of n independent real-time tasks T = 

{T1,,…, Tn}. Considering that each task Ti = (Ci, Pi, Di) has 

three parameters: the worst-case execution time Ci, a period 

Pi, and deadline Di. This study assumed that the task relative 

deadline Di is equal to the task period Pi. As using a processor 

that can be operated on varying speed, the worst-case task 

execution time Ci is calculated relative to the worst-case 

number of cycles. 

The total task set utilization is given by Utot (S) = Ci /(Pi S), 

where S is the processor running. However, the maximum 

task utilization can be obtained when the processor run at 

maximum relative speed (i.e. S = 1.0). The scheduling model 

used is the non-preemptive technique.  The condition for 

feasibility test, was calculated with the aid of task set total 

utilization Ui and check if this summation does not exceed the 

computing capacity (Utot ≤ m). The largest utilization in the 

task set, called the utilization factor α= max (ui)              
was used as an indication to the task load. 

3.3 Energy Minimization and Partitioning 
Energy -partition scheduling is considered as NP hard 

problem. In energy -partition problem the objective goal is 

minimizing the total energy consumption on all the 

Processors. Those processors subject to the constraint that 

preserving task feasibility. Our work consider a task set T of 

real-time tasks and a set M of identical processors, the 

problem is finding a suitable processor to run each task and at 

the same time trying to minimize  that processor speed 

without effecting task feasibly. 

4. MULTIPROCESSOR ADMISSION 

CONTROL AND SCHEDULING  
The problem of task allocation is considered as an NP-Hard 

problem [34]. The aim is finding an allocation algorithm and a 

http://www.sciencedirect.com/science/article/pii/S1383762117300498#!
http://www.sciencedirect.com/science/article/pii/S0743731516301745#!


International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.16, January 2018 

20 

scheduling test to ensure that a given task set is scheduled 

(feasibly) on the available processors. Bin-Packing techniques 

were considered as one of the famous scheduling techniques. 

In this problem, the processor is considered as the recipient 

bin. The utilization bound of each local processor is known as 

the bin capacity. It is required to put n tasks with utilization uk 

into the minimum number of bins (processors), so that the 

total utilization of the tasks on each bin does not override its 

maximum capacity [35]. The best-known Bin-Packing 

techniques found in the literature are [34]: 

 First-Fit (FF): allocates a new task to a non-empty bin 

which has the lowest index, so that the utilization of all 

the already allocated  tasks to that bin plus new task 

utilization do not exceed the capacity of the bin. If the 

new task addition overflows the bin capacity, then FF 

assigns the new task to an empty bin.  

 

 Worst-Fit (WF): allocates a new task to a non-empty bin 

with the greatest capacity. If the new task addition 

exceeds the bin capacity, then WF allocates this new task 

to an empty bin.  

 

 Best-Fit (BF): allocates a new task to a non-empty bin 

with the smallest capacity. If the new task addition 

exceeds the bin capacity, then BF allocates this new task 

to an empty bin. BF chooses the bin with the smallest 

index if there is more than one bin having the same 

capacity. 

 

 Earliest Deadline First (EDF): arranges the task according 

to its dead line and the task with the earliest dead line will 

be allocated first to the smallest index bin with 

constraining, of not exceed that bin capacity. 

 

Bin capacity in all the above techniques calculated a processor 

utilization Uj which is the sum of all the tasks’ utilization 

allocated to that processor and cannot exceed 1,   

 

        

   

                                     

 

This condition is considered as a sufficient test for task 

feasibility. On the other hand lectures provided other 

feasibility test categories. Those tests introduce sufficient 

conditions for feasibility.  

 

• Exact Liu-Layland test (ELL) is the most frequently used 

test for feasibility in RMS. In that test, a task set included n 

tasks can be scheduled on certain processor if the total task set 

utilization Utot doesn’t exceed Ubound.  

. 

Ubound(n) = n(21/n - 1)                           eq. 3 

 

• Hyperbolic test (HYP), introduced by Buttazzo, and et al. 

