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ABSTRACT  
Scientific workflows epitomizing computation-intensive 

applications demand heterogeneous processing resources for 

attaining high performance. Generally, optimal scheduling of 

the tasks in workflow is well-acknowledged NP-complete 

problem.  In the present work, a new makespan estimation 

model is proposed to estimate the bounds on the makespan of 

the workflows using minimal information. The performance 

of the proposed estimation model is evaluated using four 

scientific workflows and the estimation of the makespan 

computed by the model is compared with the actual makespan 

generated by the most-cited heuristic scheduling algorithms 

devised for heterogeneous processing systems. The 

experimental results revealed that the proposed estimation 

model is effective and can precisely estimate the makespan of 

the workflows with an error of over 10% and 26% for 

computation-intensive and data-intensive workflows 

respectively. 

General Terms 
High Performance Computing, Workflow Scheduling, 

makespan estimation  

Keywords 
scientific workflows; high performance; heterogeneous 

processing resource; makespan; makespan estimation   

1. INTRODUCTION 
Large monolithic applications in numerous scientific fields 

such as knowledge discovery, bioinformatics, computations, 

weather and climate modeling, earthquake science, genome 

analysis and astronomy can be broken down into smaller tasks 

structured with intricate dataflow dependencies among 

themselves are often structured as scientific workflows. 

Scientific workflows expedite scientists to nimbly model the 

computation intensive applications as multi-stage 

computational tasks usually involving a series of data 

processing operations such as data retrieving, transformation, 

analysis and aggregation stages. The complexity and the 

heterogeneity of the scientific workflows demands 

Heterogeneous Processing Resources (HPR) to attain high 

performance. HPR are the most potential platforms for 

rendering high performance at lower costs. 

The contributions of the current work are 

 A new makespan estimation model is proposed to estimate 

the bounds on the completion time, i.e., makespan of the 

scientific workflows.  

 The proposed model estimates the Best-Case Computation 

Time (BCCT) and Worst-Case Computation Time (WCCT) 

of the scientific workflows using minimal information. 

 The computational complexity of the new makespan 

estimation model is lesser than the existing models. 

 Validation of the model is performed with the most-cited 

heuristic scheduling algorithms developed for HPR. 

In general, workflow scheduling problem is a well-

acknowledged NP-Complete problem [1]. However, the 

available estimation models deal with simple workflows 

having unit tasks and no dataflow latencies. Hence, the 

existing models are not viable for scientific workflows. The 

proposed estimation model is devised using minimal 

information, i.e., the profile of the scientific workflows. 

Generally, the profile of the scientific workflows constitutes 

of the height and the parallelism of the workflow. As the 

makespan of the workflow highly depends upon the profile of 

the workflows, these two parameters chiefly contribute for 

devising good and precise makespan estimation model which 

can satisfy all the cases.  

A makespan estimation model is valid only when BCCT and 

WCCT functions are admissible. The admissibility of the 

estimating functions must guarantee that the BCCT never 

overestimates and WCCT never underestimates the actual 

makespan of the scientific workflow. Therefore, the 

estimation model must provide tight bounds on the makespan. 

The primary aim of the new makespan estimation model is to 

provide a-priori information of the bounds on the makespan 

i.e., BCCT and WCCT of the scientific workflows. The a-

priori information provided by BCCT and WCCT bound is 

required to schedule the workflows, provide the resources, 

and guides in devising the scheduling algorithms.  

The remaining paper is structured as follows. In section II, the 

problem is described, and the overview of the scientific 

workflows is illustrated in section III. In section IV, the 

related work is detailed and in section V, the new makespan 

estimation model is presented. In section VI, the proposed 

model is evaluated using four scientific workflows and finally 

section VII summarizes the present work.  

2.  PROBLEM   DESCRIPTION 

2.1  Application Model 
 A workflow W encompasses of a set of tasks which are 

connected in the form of a Directed Acyclic Graph, W = < T, 

E >, where T is a set of n tasks < t1, t2…tn >, and E indicates a 

set of directed edges < ei,j,..em,n > forming no cycles.  Each 

edge ei,j imposes dependency constraint between the tasks ti 

and tj, i.e., the task tj can be executed only when its 

predecessor task ti is completed. Each task ti ∈ T is associated 

with a positive integer wi which specifies its computation 

time. Moreover, each edge ei,j ∈ E is associated with a non-
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negative integer di,j that denotes the dataflow time between the 

tasks ti and tj. A task having no 
   

Table 1. Computation Time Matrix 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 

Fig 1: An example workflow 

predecessor is termed as the start task tstart and the task with 

no successor is the sink task tsink. Generally, a workflow 

includes a start task and a sink task otherwise a pair of pseudo 

start, and sink tasks must be connected with pseudo edges to 

the numerous start and sink tasks. The matrix D of order n × n 

is used to represent the dataflow time between the tasks, 

where each element di,j in the matrix D indicates the dataflow 

time between the tasks ti and tj. 

The organization of the tasks in a workflow describes the 

structure of the workflow. A task happens to be free upon the 

completion of all its predecessors and after it receives the data 

from its predecessors it becomes ready. As each task becomes 

ready it is placed in the queue for execution. An example 

workflow is shown in Figure 1. 

