
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

25

A Comparative Study of Grid Load Balancing

Anuj Kumar
Research Scholar

Department of Computer Science,
Gurukul Kangri Vishwavidyalaya,

Haridwar (UK), India

Heman Pathak
Associate Professor

Department of Computer Science,
Gurukul Kangri Vishwavidyalaya,

Haridwar (UK), India

ABSTRACT
Grid computing is an infrastructure for supporting complex

computing. That is organized with the different scale of

computational and network resources. In addition of that it is

capable to process the request of multiple users. In this context

the effective scheduling of resources according to the

submitted tasks are required for efficient computational

outcome. This paper provides an experimental study for the

three popular load balancing techniques i.e. space shared,

distributed and Hierarchical. The experiments are performed

using GridSim technology and with help of JAVA based

implemented scripts. The two kinds of experiments are

reported in this work first with the increasing workload and

secondly with the varying number of resources i.e. number of

machines and number of processing elements. The different

experiments show that the space shared is a promising

algorithm for load balancing but the hierarchical load balancing

algorithm comparatively enhances the performance of grid.

Finally, the distributed load balancing algorithm demonstrates

its superiority among all of them.

General Terms
Computational Grids, Grid Computing, Load Balancing,

Distributed Grid, Hierarchical Grid

Keywords
Grid Computing, Load Balancing, Performance Evaluation,

Distributed Algorithm, Space Shared, Hierarchical Algorithm.

1. INTRODUCTION
Grid computing enables the creation of a single IT

infrastructure that can be shared by multiple business

processes. Grid computing is a group of networked computers

which work together as a virtual supercomputer to perform

large tasks, such as analyzing huge sets of data or weather

modeling. Through the cloud, you can assemble and use vast

computer grids for specific time periods and purposes, paying,

if necessary, only for what you use to save both the time and

expense of purchasing and deploying the necessary resources

yourself. Also by splitting tasks over multiple machines,

processing time is significantly reduced to increase efficiency

and minimize wasted resources. Unlike with parallel

computing, grid computing projects typically have no time

dependency associated with them. They use computers which

are part of the grid only when idle and operators can perform

tasks unrelated to the grid at any time. Security must be

considered when using computer grids as controls on member

nodes are usually very loose. Redundancy should also be built

in as many computers may disconnect or fail during processing

[1] [2].

Normally, grid works on different tasks in network, but that is

also suitable to working on particular applications. That is

designed for solving large problems with maintaining

flexibility by dividing into number of smaller problems.

Computing grids works on multiuser environment that offers

discontinuous demands of huge information processing. Grids

consist of a variety of resources such as software and hardware,

computer languages, and frameworks. That is connected

through a network or by using open standards to achieve a

common goal [3].

1.1 Grid Computing System
Grid computing is an extension of distributed computing that

incorporates coordinating and sharing of computational power,

data storage and network resources across dynamic and

geographically dispersed organizations. Rapid growth in use of

computers has increased the number of applications which uses

the shared hardware and software resources (e.g. memory,

processor, files etc.) and ultimately increased the amount of

submitted tasks across internet. Problem can be solved if we

distribute the applications across different computer, in such a

manner that it reduces the task response time and the overhead

on a single computer. Proper distribution of applications across

different available resources is termed as Load Balancing [4].

The Computational Grid category represents a system that has

a higher aggregate computational capacity available for single

applications. These can be additionally subdivided into

circulated supercomputing and high throughput classes relying

upon how the total limit is used. A circulated supercomputing

Grid executes the application in parallel on different machines

to decrease the finish time of a task.

Figure 1.1 Grid System Taxonomy

The Data Grid classification is for frameworks that give a

foundation for combining new data from information archives,

for example, advanced libraries or information stockrooms that

are conveyed in a wide territory arrange. Computational Grids

additionally need to give information benefits however the

significant contrast between a Data Grid and a computational

Grid is the specific framework gave to applications to capacity

administration and information get to.

The Service Grid category is for frameworks that give benefits

that are not given by any single machine. This class is

mailto:hemanp@rediffmail.com
mailto:hemanp@rediffmail.com

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

26

additionally subdivided into On-Demand, Collaborative, and

Multimedia Grid systems [5] [6].

1.2 Resource Management in Grid
Efficient resource management is one of the fundamental

requirements in grid computing. Resource management is

required in an environment where resources are quite limited

and need to be utilized properly. The term resource

management [7] refers to manage the different types of

resources like bandwidth, processing power, etc. so that they

can be efficiently utilized and satisfy the need of the users and

as they are limited in the environment so to allocate to

maximum number of sites. As resources are limited in the

environment and number of users are far much greater than the

number of resources, so we need to perform resource

management so that effective utilization of resources take

place. The various challenges that resource management in grid

environment faces are as follows [8]:

 Satisfactory end to end performance through multiple

domains

 Availability of computational resources needs to be

checked in order to have knowledge regarding the

resources present in the environment.