[9], it tasks into consider the individual task utilizations to 

provide a tighter bound than ELL.  

      
 
                                    eq.4 

 

• Burchard test (Burc): based on the concept that having 

harmonic tasks can help in improving the utilization bound. 

That bound was expressed as a function of two parameters. 

The first one is the number of tasks and other parameter 

achieves harmonic between the close tasks [36-38]. 

 

5. THE PROPOSED DYNAMIC 

PRIORITY ENERGY AWARE 

TECHNIQUE  
Traditionally, real-time scheduling on a single-core platform 

has been classified into two categories: static and dynamic 

scheduling. The idea of dynamic scheduling is to continuously 

select the task with the highest priority out of the incoming 

active tasks to be executed, while the priorities of those active 

tasks are changing continuously (e.g., Earliest Deadline First 

scheduling algorithm (EDF)) [39]. By contrast, for static 

scheduling, the incoming active tasks have priorities that 

cannot be changed (e.g., Rate-Monotonic scheduling 

algorithms (RM) [39-42]. Static scheduling techniques were 

not considered optimal for real-time scheduling on multi-core 

platforms. As a consequence, much published researches have 

recently focused on real-time scheduling on multiprocessor 

platforms using dynamic scheduling [43-44]. Our proposed 

algorithm focuses on solving the scheduling problem of real-

time tasks on multi- processor platform. We propose a 

dynamic-priority scheduling algorithm and use DVFS for 

saving energy. In practice, real-time partitioned scheduling for 

multi-core processor is NP-hard problem. Many effective 

partitioning heuristics are simple and have reasonable 

average-case performance [45-48]. ENERGY-PARTITION is 

an optimization problem where the objective goal is 

minimizing the total energy consumption on all the active 

processors. According to the relationship between the CPU 

speed and the power consumption, minimizing energy 

consumption across DVS- multiprocessors suggests 

implementing load balancing technique [49]. The next 

example illustrates this criteria.      

 

Motivational Example: Consider two identical processors 

and a set of six real time tasks T = {T1,…, T6}. The 

individual task utilizations U= {0.24, 0.2, 0.12, 0.07, 0.05, 

0.04}, under maximum speed. This leads to total utilization 

Utot = 0.72 which is not exceeded Liu-Layland bound, so 

tasks’ feasibility can be achieved under any scheduling 

partitioning. Figures 1-3, show three different scheduling 

partitions and their energy consumption patterns. 

 
Figure 1. A feasible partition (Partition 1) 

 

 
 

Figure 2. A feasible partition (Partition 2) 



International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.16, January 2018 

21 

 
Figure 3. A feasible partition (Partition 3) 

Figure 1, represents the schedule that may be introduced by 

unbalancing load heuristics like First-Fit or Best-Fit.  The 

schedule partitioning shows in Figure 2, is the exactly 

balanced one. In figure 3, the largest tasks utilization are 

exclusively assigned to the first processor, while all the 

remaining tasks are dedicated to the second processor. The 

workload in all the three cases is considered feasible but the 

energy pattern proceeds a slightly different condition. The 

energy consumption Etot of each partition was calculated using 

eq. 1. Figures 1 to 3 show that schedule partition 1, has the 

maximum energy consumption while Partition 2, (the 

perfectly balanced partition) gives the minimum energy 

consumption. This example explains that variable feasible 

partitions can have significantly different energy pattern. 