2.2  HPR Model 
A HPR model constitutes of a suite of m resources < r1, r2...rm 

> ∈ R with varied processing potentials, fully connected with 

high speed network. Each resource can execute only one task 

at a time i.e., tasks cannot be preempted. The execution of 

task tj and its predecessor ti on the same resource, i.e., r(ti) = 

r(tj), then the dataflow between the two tasks is assumed as 

local and dataflow time di,j is zeroed. Since, the output data 

generated by the task ti is available at the same resource on 

which task tj is to be performed, transferring of the data is not 

required. Otherwise, i.e., r(ti) ≠ r(tj), the dataflow is assumed 

to be remote. Moreover, the computations of the tasks and the 

dataflow between the tasks are carried out simultaneously. 

The matrix E of order n × m is used to represent the 

computation time of n tasks on m resources and each element 

wi,j denotes the computation time of the task ti on resource rj. 

Table. 1 shows the computation time matrix for the workflow 

depicted in Figure 1. 

The key attributes required to describe the workflow 

scheduling are the Earliest Start Time (EST) and the Earliest 

Completion Time (ECT). The EST and ECT of the task ti on 

resource rj are denoted as EST(ti,rj) and ECT(ti,rj) respectively 

and computed by (1) and (2) respectively. The EST for a start 

task tstart is zero.  

                   EST(ti,rj) = max { ready(ti), avail(rj) }                (1) 

                             ECT(ti,rj) = EST(ti,rj) + wi,j                                    (2) 

where ready(ti) is the time the task ti becomes ready and 

avail(rj) is the time the resource rj is available to execute the 

next task. In the equation (2), ECT(ti,rj) is computed by 

EST(ti,rj) and wi,j, where wi,j is the computation time of the task 

ti on resource rj. The schedule length, i.e., makespan of W is 

the Actual Completion Time (ACT) of tsink, given by (3)   

                             makespan = ACT(tsink)                               (3) 

Definition 1 (Bottom Level). The bottom level of task ti is the 

length of the longest path from the task ti to tsink. It is denoted 

as bl(ti) and computed by the computation and dataflow times 

along the path using (4)  

                      bl(ti ) = wi     + maxtj ∈ succ(ti) { bl(tj) + di,j  }                

(4) 

where wi     is the average computation time of the task ti and 

succ(ti) is a set of immediate successors of ti and di,j is the 

dataflow times between the tasks ti and tj. 

Definition 2 (Top Level). The top level of the task ti is the 

length of the longest path from the start task tstart to ti, excluding 

the computation time of ti. It is denoted as tl(ti) and computed 

by the computation and dataflow times along the path using (5)  

                       tl(ti ) =  maxtj ∈ pred (ti) { tl(tj) +wj + dj,i  }                 

(5) 

where pred(ti) is a set of immediate predecessors of ti and dj,i 

is already explained in the equation (4). 

Definition 3: The Critical Path (CP) is the longest path in the 

workflow and the length of the CP can be computed by the 

sum of the computation and dataflow times along the path and 

denoted as CPl. The computation critical path is computed by 

the sum of the minimum computation time of each task on 

CP, it is denoted as CPc and computed using (6).  

                               CPc  =   min r ∈ Rti ∈ CP  wi                (6) 

The CP tasks in a workflow can be identified by summing up 

bl(ti) and tl(ti) for each task ti. All the tasks on CP have same    

(bl(ti) + tl(ti)) value which is equal to CPl. 

3. THE RELATED WORK 
Limited research work has been carried out in estimating the 

performance of the workflows.  

Fernandez et al. [4] were the first to devise lower bounds on 

the makespan for the workflows with unit sized tasks having 

no dataflow latencies and performed on homogeneous 

environments. To compute the lower bound, an interval [θ1,θ2] 

during which maximum number of tasks n' ⊂ n can be 

executed is considered such that [θ1,θ2] ⊂ [0, CPc]. For m 

resources, and n tasks in the workflow, then m × (θ1− θ2) 

Task r1 r2 

t0 70 84 

t1 68 49 

t2 78 96 

t3 89 26 

t4 30 88 

t5 66 86 

t6 25 21 

t7 96 26 
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denotes the tasks executed on m resources. The excess area is 

divided by m and added to CPc. 

The WCCT, i.e., the upper bound of the workflow was first 

proposed by Jain et al. [5]. The computation of the upper 

bound was confined to the workflows consisting of unit 

computation time tasks having no dataflow overheads and was 

executed on homogeneous systems. The workflow is 

partitioned according to the levels and the upper bound for 

each partition was computed by the summation of the number 

of ready tasks divided by m. Finally, the upper bounds of all 

the partitions are summed up to obtain the upper bound of the 

workflow. Moreover, the lower bound is computed by 

considering a partition in which the maximum number of 

tasks can be executed and is divided by m.   

In [8], a level based estimation model is proposed to analyze 

the computation times of the workflows. The model requires 

the workflow to be partitioned into levels in both top-down 

and bottom-up approaches to group the set of tasks which can 

be performed concurrently. The level computation time is 

computed by the sum of the computation times of all the tasks

 

 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2: The structure of the scientific workflows 

in a level. The makespan for each level is computed by the 

maximum of the level computation time divided by m and the 

maximum computation time of a task at that level. The 

performance of the workflow is estimated by the summation 

of the makespan of all the levels and nominal dataflow latency 

is added to it.  

