
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

40

Parallel Enhanced Pattern Matching Algorithm with Two

Sliding Windows PETSW

Wafa Dababat
SE Department,

Balqa' Applied University
Salt-Jordan

Mariam Itriq
BIT Department

Jordan University
Amman-Jordan

ABSTRACT

String matching problem is one of the most essential problems

in many computer science fields, such as DNA analysis,

artificial intelligence, internet search engines and information

retrieval. Today, the speed and performance of string

matching algorithms is critical and must be improved to meet

recent developments in hardware processing environments.

The improvement in performance gained by the use of a multi

core processor depends very much on the software algorithms

used and their implementation. However, the most important

factor when writing a parallel algorithm is the fraction of the

algorithm that can run simultaneously on multiple cores. In

this paper, an efficient algorithm for string matching,

Enhanced Pattern Matching Algorithm with Two Sliding

Windows (ETWS), is adapted to be implemented under a real

parallel environment (PETWS), to enhance the performance

of the sequential algorithm through providing less execution

time to make it more suitable for today's applications.

General Terms

String Matching, Pattern Matching, Parallel Algorithms.

Keywords

Multi-Core Computer Algorithms, ETSW String Matching

Algorithm, Data Partitioning Parallel Approach.

1. INTRODUCTION
In the last two decades, string matching algorithms serve as a

kernel module in various computer applications and fields,

such as DNA analysis, web based applications with search

facility, social networks, dictionaries, antivirus and anti-spam

software‟s. All these applications maintain a large amount of

data and involve deferent types of alphabets and many of

them are mobile applications requiring a good performance

and response time. Therefore, several efficient algorithms

have been introduced to both parallel and single processor

environments. The size of documents to search in is rapidly

increasing, so we need to concentrate on parallel and

distributed environments to cope with these changes.

Adapting efficient single processor Pattern Matching

Algorithms for parallel and distributed environments is an

option that has been applied by several researchers. This

approach is followed in this paper. A time efficient pattern

matching algorithm Enhanced Pattern Matching Algorithm

with Two Sliding Windows (ETWS) [7] is analyzed and

applied to multi-processor computer environments to achieve

a speedup on the algorithms operations.

The rest of this paper is organized as follows. Section 2 gives

the review of several algorithms. Enhanced Pattern Matching

Algorithm with Two Sliding Windows (ETWS) is discussed

in section 3. In Section 4, describe the proposed Parallel

Enhanced Pattern Matching Algorithm with Two Sliding

Windows (PETSW) in details. In section 5, the experiment

results of comparisons between the proposed algorithm

(PETSW) on different multi core computers and the original

one (ETWS) are given. And in section 6 conclusions and

future work are discussed.

2. RELATED WORKS
Many studies on string matching problem have been

conducted over the years to develop efficient algorithms; most

of these algorithms enhance number of attempts and number

of comparisons through using sliding window(s) with the best

shift values [3][4][7-13].

A number of approaches for parallel processing exist,

message passing approach, data partitioning approach, shared

data approach and others. The main idea behind the parallel

processing is to divide a heavy task into sub-tasks that can be

solved simultaneously through using multi-core computers or

more than one thread to enhance the overall execution time of

the computations. In addition to the importance of parallel

string matching algorithms in many areas such as biological

applications [2], search engines applications [19], intrusion

detection in network applications [1][11] and many other

applications, several parallel string matching algorithms have

been proposed in different platforms such as Graphics

Processing Unit (GPU) [14][18], Field-Programmable Gate

Array (FPGA) [15] and a multi-core architecture with

message passing interface [16][17].

In this paper, a well known algorithm (ETSW) is selected and

data partitioning approach is used to adapt the algorithm in

real parallel multi-core environment.

3. ENHANCED PATTERN MATCHING

ALGORITHM WITH TWO SLIDING

WINDOWS (ETSW)
The Enhanced Two Sliding Windows algorithm (ETSW) [7]

is an extended version of Two Sliding Window algorithm

(TSW)[4] as well as ERS-A[3], FSW[9], EBR[5], EERS-

A[10] and DBR[8] algorithms.

In general ETSW [7] in order to improve the search process it

scans the text as well as the pattern from both sides

simultaneously. The ETSW algorithm uses two sliding

windows to search the text from both sides these windows are

slides in parallel. Comparisons done with the pattern is also

done from both sides simultaneously. The length of each

window is m which is the same length as the pattern. The text

is divided into left and right parts, and the pattern is also

divided into left and right parts. Each part of the text is of

length while each part of the pattern is of length .