Among the possible scheduling partition techniques, load 

balancing scheduling result in reducing the energy 

consumption.  According to the computational complexity, 

ENERGY- PARTITION is NP-Hard problem. ENERGY 

partitioned scheduling using multiprocessor is considered as a 

more complex problem than achieving feasibility. As shown 

from the above example, ENERGY partitioned stays NP Hard 

even if the task set can be scheduled on one processor. At that 

point, finding the optimum scheduling with the minimum 

energy consumption is considered as a hard problem. Our 

proposed algorithm, dynamic priority scheduling calculates 

for all the available tasks in ready queue, a set of priority 

related to each processor (task priority vector). When the 

resources are available, tasks with the highest priorities will 

be scheduled firstly. During task processing, the algorithm 

updated task priority vector for each task (still staying in 

ready queue) related to all available processor. If certain task 

can't meet its dead line on one processor, that processor speed 

could be increased to meet that task deadline. The proposed 

priority equation (eq. 5) consists mainly from two terms. The 

first team is one minus the ratio between processor end 

processing time and task dead line.  The second term is the 

ratio between task energy if it is processed on that processor 

to the processor consumed power. Those two terms are 

worked together for consuming load balance on all the 

available processor.   

 

              
                

              

 
       

            
           

 

The optimal processor speed is calculated initially using the 

ready tasks in ready queue. During the execution time, each 

processor speed is updated. Processor speed updating depends 

on the chosen task processor pair (according to eq. 5) and 

tasks already in task queue. If the scheduling algorithm cannot 

find any core to execute the ready task without missing its 

deadline, that task was considered as infeasible. The proposed 

algorithm called three functions. The first one- Get medium 

task utilization (  ) - which returns medium utilization for the 

available tasks. That returns value was used in second 

function- Get optimum processor speed (  ) - to determine the 

current optimum speed for each processor. The third one -Get 

task priority (  ) - calculates task priority vector according to 

eq. 5.   

 

 

Dynamic Priority Task scheduling algorithm  

 

 

Input: task _queue set: τ= {τ1, τ2, . . . , τN} ,those tasks 

deadline, set of processors p = {P1, P2, . . . , PM}, and set of 

the available processor speed. 

Output: return the tasks assign to each processors and each 

processor speed during executing their assignment tasks. 

1: if task queue.empty(  ) == FALSE then 

2:     Get medium task utilization (   ). 

                         //relative to tasks in task_queue. 

3:     Optimal speed =Get optimum processor  

           speed  (    ).   

                         //relative to tasks in task_queue. 

4:     Ready task group = task queue.min deadline(  ); 

5:   Set task queue by arranging the tasks according   to their 

deadline 

6:    Find new task period according to optimal speed. 

7:    Get task priority  (  ) 

8:  End  

9: Find the max task processor pair having max priority (Pmax) 

10: if  Pmax  > 0 

11:    Allocate chosen task to the chosen processor 

12: else 

13:    for each task in ready task group 

14:     for each processor speed in s selected  group greater than 

the present speed 

15:               Find new task period  

16:               Get task priority  (  ) 

17:         End 

18:    End 

19:  Find the max task processor pair having max  priority 

(Pmax) 

20:      if  Pmax  > 0 

21:         Allocate chosen task to the chosen processor 

22:      else  

23:         Add that task to unscheduled task group. 

24:       End  

25: End  

26: Go to step 4. 

 

 

Get medium task utilization (  ) 

 

1:  Begin 

2:  Calculate utilization sum for all tasks. 

3: Calculate medium task utilization by dividing that sum on 

the number of the available Processors. 

4: Return  medium task utilization 

5: End 

 

 

Get optimum processor speed (  ) 

 

1:  Begin 

2: Set the different processor speed as a relative multiple from 

the minimum speed   S={1,  …,  smax}. 

3: Find the set of processor speed sselected which is greater than 

or equal to the medium task utilization. 



International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.16, January 2018 

22 

4: Set the initial speed to all the processor to the first speed in 

sselected  group 

5: End  

 

 

 Get task priority (  ) 

 

1:  Begin 

2:         for each task in ready task group 

3:               for each processor 

4:                   Calculate possessor end time after Adding that 

task to that processor 

5:                   if   possessor end time <= task dead line 

6:                          Calculate task processor priority according 

to eq. 5 

7:                  else   

8:                         Task processor priority=0; 

9:                   End 

10:             End  

11:       End  

12:  End 

 

6. EXPERMINTAL RESULTS 
We used three parameters (feasibility, energy, and feasibility/ 

energy) to measure the performance of our proposed dynamic 

priority algorithm. Task utilization factor α and the total task 

set utilization Utot are used for comparing those parameters. 