4. AN  OVERVIEW OF SCIENTIFIC 

WORKFLOWS  
Generally, scientific applications are categorized as 

computation-intensive, data-intensive, memory -intensive, or 

a combination of these based upon the applications. The 

computation-intensive workflows consist of tasks which 

expend most of the time in computations, while the tasks in 

the data-intensive workflows generate enormous data and 

therefore involve much in exchanging data rather than 

computations [6]. The tasks in the memory-intensive 

workflows demand high physical storage requirements. Most 

of the scientific applications embrace workflows to epitomize 

computation- intensive applications for efficient computation 

on heterogeneous environments which are the most preferred 

platforms for attaining high performance.  

Laser Interferometer Gravitational Wave Observatory (LIGO) 

is an Inspiral Analysis Workflow [11]. LIGO is a memory 

bound and heavily computation-intensive workflow that 

detects gravitational waves generated by numerous events in 

the universe according to Einstein’s theory of relativity. The 

LIGO workflow structure allows greater parallelism. This 

workflow is applied to analyze the data acquired by 

                                 (a)       LIGO                                                                                             (b)   Epigenomics 

  

(c)       Montage                                                                                        (d)   Cybershake      
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amalgamating of compact binary systems, namely binary 

neutron stars and black holes. The time-frequency data from 

any event for each of the three LIGO detectors is fragmented 

into small chunks and then analyzed. A set of waveforms 

which belong to the parameter space are generated for each 

chunk. Matched filter output is computed and triggers if 

Inspiral is detected which are then tested for consistency by 

the Thinca jobs. Inspiral jobs are highly computation-

intensive. Trigger output generates Template banks. The 

structure of the LIGO workflow is depicted in Figure 2(a). 

Epigenomics [12] is a computation-intensive and largely data 

parallel pipelined application. This workflow primarily 

processes pipelined data to execute genome sequence jobs 

which is utilized by Maq system. The remaining jobs of the 

workflow include filter of noise and contaminated data, a map 

job which aligns the current location in a reference genome, 

which is mostly computation-intensive and generates global 

map to identify the sequence density at each position in the 

genome. A simple way to enhance performance is to run 

Epigenomics on heterogeneous platforms since many tasks of 

this application can run in parallel and are heterogeneous and 

the structure of this application is given in Figure 2(b).  

Montage workflow is devised by NASA / IPAC [9] is an 

astronomical image mosaic engine which is more widely 

studied workflow applications. Montage is designed to take 

multiple astronomical images from telescopes or any other 

instruments and amalgamate into a single mosaic that appears 

to be taken from a single instrument. The input images are re-

projected onto a sphere and the overlap of the images is 

calculated. Subsequently, the images are re-projected to 

correct the orientation and to normalize the background. 

Lastly, all the processed images are composed into a single 

mosaic. Astronomers can tailor the functionalities of Montage 

workflow and add code according to the requisites. 

Accordingly, Montage is designed consisting of a set of tasks 

and mostly, the tasks spend much time in communicating and 

very lesser amount of time in the computation and hence 

Montage is described as data-intensive workflow and its 

structure is shown in Figure 2(c). 

Cybershake is a seismological application which is highly 

data and memory-intensive and its structure is depicted in 

Figure 2(d). This application is generated by the Southern 

California Earthquake Center [10] to characterize earthquake 

hazards in geographical regions using Probabilistic Seismic 

Hazard Analysis (PSHA) technique. The application utilizes 

Earthquake Rupture Forecast (ERF) to detect the probable 

ruptures within 200km of an interested region. For every 

rupture, rupture definitions are converted from ERF into 

numerous rupture variations with varying hypocenter 

positions and slip time distributions to generate Strain Green 

Tensors (SGT). Subsequently, synthetic seismograms for 

every rupture variation are computed and peak intensity 

measures are derived from the synthetics which are then 

combined with the original rupture probabilities to generate 

probabilistic seismic hazard curve in the region. The 

information provided by PSHA is utilized by city planners 

and building engineers to estimate seismic hazards prior to 

construction of the buildings.  

5. A NEW MAKESPAN ESTIMATION 

MODEL 
Basically, the makespan of the workflow is influenced by the 

profile of the workflow, dataflow latencies between the tasks 

in the workflow and the number of resources employed in the 

computation of the workflow.  

The profile of the workflow includes the implicit parallelism 

and the height of the workflow. The execution of the parallel 

tasks concurrently on an adequate number of resources can 

significantly reduce the makespan. On the other hand, the 

height of the workflow reflects the longest path in the 

workflow, i.e., the CP. Because of the sequential bottlenecks 

of the CP tasks, these tasks can only be performed serially and 

hence provisioning of additional resources may not further 

minimize the makespan.  