ETSW algorithm stops when one of the two sliding windows

finds the pattern or the pattern is not found within the text

string at all.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

41

ETSW algorithm utilize BR bad character shift function as the

TSW algorithm [4] done to get better shift values during the

searching process.

ETSW perform two main phases, the pre-processing and

searching phase.

3.1 Pre-processing phase
In this phase ETSW generate two arrays of one-dimensional

named nextl, nextr. The shift values of the nextl array are

calculated according to Berry-Ravindran bad character

algorithm (BR) [6] as in equation (1). The shift values needed

to search the text from the left side. The shift values of the

nextr array that are needed to search the text from the right

side are calculated according to the TSW shift function as in

equation (2). During the searching process, the nextl and the

nextr arrays will be invariable [7].

3.2 Searching phase
In this phase the ETSW algorithm beginning the matching

process from two directions from left to right and from right

to left. In mismatch cases, during the searching process from

the left, the left window is shifted to the right, while during

the searching process from the right; the right window is

shifted to the left. Both windows are shifted according to shift

values calculated for both sides in pre-processing phase until

the pattern is found or the windows reach the middle of the

text [7]. ETSW algorithm [7] finds either the first occurrence

of the pattern in the text through the left window or the last

occurrence of the pattern through the right window. Fig.1

shows the main operation in this phase [7].

L=m-1; //text index used from left

R=n-(m-1)-1; //text index used from right

Tindex=0;//text index used to control the scanning process

While (Tindex<=)

Begin

 foundleft = false;

 foundright = false;

 l=m-2 ; // pattern index used at left side from the end of the

pattern

 r=0; // pattern index used at right side from the beginning

of the pattern

 temp-lindex=temp-rindex=0;//keep record of the text index

where the pattern match the text during comparison

 temp_newlindex=0; // pattern index used at left side from

the beginning of the pattern

 temp_newrindex= (m-1); // pattern index used at right side

from the end of the pattern

 if (P[m-1]=T[L] and p[0]=T[L-m+1])

 begin

 temp-lindex=L;

 L=L-1;

 temp_newlindex++;

 while ((l>=0 and P[l]=T[L]) and

(P[temp_newlindex]=T[L-l+ temp_newlindex]))

 { L=L-1, l=l-1; temp_newlindex++;

 if ((L-l+ temp_newlindex) >=L)

 {foundleft = true; exit from while loop;}

 } //search from left

 end

 if (P[0]=T[R] and p[temp_newrindex]=T[L+m-1])

 begin

 temp-rindex=R;

 R=R+1;

 temp_newrindex--;

 while((r<m and P[r]=T[R]) and

P[temp_newrindex]=T[R+ temp_newrindex-r])

 { R=R+1, r=r+1; temp_newrindex --;

 if (R+ temp_newrindex-r<=R)

 {foundright = true; exit from while loop;}

 } //while

 } //search from right

 end

 if (foundright) {display “match at right: "+ temp-rindex)

; exit from outer loop;}

 if (foundleft) {display “match at left: "+ temp-lindex –m

+1); exit from outer loop;}

 //exit in case if we search for one occurrence the first or

last one

 R= temp-rindex; //to avoid skipping characters after partial

matching at right

 L=temp-lindex; // to avoid skipping characters after partial

matching at left

 if(not foundleft and not foundright){ display (“not found”);

exit from outer loop;}

 L=L+get(shiftl);//from pre-processing step

 R=R-get(shiftr);//from pre-processing step

 Tindex= Tindex+1;

 End;

Fig.1 :ETSW Algorithm [7]

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

42

4. THE PROPOSED PARALLEL

ENHANCED PATTERN MATCHING

ALGORITHM WITH TWO SLIDING

WINDOWS (PETSW)
PETSW algorithm implements ETSW pattern matching

algorithm in a parallel environment. According to the analysis

of original ETSW algorithm in previous section, the

expensive phase of the algorithm is the searching phase in

which the characters of the pattern matches the characters of

the text window [7]. To reduce the cost of this phase, it is

carried out in PETSW algorithm using multiple simultaneous

threads in multi-core environment. The pre-processing phase

remains as it is because the shift values in nextl, nextr arrays

are invariable as considered in previous section.