The number of processor M used during our experimental 

doesn't change and it is chosen to be 8. Total task set 

utilization Utot varied between M/ 10 (light task load 

condition) and M (heavy task load condition). Task utilization 

factor α is adjusted to take two values (0.5 and 1). α equal 1 

means there is no constraint on individual task upper bound 

utilization. During the experiments 1000 task sets was 

generated with varying task period Pi,, deadline di, and 

utilizations ui. Each task can take any period which range 

from (1-10ms) short task period, (10- 100ms) medium task 

period, or (100-1000ms) long task period. Task utilizations ui 

for each task is adjusted to be in the range [0.001, α]. Lectures 

show that improving the feasibility performance can be done 

by ordering tasks according to its task utilization value. In 

practical, this lead to increasing the total system performance 

[50]. Example in section 5, investigates the effect of load 

balancing on both feasibility and energy. We start by 

comparing our proposal dynamic priority algorithm with the 

result from bin-picking techniques (FF, BF, and WF). WF 

tends to produce balanced partition, while FF, and BF tend to 

produce unbalanced partitions. Those techniques produced 

different feasibility and energy behaviors. Studying bin-

packing partitioning techniques show that FF and BF 

collecting as many tasks as possible on a small number of 

processors. That covetous action improves the feasibility [23, 

51]. From the energy point of view, load balancing result in 

reducing the energy consumption.  Dividing the load among 

all the available processors (load balancing) resulting in the 

possibility of using DVS to lower all the processor speed. As 

a result, the system total energy will be reduced. An 

unbalanced load partition resulted heavily load on some of the 

processors and lightly load on the remaining processors. This 

result in increasing the heavy loaded processors speed to 

achieve the task set feasibility.  This led to increase the system 

total energy. In on-line partitioning, the scheduler algorithm 

cannot pre-order tasks before the task allocation phase. The 

scheduler algorithm assigns task when it arrived to the system 

and it takes into consideration the previous tasks in ready 

queue. Any one of the traditional partitioning heuristics FF, 

BF, and WF, cannot be considered as a clear winner with 

respect to the overall performance. . FF, and BF give good 

feasibility performance, but on the other hand, they appear 

bad energy and feasibility/energy performance, especially at 

low utilization values. WF, gives good energy performance, 

but its feasibility/energy performance has very low. Figure 4, 

shows that our proposed dynamic priority algorithm still has 

the best feasibility performance while, WF gives low 

feasibility performance mostly at high utilization. 

 

 
 

Fig 4, Feasibility of online partitioning heuristic 

algorithms compared to dynamic priority algorithm for α 

= 0.5 (left) and α=1.0 (right) 

 
 

Fig 5, Energy performance of online partitioning heuristic 

algorithms compared to dynamic priority algorithm for α 

= 0.5 (left) and α=1.0 (right) 

 
 

Fig 6, Feasibility/energy performance of online 

partitioning heuristic algorithms compared to dynamic 

priority algorithm for α = 0.5 (left) and α=1.0 (right) 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.16, January 2018 

23 

Figure 5, shows high energy consumption of BF technique 

because of its unbalanced partitions. WF technique has the 

lowest energy consumption, while our proposed algorithm is 

the great winner. Figure 6, shows the feasibility/energy 

performance. There is no obvious winner throughout the 

utilization spectrum from the bin-packing techniques. 

However, our dynamic priority algorithm has achieved 

consistently good overall performance.  