The main shortcomings of the existing models in the literature 

are they do not consider the dataflow latencies among the 

tasks and hence do not fit for the scientific workflows. On the 

other hand, the new makespan estimation model is devised 

considering the Critical Path (CP), and the intrinsic 

parallelism of the workflow. The proposed estimation model 

captures the workflow parallelism by effectively identifying 

the independent branches in a workflow. CP is a global 

heuristic and the inherent sequential path of the workflow that 

plays a pivotal role in determining the bounds on the 

computation time.  

Theorem 1: Let W = <T,E,w,d> be a workflow and CPc be 

the compute critical path.  For any schedule S of W, the 

makespan is always greater than CPc. 

              makespan > CPc                                  (7) 

Proof: A CP always begins at the start task and ends at the 

sink task and it is the longest directed path between a pair of 

start and sink tasks. A directed path in the workflow 

represents the chain of dependent tasks that are to be 

processed in a sequence. Any other path length in the 

workflow is at least the length of the computation critical path 

length. Therefore, the duration of the workflow is at least CPc 

regardless of the number of resources provisioned. 

Lemma 1: The maximum number of levels in a workflow in 

any path cannot exceed the number of tasks on the critical 

path. 

Proof: Let a workflow W constitutes of k number of levels, 

={1,2,3, ….k}, 1 ≤ k ≤ n. The tasks can be grouped into 

the levels by topologically ordering the tasks ti ∈ T in W ∋ for 

each edge ei,j ∈ E, if ti is in the level k-1  then tj must occur in 

the level k , where k > j. Therefore, 

=   𝑛
𝑘=1 k  =  T                             (8) 

As per definition 1, CP is the longest path from the start task 

to sink task. At most one task from each level k, 1 ≤ k ≤ n,  

lies on CP, i.e., no more than k tasks can be included in CP, 

which are denoted as tcp,1, tcp,2,..tcp,k, where each task tcp,i, 1 ≤ i 

≤ k, indicates ith task on CP selected from level i. Moreover, 

there may be more than one CP in a workflow as several paths 

can have maximal length. 

Lemma 2: The maximum queue length equals the level 

maximum branching factor of the workflow. 

Proof: The maximum branching factor of the workflow 

determines the queue length. The maximum queue length is 

the maximum number of tasks that become free upon the 

execution of a task. For example, consider the workflow given 

in the Figure 1 scheduled on two resources. However, the 

execution of the task to at the level 1 frees the tasks t1, t2, t3, 

and t4 at level 2. Therefore, the maximum queue length for the 

given workflow is four.  
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Lemma 3: When the ready tasks are more than the number of 

resources, then in an ideal scheduling system the load is 

equally balanced on all the resources. The maximum 

additional load on each resource is no more than the queue 

length / m, m is the number of resources on HPR. 

Proof: Let k ⊆ n be the number of ready tasks placed in the 

queue and m be the number of resources on HPR to execute a 

workflow. During the computation of the workflow, if k 

exceeds m, then (k − m) tasks fall as additional load on m 

resources. In an ideal scheduling system this additional load is 

equally distributed on m resources. Therefore, the additional 

load on each resource is no more than queue length / m. 

For instance, in the given workflow in the Figure 1, if the task 

to at the level 1 at level 1 is executed, frees the tasks t1, t2, t3, 

and t4 which are added to queue. Since the workflow is 

executed on two resources, only two tasks can be executed in 

parallel. In an ideal scheduling system, the remaining two 

tasks are distributed to two resources which is the additional 

load incurred on each resource due to the inadequate resources 

provisioned for performing the workflow. Therefore, queue 

length / m is the additional load on each resource that 

eventually leads to the increase in the makespan.  

Theorem 2: The WCCT of a workflow equals the CPl + 𝜀, 

where 𝜀 is the additional load taken by each resource when 

the number of resources in HPR is less than queue length. 

               makespan  ≤    

       

CPl ,      k < m 

CPl + ε ,  otherwise

                        (9) 

Proof: Generally, the profile of the workflow depends upon 

two parameters, i.e., CP of the workflow and the number of 

parallel tasks. As per definition 1, CP is the longest chain of 

dependent tasks in the workflow and hence these tasks must 

be performed in succession. According to Lemma 1, the 

maximum number of levels in a workflow cannot be more 

than the number of tasks lying on CP. The length of any path 

in the workflow is always lesser than or equal to the length of 

CP, i.e., CPl. Consequently, the constrained sequential 

computation time of the tasks on the CP is at most the 

completion time of any path in the workflow. Therefore, the 

WCCT of a workflow is chiefly contributed by the critical 

path length with respect to the number of levels. 

The second parameter ε represents the number of tasks that 

can be performed in parallel provided when sufficient 

resources are provisioned to execute the workflow on HPR.  

In situations when fewer resources are provisioned, the queue 

length gradually increases and falls as an additional load on 

each resource and thus leads to the increase in the makespan.  

Therefore, ε  is the maximum additional load on all the 

resources, i.e., maximum of queue length / m. 

In situations when the maximum branching factor (k) of the 

workflow is greater than the number of resources (m) 

provisioned to execute a workflow, i.e., k > m, the queue 

length gradually increases which falls as an additional load on 

each resource and leads to the increase in the makespan. 

According to Lemma 3, ε is the maximum additional load on 

all the resources, i.e., maximum of queue length / m, 

computed as follows. 