The Parallel Enhanced Pattern Matching Algorithm with Two

Sliding Windows (PETSW) through a master thread perform

the pre-processing phase and then distribute the works to the

worker (slaves) threads to perform the searching phase in

parallel, finally the master thread collects and displays the

results.

While the ETSW algorithm finds either the first occurrence of

the pattern in the text through the left window or the last

occurrence of the pattern through the right window as

mentioned in previous section the PETSW algorithm finds

more results since each thread will find a result in its part of

the text (e.g. two threads will give us two results, three threads

will give us three different results and so..).

PETSW algorithm is applied on two different hardware

environments: the first computer has two CPUs and the

second one has eight CPUs.

The PETSW algorithm is divided into three phases, Fig.2

illustrates the PETSW phases:

Fig.2 :PETSW main phases

4.1 Phase1: Pre-processing
In this phase the server make three main operations:

1. The input text string of size n is sliced into „i‟

subtexts such that each text partition holds

((n/S)+m-1) text string characters with m-1 text

characters overlapping in each partition, here S

refers to the number of threads in the current run, m

and n being the lengths of text and pattern string

respectively .The number of sub texts obtained after

partitioning the text string using the above formula

equals the number of threads in the program, i.e.,

i=S, thereby representing the static allocation of the

threads. Fig.3 shows this part.

Fig.3 :Text partitioning phase

Input : the file contain the text of size n , the

number of threads S, and the size of the

pattern m

Output : S sub texts, each ti assign to Si

1. Begin

2. c=0

3. While (c<n/m+m and not EndOfFile)

Do

4. ti=ti+nextChar

5. c=c+1

6. End While

7. Assign ti to Si

8. Repeat steps 2 to 7 for each thread Si

 Si=1,…..S

9. End

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

43

Below an example is presented to clarify the partitioning step

using a text with 80 characters and a pattern with 5 characters.

Input:

 Text =“Copyright laws are changing all over the

world. Be sure to check the copyright l”, n=80

 Pattern (P) = “world” ,m=5

 Assume we have 4 threads (S=4), then the number

of subtexts i=S=4

Output:

S1 subtext is: “Copyright laws are chang”

S2 subtext is: “hanging all over the wor”

S3 subtext is: “world. Be sure to check”

S4 subtext is: “heck the copyright l”

2. The server generates the two arrays nextl and nextr

which contain the shift values (the pre-processing

phase in ETSW) as shown in Fig.4.

3. The server distributes the i sub text partitions and

the nextl and nextr arrays on S threads in the

program such that thread Sj will get one text

partition Tj where 1<=j<=S and receive a complete

nextl and nextr.

Fig.4 :The pre-processing in ETSW algorithm

4.2 Phase2: Parallel Computation and

searching
All threads will compute use ETSW simultaneously and

returns the result back to the server.

4.3 Phase3: Computing Results
 The server will process the results returned from the threads

to compute the final result.

5. EXPERIMENTAL RESULTS AND

ANALYSIS

5.1 Experimental Environment and

Results
Our experiment was conducted using java Netbeans 8.1 on 2

core machines with 2.2 GHz, 6 GB RAM in first shot and 8

core machine with 3.4 GHz, 8 GB RAM in second shot. To

obtain the results we have applied PETSW algorithm on

different data files and patterns. In this work we will show the

results of the experiment on a 24MB text file that contains

3562345 words of random text content. We applied the

algorithm on different patterns and took the average for each

run.

Table 1 contains the running time of running the PETSW

algorithm on two core computer. Table 2 shows the speedup

obtained by running the algorithm on two core computer.

Fig.5 diagrams the running time obtained on two core

computer and Fig.6 speedup achieved by the algorithm on the

two core computer. Table 3 holds the running time computed

for the algorithm on 8 core computer. Table 4 shows the

speedup obtained by this experiment on 8 core computer.

Fig.7 shows the dropdown of the running time using the

algorithm on 8 core computer and Fig.8 presents the speedup

gained by running the algorithm on the 8 core machine.

Table 1: Running time of Parallel ETSW on two core

processor

Number of

threads

Time(ns) average for multiple

patterns

1 90181647

2 50513741

3 59549913

4 54096205

5 59854089

Table 1 contains the results of applying the parallel algorithm

to two core processor. Each time (ns) represents the average

time of the algorithm using several multiple different patterns,

the first row shows the result of the sequential algorithm, at

each experiment the number of threads was increased by one

and the average time was recorded. The lowest time taken was

50513741 ns, when having two threads.