 
Fig 7, Feasibility of online feasibility test techniques 

compared to dynamic priority algorithm for α = 0.5 (left) 

and α=1.0 (right) 

 
Fig 8, Energy performance of online feasibility test 

techniques compared to dynamic priority algorithm for α 

= 0.5 (left) and α=1.0 (right) 

 
 

Fig 9, Feasibility/energy performance of online feasibility 

test techniques compared to dynamic priority algorithm 

for α = 0.5 (left) and α=1.0 (right) 

Fig. 7-9, compare some of the feasibility test techniques with 

our proposed dynamic priority technique. Figure 7, compares 

the different feasibility tests for α=0.5, and 1. Dynamic 

priority exhibits the best feasibility performance, while HYP 

takes the second best performance scheme during low and 

medium utilization. In term of energy consumption, (Figure 

8), Dynamic priority is still the best performance scheme. The 

second best one is HYP for large α values. However, for small 

values of α, burchard test appears to be the second best 

scheme Figure 9, presents results for feasibility/energy 

performance of different techniques. Dynamic priority is still 

significantly better performance since the feasibility 

performance deteriorates at high load. 

7. CONCLUSION 
Multi-core technology benefits making it an essential trend in 

many real-time systems. Job scheduling to those appropriate 

cores, is an NP-hard problem. The main challenge introduced 

here is the trade-off between system performance and energy 

efficiency. Dynamic voltage frequency scaling (DVFS) 

technique can be used to scale energy consumption at the core 

level. This study aims to achieve optimal energy usage of 

multicore systems by effectively uses of DVFS technique and 

applies dynamic priority scheduling algorithm. The assigned 

task to processor dynamic priority is based on task deadline 

and the appropriate processor load. On-line partitioning case 

problem is considered: where task set characteristic are 

unknown previously, and task allocation decision was made in 

order. We compare our proposed algorithm to a number of 

heuristics scheduling algorithms. Feasibility, energy and 

feasibility/energy performance measurement are used as a 

comparison tools. Experimental results, exhibit that our 

proposed model accomplishes energy efficient with 

acceptable performance over other contemporary models. 

8. REFERENCES 
[1] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. 

Bujanos, D. Wu, M. Braganza, S. Meyers, E. Fang, and 

R. Kumar, “An integrated quad-core opteron processor”, 

In Solid- State Circuits Conference, ISSCC 2007. Digest 

of Technical Papers. IEEE International, feb. 2007, pages 

102 –103. 

[2] http://www.intel.com/products/processor/corei7/ 

specifications.  

[3] http://www.intel.com/design/intarch/xeon/ specifications 

xeon.htm.  

[4] R. Kumar and G. Hinton, “A family of 45 nm ia 

processors”, In Solid-State Circuits Conference - Digest 

of Technical Papers, ISSCC 2009. IEEE International, 

feb. 2009, pages 58 –59. 

[5] Li, Dawei, et al., “Energy-aware scheduling on 

Multiprocessor Platforms”, Springer Briefs in 

Computer Science, 2013. 

[6] Tom Guérout, et al., “Energy-aware simulation with 

DVFS”, Simulation Modelling Practice and Theory, 

Elsevier,  39 (2013) 76–91. 

[7] L. Mosley, “Power delivery challenges for multicore 

processors”, In Proceedings of CARTS, 2008. 

[8] C.-Y. Yang, J.-J. Chen, T.-W. Kuo, and L. Thiele, “An 

approximation scheme for energy-efficient scheduling of 

real-time tasks in heterogeneous multiprocessor 

systems,” in Design, Automation Test in Europe 

Conference and Exhibition, April 2009, pp. 694–699. 

[9] S. Irani, S. Shukla, and R. Gupta, “Algorithms for power 

savings”, ACM Trans. Algorithms, 2007, 3(4):41. 

[10] MARIO BAMBAGINI, et al., “Energy-Aware 

Scheduling for Real-Time Systems: A Survey”, ACM 

Transactions on Embedded Computing Systems, Vol. 15, 

No. 1, Article 7, Publication date: January 2016. 

[11] Rajkumar K, and Swaminathan P, “Optimized energy 

aware scheduling to minimize makespan in distributed 



International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.16, January 2018 

24 

systems”, Biomedical Research, India, 2017; 28 (7): 

2877-2883. 