                           ε = (k – m) * w   / m                            (10) 

where w   is the average execution time of each task in the 

workflow. The equation (9) establishes a sharp WCCT of the 

workflow. Therefore, BCCT and WCCT values are chiefly 

contributed by CP of the workflow and the completion time of 

a workflow is highly dependent on the structure of the 

workflow. Figure 3 and Figure 4 present the algorithm for 

WCCT and BCCT for the workflow. 

 

Algorithm 1. A new makespan estimation model for WCCT 

of the workflow 

Input: A workflow W = < T, E, wi, di,j >, T and E are a set of 

tasks and edges in the workflow. wi    , is the average 

computation time of the task ti and di,j is the dataflow time 

between the tasks ti and tj. 

Output: The WCCT of the workflow. 

 

1.   Set the average computation time wi     for each task ti ∈ T. 

2. Compute bl for ti ∈ T tasks in W. 

3. Compute tl for ti ∈ T tasks in W. 

4. Compute rank(ti) = bl(ti) + tl(ti) for ti ∈ T tasks in W. 

5. Compute CPl := rank(tstart), where tstart is the start task. 

6. CPset := tstart // CPset is the set of CP tasks. 

7. ti ← tstart. 

8. while (ti != tsink) do 

9.  Select tj where (( tj ∈ succ(ti)) and (rank(tj) = = 

CPl)). // succ(ti) is the successor tasks of ti 

10.   CPset := CPset ∪ { tj } 

11. if(k > m) // where k  is the maximum branching 

factor of the workflow and m is the number of 

resources provisioned to execute a workflow 

12. ε = (k – m) * wi     / m    // where ε is the maximum    

additional load on all resources 

13. WCCT := WCCT + wi     + ε  

14. else 

15. WCCT := WCCT + wi     
16. ti ← tj 

17. end while 

 

Fig 3: Algorithm for estimating WCCT of the workflow 

 

Algorithm 2. A new makespan estimation model for BCCT 

of the workflow 

Input: A workflow W = < T, E, wi, di,j >, T and E are a set of 

tasks and edges in the workflow. wi is the minimum 

computation time of the task ti and di,j is the dataflow time 

between the tasks ti and tj. 

Output: The BCCT of the workflow. 

1. Set wi to the minimum computation time of each task ti ∈ 

T. 

2. Compute bl for ti ∈ T tasks in W. 

3. Compute tl for ti ∈ T tasks in W. 

4. Compute rank(ti) := bl(ti) + tl(ti) for ti ∈ T tasks in W. 

5. CPl := rank(tstart), where tstart is the start task. 

6. CPset := tstart // CPset is the set of CP tasks. 

7. ti ← tstart 

8. while (ti != tsink) do 

9. select tj where (( tj ∈ succ(ti)) and ( rank(tj) = = CPl ))  

// succ(ti) is the successor of ti 

10. CPset := CPset ∪ {tj}  

11. BCCT := BCCT+ wj    

12. end while. 

Fig 4: Algorithm for estimating BCCT of the workflow 
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5.1 Time Complexity Analysis 
The computation of the WCCT of the workflow includes CP 

length, i.e., CPl and ε. The CP includes n1 < n tasks and e1 < e 

edges and hence CPl can be calculated in time O(n+e) while 

the computation of ε involves n1 < n tasks and requires O(n) 

time.  Therefore, the complexity of WCCT of the workflow is 

O(n + e), where n is the number of tasks and e is the number 

of edges in the workflow. The computation of BCCT of the 

workflow entails CPc. The calculation of CPc necessities n1 < 

n tasks and hence BCCT of a workflow can be computed in 

time O(n). Generally, the WCCT and BCCT of the workflow 

are computed recursively adding one task in each iteration.  

The WCCT and BCCT values computed for the example 

workflow depicted in the Figure 1 are 508 and 195 

respectively. The makespan for the same workflow generated 

by the HEFT [2], PETS [7] and MSL[3] scheduling strategies 

are 446, 446 383-time units respectively. 

6. PERFORMANCE EVALUATION 
In this section, the performance of the new makespan 

estimation model is evaluated using randomly generated 

scientific workflows namely LIGO, Epigenomics, 

Cybershake, and Montage. Generally, the characteristics 

required for generating the scientific workflows are as 

follows. 

 Workflow size (n) is the number of tasks in the workflow. 

 Dataflow to Computation time Ratio (DCR) is the ratio of 

the average dataflow time to average computation time in a 

workflow. The dataflow time in a workflow is computed 

using (11).  

                 dataflow time = DCR * computation time        (11) 

    when DCR ≤ 1, computation - intensive workflows can be 

generated while DCR ≥ 1 workflows are data-intensive 

workflows.  

 Shape parameter (α) determines the structure, i.e., the height 

and width of the workflow. The height of the workflow, i.e., 

the number of levels in a workflow is obtained by  𝑛 / α 

and the width of the workflow, i.e., the number of tasks at 

each level is  𝑛  × α. For α < 1values, longer workflows 

with low parallelism are generated and when α > 1, shorter 

workflows with high parallelism can be generated.  