Table 2: Speedup of Parallel ETSW on two core processor

Number of threads Speedup

1 1

2 1.785289413

3 1.514387553

4 1.667060508

5 1.506691498

Table 2 shows the speedup obtained by comparing the

sequential time in Table.1 using the speedup formula in

equation (3).

Input : the file contain the text of size n and the

pattern of size m

Output :nextl, nextr arrays that contain shift values

for both sliding window

1. Begin

2. shiftl=shiftr=m+2

3. for (each character pi Pi=0,…..m-2)

4. {nextl[i]=m-i,nextr[i]=m-((m-2)-i)}

5. if P[m-1]=a {shiftl=1}

6. else if p[0]=b { shiftl=m+1}

7. if p[0]=b { shiftr=1}

8. else if P[m-1]=a{shiftr=m+1}

9. End

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

44

The maximum speedup achieved is 1.785289413 when having

two threads.

Table 3 contains the results of applying the parallel algorithm

to eight core processor. Each time (ns) represents the average

time of the algorithm using several multiple different patterns,

the first row shows the result of the sequential algorithm, and

at each experiment the number of threads is increased by one

and the average time is recorded. The lowest time taken was

18380920 ns, when having eight threads.

Table 3: Running time of Parallel ETSW on 8 core

processor

Number of

threads

Time(ns) average for multiple

patterns

1 80073014

2 42331342

3 31202554

4 28331868

5 25985803

6 24369878

7 20711061

8 18380920

9 21893108

10 23858479

Table 4 :Speedup of Parallel ETSW on 8 core processor

Number of

threads Speedup

1 1

2 1.891577498

3 2.566232687

4 2.826252544

5 3.081413878

6 3.285737171

7 3.866195653

8 4.356311545

9 3.657453021

10 3.356165915

Table 4 shows the speedup obtained by comparing the

sequential time in Table.3 to the time obtained by the parallel

algorithm on different number of threads using equation (3).

The maximum speedup obtained is 4.356311545 when the

number of threads was eight.

Fig.5 :Running time of Parallel ETSW on two core

processor

Fig.6 :Speedup of Parallel ETSW on two core processor

Fig.7 :Running time of Parallel ETSW on 8 core processor

Fig.8 :Speedup of Parallel ETSW on 8 core processor

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

45

5.2 Experimental Results Analysis
Using the first machine; that has two CPUs. The algorithm

was implemented as one thread to obtain a sequential time

result, then the number of threads was increased by one at a

time, the experiment was stopped on 5 threads because no

extra speedup seemed to be obtained. The execution time has

a lowest value when the number of threads is 2, that is equal

to the number of CPUs in the computer. The maximum

speedup is about 1.8, which is also achieved when having two

threads.

The speedup obtained when using three threads and more was

decreasing rather than increasing because the time spent on

communication between threads seems to overcome the

desired increase in performance. As a result, the best time and

best speedup will be when number of parallel processes

equals the number of CPUs in the machine.

When the second computer having 8 CPUs was used, it is also

started with a sequential run of the algorithm, then the number

of threads was increased one at a time, which means that one

more CPU is used at each run. The running time of the

algorithm was decreasing each time we added a new thread,

hitting the lowest run time when having 8 threads, when the

9th thread was added, the time increased instead of

decreasing, so indicating that no extra time saving may be

obtained by introducing new threads, so the experiment

stopped after running 10 threads.

Regarding speedup, the best speedup obtained was 4.35 when

the number of processes was eight. No better speedup was

obtained on this machine.

So, it is noticed that the parallel pattern matching algorithm

will continue to give good results until number of threads

exceeds the number of CPUs in the machine, in this case it

will begin to slow down rather than speeding.

6. CONCLUSION AND FUTURE WORK

6.1 Conclusion
In this work, the design and evaluation of a parallel version of

the ETSW pattern matching algorithm using text partitioning

approach is presented. The key idea of the proposed algorithm

is based on the use of multi-core processing system to

optimize the performance through reducing search time by an

accepted factor compared to the original ETSW algorithm.

The experimental results show that the running time and

speedup of the proposed algorithm are much better than the

sequential approach.

6.2 Future Work
The efficiency of the PETSW algorithm presented in this

paper can be tested on search engines and compared to other

string matching algorithms. Also, the algorithm may be tested

on mobile environments so that battery consumption may be

estimated.

7. REFERENCES
[1] CHAO Y. 2012. An Improved BM Pattern Matching

Algorithm in Intrusion Detection System. Applied

Mechanics and Materials, vol. 148 – 149, 1145-1148.