[12] A. Rowe, K. Lakshmanan, H. Zhu, and R. Rajkumar, 

“Rate-harmonized scheduling for saving energy”, In 

RTSS ’08: Proceedings of the 2008 Real-Time Systems 

Sympo- sium, Washington, DC, USA, 2008. IEEE 

Computer Society, pages 113–122.  

[13] Mohammad H. Mottaghi, Hamid R. Zarandi, "DFTS: A 

dynamic fault-tolerant scheduling for real-time tasks in 

multicore processors", Microprocessors and 

Microsystems 38 (2014) 88–97. 

[14] YAN WANG,et al., “Energy-Aware Data Allocation and 

Task Scheduling on Heterogeneous Multiprocessor 

Systems With Time Constraints”, IEEE 

TRANSACTIONS ON EMERGING TOPICS IN 

COMPUTING, Digital Object Identifier 

10.1109/TETC.2014.2300632, January 2014. 

[15] Weiwei Lin, et al., “A Heuristic Task Scheduling 

Algorithm for Heterogeneous Virtual Clusters”, Hindawi 

Publishing Corporation Scientific Programming Volume 

2016, Article ID 7040276, 10 pages. 

http://dx.doi.org/10.1155/2016/7040276 

[16] Weicheng Huai, et al., “Energy Aware Task Scheduling 

in Data Centers”, Journal of Wireless Mobile Networks, 

Ubiquitous Computing, and Dependable Applications, 

July 2013, volume: 4, number: 2, pp. 18-38 

[17] S. Saewong and R. Rajkumar, “Practical Voltage-Scaling 

for Fixed- Priority Real-time Systems”, Proceedings of 

the IEEE Real-Time and Embedded Technology and 

Applications Symposium (RTAS’03), May 2003. 

[18] Silvana Teodoro, et al., “Energy Efficiency Management 

in Computational Grids through Energy-aware 

Scheduling”, ACM 978-1-4503-1656-9/13/03, Coimbra, 

Portugal, march 2013. 

[19] Zhuravlev S, Saez JC, Blagodurov S, FedorovaA, 

PrietoM, “ Survey of energy-cognizant scheduling 

techniques”, IEEE Trans Parallel Distributed System , 

2013, 24(7):1447–1464. 

[20] Yao F, Demers A, Shenker S, “A scheduling model for 

reduced CPU energy”, In: Proceedings of the 36th annual 

symposium on foundations of computer science (FOCS 

’95), , 1995, pp 374–382. 

[21] Aydin H, Melhem R, Mossé D, Mejia-Alvarez P, 

“Dynamic and aggressive scheduling techniques for 

power-aware real-time systems”, In: Proceedings of the 

22nd IEEE real-time systems symposium (RTSS’01), 

2001, pp 95–105. 

[22] Coskun AK, Rosing TS, Whisnant KA, Gross KC, 

“Temperature-aware MPSoC scheduling for reducing hot 

spots and gradients”, In: Proceedings of the Asia and 

South pacific design automation conference (ASP-DAC 

’08) , 2008, pp 49–54. 

[23] Stavrou K, Trancoso P, “Thermal-aware scheduling for 

future chip multiprocessors”, EURASIP J Embed Syst 

2007(1):40–40 

[24] Coskun AK, Rosing TS, Gross KC, “Utilizing predictors 

for efficient thermal management in multiprocessor 

SoCs”, IEEE Trans Comput Aided Des Integr Circuits 

Syst 28(10) , 2009, pp.1503–1516. 

[25] Kessaci Y, Mezmaz M, Melab N, Talbi E-G, Tuyttens D, 

“Parallel evolutionary algorithms for energy aware 

scheduling”, In: Bouvry P, Gonzalez-Velez H, Kołodziej 

J (eds) Intelligent decisions systems in large-scale 

distributed environments, studies in computational 

intelligence series, Chap 4, vol 362. Springer, Berlin, 

2011 pp 75–100. 

[26] Xin Huang, KenLi Li, RenFa Li, “A Energy Efficient 

Scheduling Base on Dynamic Voltage and Frequency 

Scaling for Multi-core Embedded Real-Time System”, 

International Conference on Algorithms and 

Architectures for Parallel Processing, 2009, pp 137-145. 