 Heterogeneity factor (β) determines the variation in the 

computation times of each the task on m resources. Higher β 

values cause much deviation in the computation times of the 

tasks while lesser β values results in the trivial difference in 

the computation times of the tasks. The computation time of 

each task ti on the resource rj is denoted as wi,j, where 1 ≤ i ≤ 

n, 1 ≤ j ≤ m,  is randomly selected from the range computed 

using the equation (12)  

               wi     × (1- β / 2) ≤  wi,j   ≤  wi     × (1+ β / 2)               (12) 

    where wi     is the average computation time of each task in     

the workflow. 

To evaluate the effectiveness of the new makespan estimation 

model, two sets of randomly generated scientific workflows 

are used. The first set consists of computation-intensive 

workflows viz., LIGO and Epigenomics workflows which are 

generated with workflow size (n) of {40, 56, 72, 88} and {20, 

32, 64, 106} respectively.  

As these workflows are computation-intensive applications, 

their DCR values cannot be more than one. Since the structure 

of the scientific workflows is known, the parameters such as 

workflow size (n), DCR, heterogeneity factor (β) and average 

computation time of the workflow ( wi    ) are essential for 

generating the scientific workflows. The characteristics of 

LIGO and Epigenomics workflow set for the experimentations 

are depicted in Table 2. 

Another set of data-intensive workflows namely Cybershake 

and Montage with workflow sizes (n) {20, 36, 68, 132} and 

{20, 38, 59, 98} respectively, are generated. Since these 

workflows are data-intensive applications, their DCR values 

cannot be less than one and the parameters are specified in 

Table 3. The combination of the mentioned parameter values 

generated 2000 workflows for each scientific workflow.  The 

proposed BCCT and WCCT values for varied resource set are 

computed for LIGO, Epigenomics, Cybershake and Montage 

workflows. The BCCT and WCCT are evaluated by 

considering the best and the worst of the three makespans 

generated by the HEFT, PETS, and MSL scheduling 

algorithms. 

 Table 2.  Characteristics of LIGO and Epigenomics 

workflows 
Parameter Values 

DCR 0.1 0.25 0.5 0.75 1.0 

β 0.1 0.25 0.5 0.75 1 

wi     100 150 200 250  

m 4 8 12 16 20 

 

Table 3. Characteristics of Cybershake and Montage 

workflows 

  Parameter Values 

DCR 0.1 0.25 0.5 0.75 1.0 

β 0.1 0.25 0.5 0.75 1 

wi     100 150 200 250  

m 4 8 12 16 20 

 

The experimental results are presented in Table 4, 5, 6, and 7 

respectively. Each row in these tables represents the average 

data from 20 workflows obtained with the combination of 

different β and wi     values for each DCR value.  

The validation of the new makespan estimation model is 

performed by comparing BCCT and WCCT values computed 

for each workflow with the actual makespan of the workflow. 

The error ξ between WCCT and the actual makespan is 

denoted as makespanactual   and computed using (13) 


actual

actual

makespan

WCCTmakespan 
 13 

From the Table.4, it can be observed that for the computation-

intensive LIGO workflows the error percent increased as DER 

value increased when the workflow size and the number of 

resources are same. Moreover, error enhanced as the 

workflow size increased for the same number of resources (m) 

and DER values. The error in percent for the workflow size 40 

is noted to be 7.65, for 56 tasks it is 8.53, for 72 tasks it is 

10.64 and for 88 tasks the error 13.93 percent. An error is 

observed to be below 10 percent for 70 percent of the cases 

and overall it is 10.18 percent.  

Moreover, the error varied for different number of resources 

(m). For m = {4,8,12,16,20} and the workflow size 40, the 

error percent is {8.2,7.9,7.2,7.4,7.5}, while for workflow size 

56, it is {7.8,13.0,8.0,6.8,7.1}, for workflow size 72 it is 



International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.17, February 2018 

24 
 

{7.0,16.6,14.8,8.1,6.8}, and for workflow size 88 it is 

{6.6,19.1, 20.4,15.3,8.3} respectively. For the same workflow 

size, the error is observed to vary for different number of 

resources. The error percent is noted to be high when the 

workflows attain optimal makespan. This implies that optimal 

schedules are attained when the number of resources 

provisioned are sufficient to execute the workflow. 

Similar trends in the error values can also be observed for the 

computation-intensive Epigenomics workflow shown in Table 

5. The error values are observed to be increasing with the rise  

in the DER values. The error percent for workflow size {20, 

32, 64, 106} is {10.89,11.33,8.81,10.61} respectively. For 

various m values i.e., {4, 8,12,16 20}, the error percent for 

workflow size 20 is {9.4,10.9,11.5,11.3,11.4}, for workflow 

size 32 it is {8.94,10.5,12.4,12.6,12.2}, for workflow size 64 

it is {4.5,10.5, 8.8,9.8,10.4} and for 106 tasks it is {1.7,12.6, 

16.1,13.3,9.3} respectively. Overall, the error value is noted to 

be 10.41. 

For a data-intensive Cybershake workflow presented in the 

Table 6, the error in percent for 20 tasks is 13.64, for 36 tasks 

it is 13.92, for 68 tasks it is 29.6 and for 106 tasks it is 47.2. 