[2] SENAPATI K.K., MAL S. & SAHOO G. 2012. RS-A

Fast Pattern Matching Algorithm for Bio-logical

Sequences. International Journal of Engineering and

Innovative Technology (IJEIT), 1(3), 116- 118.

[3] SULEIMAN D,HUDAIB A, AL-ANANI A,AL-

KHALID R & ITRIQ M, 2013. ERS-A Algorithm for

Pattern Matching. Middle East Journal of Scientific

Research, 15(7), 1067-1075.

[4] HUDAIB A., AL-KHALID R., SULEIMAN D., ITRIQ

M. & AL-ANANI A, 2008. A Fast Pattern Matching

Algorithm with Two Sliding Windows (TSW). Journal of

Computer Science, 4(5), 393-401.

[5] SULEIMAN D, 2014. Enhanced Berry Ravindran

Pattern Matching Algorithm (EBR). Life Science

Journal, 11(7), 395- 402.

[6] BERRY, T. & RAVINDRAN, S., 2001. A Fast String

Matching Algorithm and Experimental Results. In

Proceedings of the Prague Stringology Club Workshop

‟99 (eds Holub, J.and Simanek, M), Collaborative Report

DC-99-05, Czech Technical University, Prague, Czech

Republic, 16-26.

[7] ITRIQ M., HUDAIB A., AL-ANANI A., AL-KHALID

R. & SULEIMAN D, 2012. Enhanced Two Sliding

Windows Algorithm for Pattern Matching (ETSW).

Journal of American Science, 8(5), 607- 616.

[8] Hudaib A., Suleiman D. & Awajan A, (2016, April).

Dynamic Berry Ravindran Algorithm for Pattern

Matching (DBR), 6th International Conference on

Applied Computer Science (ACS '16), At Istanbul,

Turkey, (pp 15-17).

[9] HUDAIB A., Al-KALID R., AL-ANANI A, ITRIQ M &

SULEIMAN D, 2015. Four Sliding Windows Pattern

Matching Algorithm (FSW). Journal of Software

Engineering and Applications, 8, 154-165.

[10] SULEIMAN D., ITRIQ M., AL-ANANI A., Al-

KHALID R. & HUDAIB A, 2015. Enhancing ERS-A

Algorithm for Pattern Matching (EERS-A). Journal of

Software Engineering and Applications, 8, 143-153.

[11] Naik M. S., & Geethanjali N. 2015. Performance Study

of the Running Times of well known Pattern Matching

Algorithms for Signature-based Intrusion Detection

Systems, International Journal on Recent and Innovation

Trends in Computing and Communication, 3(6). 4177–

4180

[12] Hudaib A., Suleiman D. & Awajan A., 2016. A Fast

Pattern Matching Algorithm Using Changing

Consecutive Characters, Journal of Software Engineering

and Applications 9,399-411.

[13] Faro, S. & Lecroq, T. 2012. A Multiple Sliding Windows

Approach to Speed Up String Matching Algorithms.

SEA, 172-183

[14] Xu D., Zhang H. & Fan Y. 2013. The GPU-based high-

performance pattern-matching algorithm for intrusion

detection, Journal of Computational Information

Systems, 9, 3791-3800.

[15] Kim H. J. 2015. A failureless pipelined Aho-Corasick

algorithm for FPGA-based parallel string matching

engine, Lecture Notes in Electrical Engineering, 339,

157-164.

[16] Qu J., Zhang G., Fang Z. & Liu J. 2016. A Parallel

Algorithm of String Matching Based on Message Passing

Interface for Multicore Processors, International Journal

of Hybrid Information Technology, 9(3), 31-38.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

46

[17] Liu J., Li F. & Sun G. 2016. A Parallel Algorithm of

Multiple String Matching Based on Set-Partition in

Multi-core Architecture, International Journal of Security

and Its Applications, 10(4), 267-278.

[18] Lin C., Wang G. & Huang C. 2014. Hierarchical

parallelism of bit-parallel algorithm for approximate

string matching on GPUs, Computer Applications and

Communications (SCAC), IEEE Symposium on. IEEE,

76–81.

[19] Singla N. & Garg D. 2012. String Matching Algorithms

and their Applicability in various Applications

,International Journal of Soft Computing and

Engineering (IJSCE) 1(6).

IJCATM : www.ijcaonline.org