[27] Xuan T. Tran, “Resource-Aware Scheduling in 

Heterogeneous, Multi-core Clusters for Energy 

Efficiency”, International Conference on Advances in 

Information and Communication Technology,  2016, pp 

520-529. 

[28] Tran Thi Xuan, Tien Van Do, “Job Scheduling in a 

Computational Cluster with Multicore Processors”, 

Advanced Computational Methods for Knowledge 

Engineering, May 2016, Vienna, pp 75-84 

[29] Navonil Chatterjee, et al., “Deadline and energy aware 

dynamic task mapping and scheduling for Network-on-

Chip based multi-core platform”, Journal of Systems 

Architecture, Volume 74, March 2017, Pages 61-77. 

[30] Ying Li, Jianwei Niu, Mohammed Atiquzzaman, and 

Xiang Long, “Energy-aware scheduling on 

heterogeneous multi-core systems with guaranteed 

probability”, Journal of Parallel and Distributed 

Computing, Volume 103, May 2017, Pages 64-76. 

[31] Neetesh Kumar, Deo Prakash Vidyarthi, “A GA based 

energy aware scheduler for DVFS enabled multicore 

systems”, Computing, Springer, October 2017, Volume 

99, Issue 10, pp 955–977. 

[32] Jejurikar, and Rajesh Gupta, “Energy-Aware Task 

Scheduling With Task Synchronization for Embedded 

Real-Time Systems”, IEEE TRANSACTIONS ON 

COMPUTER-AIDED DESIGN OF INTEGRATED 

CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, JUNE 

2006 

[33] Henri Casanova, et al., “Algorithms and Scheduling 

Techniques to Manage Resilience and Power 

Consumption in Distributed Systems”, Dagstuhl Reports, 

Vol. 5, Issue 7, pp. 1–21  

[34] O. U. P. Zapata and P. M. Alvarez, “EDF and RM 

Multiprocessor Scheduling Algorithms: Survey and 

Performance Evaluation”, TR, 2005, pp. 1 - 24.  

[35] Weihua Zhang, et al., “A Novel Task Communication 

and Scheduling Algorithm for NoCbased MPSoC”, 

International Journal of Smart Home Vol. 9, No. 10, 

(2015), pp. 179-188 

[36] Jingcao Hu, and Radu Marculescu, “Energy-Aware 

Communication and Task Scheduling for Network-on-

Chip Architectures under Real-Time Constraints”, 

Proceedings of the conference on Design, automation 

and test in Europe, 2004, Volume 1, page 10234. 

[37] Mohammad Shojafar, et al., “An Energy-aware 

Scheduling Algorithm in DVFS-enabled Networked Data 

Centers”, In Proceedings of the 6th International 

http://dx.doi.org/10.1155/2016/7040276
https://link.springer.com/conference/icta
https://link.springer.com/conference/icta
https://link.springer.com/book/10.1007/978-3-319-38884-7
https://link.springer.com/book/10.1007/978-3-319-38884-7
http://www.sciencedirect.com/science/article/pii/S1383762117300498#!
http://www.sciencedirect.com/science/journal/13837621
http://www.sciencedirect.com/science/journal/13837621
http://www.sciencedirect.com/science/journal/13837621/74/supp/C
http://www.sciencedirect.com/science/article/pii/S0743731516301745#!
http://www.sciencedirect.com/science/article/pii/S0743731516301745#!
http://www.sciencedirect.com/science/article/pii/S0743731516301745#!
http://www.sciencedirect.com/science/article/pii/S0743731516301745#!
http://www.sciencedirect.com/science/journal/07437315
http://www.sciencedirect.com/science/journal/07437315
http://www.sciencedirect.com/science/journal/07437315/103/supp/C
https://link.springer.com/journal/607/99/10/page/1
https://dl.acm.org/author_page.cfm?id=81100467056&coll=DL&dl=ACM&trk=0&cfid=840391301&cftoken=54922209


International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.16, January 2018 

25 

Conference on Cloud Computing and Services Science 

(CLOSER 2016) - Volume 2, pages 387-397. 