An overall error is noted to be 26 percent. For various m 

values {4, 8, 12, 16, 20}, the error in percent for workflow 

size 20 is {17.5, 12.4, 12.8, 12.8,12.7}, for workflow size 36 

it is {17.7,18.8, 14.5,9.4,9.2}, for 68 tasks it is 

{21.8,33.1,34.1,31.2,26.6}and for 132 tasks it is 

{22.3,43.4,53.5,58.0,58.9} respectively.  

 

 

Table 4. Performance of the proposed BCCT and WCCT on LIGO Workflow set 

 

Table 5. Performance of the proposed BCCT and WCCT on Epigenomics Workflow set 

 

 

 

 

 

 

 

 

n DER 

m = 4 m = 8 m =12 m =16 m  = 20 No. of 

Work 

flows 
BCT 

Make 

span  
WCT 

Error 

(%) 
BCT 

Make 

span 
WCT 

Error 

(%) 
BCT 

Make 

span 
WCT 

Error 

(%) 
BCT 

Make 

span 
WCT 

Error 

(%) 
BCT 

Make 

span 
WCT 

Error 

(%) 

40 0.1 1853 2368 2538 7.2 1258 1813 1948 7.4 1100 1729 1844 6.6 1077 1694 1816 7.1 1074 1701 1822 7.1 20 

40 0.25 1856 2441 2630 7.7 1252 1928 2075 7.6 1100 1814 1940 6.9 1074 1811 1940 7.1 1066 1772 1907 7.6 20 

40 0.5 1849 2476 2686 8.5 1244 1996 2152 7.8  1091 1875 2017 7.5 1082 1871 2011 7.5 1073 1877 2016 7.4 20 

40 0.75 1848 2501 2728 9.1 1260 2024 2196 8.4  1100 1969 2115 7.4 1075 1929 2075 7.6 1069 1939 2089 7.7 20 

40 1 1823 2533 2754 8.8 1248 2059 2228 8.2  1095 1970 2116 7.4 1082 1967 2115 7.5 1072 1883 2028 7.7 20 

56 0.1 2395 2989 3188 6.7 1759 2039 2300 12.8  1222 1825 1964 7.6 1080 1736 1850 6.5 1075 1722 1847 7.2 20 

56 0.25 2359 3057 3272 7.0 1772 2125 2397 12.8  1226 1902 2057 8.1 1079 1830 1961 7.1 1068 1815 1955 7.7 20 

56 0.5 2362 3073 3319 8.0 1766 2216 2493 12.5  1224 2013 2170 7.8 1084 1947 2073 6.5 1075 1961 2086 6.3 20 

56 0.75 2352 3077 3340 8.6 1777 2226 2527 13.5  1230 2061 2235 8.4 1078 2014 2151 6.8 1065 1995 2141 7.3 20 

56 1 2345 3096 3360 8.5 1767 2259 2562 13.4  1219 2087 2253 7.9 1080 2021 2162 6.9 1070 1940 2072 6.8 20 

72 0.1 2898 3643 3856 5.9 2275 2298 2665 16  1749 1940 2229 14.9 1207 1816 1954 7.6 1078 1769 1880 6.3 20 

72 0.25 2881 3655 3903 6.8 2291 2381 2767 16.2  1753 2032 2324 14.4 1213 1921 2077 8.1 1070 1863 1997 7.1 20 

72 0.5 2891 3695 3968 7.4 2287 2427 2836 16.9  1731 2118 2424 14.5 1211 1995 2159 8.2 1072 1958 2088 6.6 20 

72 0.75 2879 3770 4035 7.0 2305 2470 2879 16.6  1732 2153 2472 14.8 1208 2078 2245 8.0 1066 2008 2150 7.0 20 

72 1 2872 3731 4020 7.8 2287 2476 2903 17.2  1736 2166 2500 15.4 1208 2081 2256 8.4 1069 1984 2117 6.7 20 

88 0.1 3406 4292 4521 5.3 2804 2588 3062 18.3  2254 2087 2518 20.6 1732 1898 2201 15.9 1201 1809 1955 8.1 20 

88 0.25 3398 4258 4541 6.7 2809 2657 3154 18.7  2262 2177 2617 20.2 1726 2027 2328 14.9 1205 1923 2084 8.3 20 

88 0.5 3409 4364 4639 6.3 2798 2694 3215 19.3  2254 2264 2725 20.3 1727 2080 2400 15.4 1202 2016 2180 8.1 20 

88 0.75 3385 4333 4652 7.3 2799 2718 3253 19.7  2259 2288 2752 20.3 1728 2134 2456 15.0 1204 2084 2247 7.8 20 

88 1 3398 4362 4676 7.2 2809 2750 3290 19.6  2263 2301 2772 20.5 1729 2176 2509 15.3 1206 1996 2173 8.8 20 

n DER 

m = 4 m = 8 m =12 m =16  m  = 20 No. of 

Work 

flows 
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Make 
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Error 

(%) 
BCT 
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WCT 

Error 

(%) 
BCT 

Make 
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WCT 

Error 

(%) 
BCT 

Make 

span 
WCT 

Error 

(%) 
BCT 

Make 

span 
WCT 

Error 

(%) 

20 0.1 1191 1566 1698 8.4 1118 1510 1654 9.6 1086 1464 1611 10.0 1082 1476 1620 9.8 1072 1445 1601 10.8 20 

20 0.25 1207 1696 1836 8.2 1114 1553 1721 10.9 1089 1506 1673 11.1 1076 1533 1702 11.0 1069 1513 1684 11.4 20 

20 0.5 1196 1679 1847 10.0 1119 1617 1795 11.0 1092 1536 1724 12.2 1075 1560 1741 11.6 1069 1583 1762 11.3 20 

20 0.75 1183 1734 1908 10.0 1123 1680 1873 11.5 1096 1613 1814 12.4 1074 1574 1773 12.7 1064 1614 1803 11.7 20 

20 1 1193 1735 1914 10.3 1117 1670 1862 11.5 1091 1641 1836 11.9 1039 1530 1701 11.2 1065 1585 1771 11.7 20 

32 0.1 2759 3555 3759 7.2 1923 2471 2687 8.7 1372 1837 2041 11.1 1340 1817 2024 11.4 1344 1839 2041 11.0 20 

32 0.25 2107 2329 2618 12.4 1917 2503 2756 10.1 1368 1911 2127 11.3 1345 1870 2107 12.7 1333 1889 2112 11.8 20 

32 0.5 1633 2045 2271 11.0 1902 2556 2827 10.6 1367 1948 2197 12.8 1348 1938 2190 13.0 1336 1934 2175 12.5 20 

32 0.75 1296 1951 2107 8.0 1912 2574 2864 11.3 1364 1983 2251 13.5 1341 2018 2273 12.7 1334 1992 2251 13.0 20 

32 1 1108 1895 2011 6.1 1934 2587 2892 11.8 1364 2022 2289 13.2 1346 1996 2260 13.3 1341 1956 2208 12.9 20 

64 0.1 2516 3728 3830 2.7 1923 2471 2687 8.7 1372 2060 2219 7.8 1343 1941 2126 9.5 1339 1929 2110 9.4 20 

64 0.25 2539 3714 3869 4.2 1917 2503 2756 10.1 1374 2169 2346 8.2 1351 2074 2270 9.5 1342 2038 2246 10.2 20 

64 0.5 2537 3793 3967 4.6 1902 2556 2827 10.6 1365 2292 2481 8.3 1345 2162 2371 9.6 1341 2156 2372 10.0 20 

64 0.75 2518 3731 3938 5.6 1912 2574 2864 11.3 1367 2307 2520 9.2 1347 2237 2456 9.8 1341 2135 2380 11.4 20 

64 1 2526 3779 3985 5.4 1934 2587 2892 11.8 1360 2237 2473 10.6 1348 2202 2440 10.8 1336 2101 2331 11.0 20 

106 0.1 3537 5321 5360 0.7 2932 3081 3430 11.3 2388 2412 2750 14.0 1860 2064 2333 13.0 1328 1873 2035 8.7 20 

106 0.25 3540 5327 5408 1.5 2932 3120 3495 12.0 2379 2366 2750 16.2 1860 2156 2448 13.5 1331 2018 2188 8.5 20 

106 0.5 3560 5349 5446 1.8 2947 3141 3550 13.0 2391 2400 2808 17.0 1887 2022 2216 9.6 1335 2059 2256 9.5 20 

106 0.75 3534 5374 5483 2.0 2921 3178 3590 13.0 2387 2486 2896 16.5 1933 2294 2638 15.0 1334 2051 2263 10.3 20 

106 1 3503 5299 5434 2.5 2937 3137 3566 13.7 2390 2495 2917 16.9 1851 2203 2539 15.3 1372 2056 2254 9.6 20 
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Table 6. Performance of the proposed BCCT and WCCT on Cybershake Workflow set 

 

Table 7. Performance of the proposed BCCT and WCCT on Montage Workflow set 

 

For Montage workflow depicted in the Table 7, for lower 

workflow sizes the error percent is high and as the workflow 

size increased the error is observed to decline. It can be 

observed that error increased with DER values. The error for 

the workflow size 20 is observed to be 39.72 percent, it is 

27.82 percent for 38 tasks, 17.98 percent for 59 tasks, and 

increased to 28 percent for 98 tasks. And overall error is 28 

percent.  

7. CONCLUSION 
A new makespan estimation model is devised to estimate the 

bounds on the makespan of the workflows. In the available 

model’s dataflows were either ignored or nominal, hence 

these models could not be extended for computation-intensive 

and data-intensive workflows. The proposed makespan 

estimation model is devised with minimal information 

considering the profile of the workflow as the makespan of 

the workflow highly depends on its profile. The proposed 

estimation model is devised with a complexity of O(n) and 

O(n+e) for computing BCCT and WCCT respectively. The 

present model is validated using the scientific workflows. The 

results of the experiments revealed that the proposed model 

could precisely estimate the makespan of the scientific 

workflows. The error for computation-intensive workflows 

namely LIGO and Epigenomics is observed to be 10.18 and 

10.4 percent respectively and for data-intensive workflows 

namely Cybershake and Montage it is noted to be 26 percent 

and 28 percent respectively. 
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