[38] Paula Zab, et al., “Energy-aware scheduling 

mandatory/optional tasks in multicore real-time 

systems”, international transactions on operational 

researches, Volume 24, Issue 1-2, January/March 2017, 

Pages 173–198. 

[39] Robert I. Davis,”A Review of fixed priority and EDF 

scheduling for hard real-time uniprocessor systems”, J. 

ACM Trans. Embedd. Comput. Syst., 11, 1 (Feb. 2014), 

8–19. 

[40] Tom Gu´erout, Mahdi Ben Alay, “Autonomic energy-

aware tasks scheduling”, Open Archive TOULOUSE 

Archive Ouverte (OATAO), DOI 

:10.1109/WETICE.2013.29, June 2013, URL : 

http://dx.doi.org/10.1109/WETICE.2013.29 

[41] Mario Bambagini, et al., “Energy-Aware Scheduling for 

Tasks with Mixed Energy Requirements”, Proceedings of 

the 4th International Real-Time Scheduling Open 

Problems Seminar (RTSOPS 2013) 

[42] Lizhe Wang, et al., “Energy-aware parallel task 

scheduling in a cluster”, Future Generation Computer 

Systems, Elsevier, 29 (2013) 1661–1670 

[43] Marko Bertogna, “Real-Time Scheduling Analysis for 

Multiprocessor Platforms”, Ph.D. Dissertation, Scuola 

Seprropre Sant Anna, Pisa, 2007. 

[44] Akash Kumar, et al., “ Energy-aware task mapping and 

scheduling for reliable embedded computing systems”, 

ACM Transactions on Embedded Computing Systems, 

No. 72, Volume 13 Issue 2s, January 2014 

[45] Namita Sharma, et al., “Energy Aware Task Scheduling 

for Soft Real Time Systems using an Analytical 

Approach for Energy Estimation”, IJASCSE, VOL 1, 

ISSUE 4, 2013.  

[46] Vasanthamani KANNAIAN, Visalakshi 

PALANISAMY, “Energy optimized scheduling for non-

preemptive real-time systems”, Turkish Journal of 

Electrical Engineering & Computer Sciences, (2017) 25: 

3085 – 3096 

[47] Jing Mei, “Energy-aware task scheduling in 

heterogeneous computing environments”, Cluster 

Comput, pringer Science+Business Media New York, 

17:537–550S, 2013. 

[48] Y. C. Lee and A. Y. Zomaya, “Minimizing energy 

consumption for precedence-constrained applications 

using dynamic voltage scaling,” in the 9th IEEE/ACM 

International Symposium on Cluster Computing and the 

Grid, May 2009, pp. 92 –99. 

[49] Rajesh Kumar Pal, Ierum Shanaya, Kolin Paul, Sanjiva 

Prasad, “Dynamic core allocation for energy efficient 

video decoding in homogeneous and heterogeneous 

multicore architectures”, Elsevier, Future Generation 

Computer Systems 56 (2016) 247–261 

[50] Amjad Mahmood, et al., “Energy-Aware Real-Time Task 

Scheduling in Multiprocessor Systems Using a Hybrid 

Genetic Algorithm”, Electronics 2017, 6, 40; doi: 

10.3390/electronics6020040. 

[51] F. A. Armenta-Cano, et al., “Min_c: Heterogeneous 

Concentration Policy for Energy-Aware Scheduling of 

Jobs with Resource Contention”, ISSN 0361-7688, 

Programming and Computer Software, 2017, Vol. 43, 

No. 3, pp. 204–215. 

 

 

 

 

IJCATM : www.ijcaonline.org 

http://dx.doi.org/10.1109/WETICE.2013.29
https://arxiv.org/find/cs/1/au:+Sharma_N/0/1/0/all/0/1