 Handle of conflicts between common resource

demands.

 Fault tolerance.

 Inter domain compatibility.

The resources that are united in grid are geographically

distributed and different individuals or organizations own each

of them. Additionally they have their own access policies,

processing cost, and mechanism. The resource administrators

are responsible to manage and control using their desired

management and scheduling system. That is also called local

scheduler and grid users are expected to honor that and make

sure they do not interfere with resource owners’ policies. They

may charge diverse costs for various framework clients for

their asset utilization and it might differ every now and then

[9]. As given in figure 2 the connection between different

network segments are finished utilizing numerous means,

which are as per the following [10]:

 The grid client pursues their application and

investigation and determining their necessity,

presents their undertakings to grid resource broker

(GRB).

 GRB gathers all asset data and perform asset

disclosure.

 After approving client and resource(s) GRB plan the

undertaking to fitting resource(s) or registering hubs.

 Resource(s) execute the undertaking and return

computational outcome to GRB.

 The GRB gathers result and give it to the matrix

client.

Figure 1.2 Grid Resource Management

1.3 Load Balancing in Grid
Grids functionally combine worldwide distributed computers

and information systems for creating a universal source of

computing power and information. A key characteristic of

Grids is that resources are shared among numerous

applications, and therefore, the amount of resources available

to any given application is highly fluctuating over time. In

present scenario, load balancing plays a key role. For

applications that are Grid enabled, the Grid can offer a resource

balancing effect by scheduling grid tasks on machines with low

utilization. A proper scheduling and efficient load balancing

across the grid can lead to improved overall system

performance and a lower turnaround time for individual tasks.

The main objective of load balancing is to minimize the make

span time to enhance resource utilization, exploiting

parallelism, maximize throughput and reduce response time

through a suitable distribution of the application [11].

2. LITERATURE SURVEY
This section is organized for providing the investigational

details about the different relevant concept of load balancing

which contributes to the research directions and guidelines for

design and development of a unique model for load balancing

in a grid environment.

Karim Y. Kabalan et al. [12] discusses several adaptive load

sharing algorithms for heterogeneous distributed computing

systems. It proposes some modifications to existing algorithms

that will account for the delay in transferring tasks from one

node to another. It further verifies and validates those proposed

changes with some of the simulation results obtained.

Ant colony is a meta-heuristic method that can be instrumental

for grid load balancing. Mohsen Amini Salehi et al. [13]

presents a reverberate arrangement of versatile fluffy ants. The

ants in this condition can make new ones and may likewise

submit suicide relying upon existing conditions. Another idea

called Ant level load adjusting is exhibited here for enhancing

the execution of the instrument. An execution assessment

display is likewise determined. The experimental results reveal

that the proposed system outperforms its antecedent.

Hongzhang Shan et al. [14] explored the impact of data

migration under a variety of demanding grid conditions. They

evaluated the grid scheduling algorithm through simulation of

computing servers, different groupings of servers into sites, and

inter-server networks, utilizing genuine workloads derived

from real trace data collected at leading supercomputing

centers. The study reveal that in the presence of input / output

data migration, the sender initiated distributed approach

resulted into reduction of average turnaround time by 60% as

compared to the local approach.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

27

Henrik Johansson et al. [15] performed a performance

characterization of load balancing algorithms for parallel

structured adaptive mesh refinement (SAMR). For a proficient

parallel SAMR execution, dividing calculation must be

powerfully chosen at run-time as to both application and PC

state. Creators describe and analyze a typical apportioning

algorithm and a large number of alternative partitioning

algorithms. The results prove viability of dynamic algorithm

selection and show benefits of using a large number of

complementing partitioning algorithms.

In order to avoid the increase in waiting time and response time

thereby causing reduction in performances of grid by reducing

the resource utilization, an optimal resource sharing algorithm

is required. D. Ramesh et al. [16] proposed a hybrid algorithm

for streamlining the load sharing. It utilizes two major

components viz. Hash Table (HT) and Distributed Hash Table

(DHT). The experimental results reveal that the proposed

algorithm enhances the performance in comparison to the

existing ones.

The Artificial Bee Colony (ABC) algorithm is an optimization

algorithm based on the intelligent behavior of honey bee

swarm. Preeti Gulia et al. [17] has compared various dynamic

load balancing techniques. This paper also reviews various

load balancing techniques using swarm intelligence.

Load balancing is one of the critical issues considered for

managing a grid environment. Sowmya Suryadevera et al. [18]

proposed an Ant Colony Optimization algorithm for stack

adjusting in framework figuring which will decide best asset to

be dispensed to assignments, in view of asset limit and at the

same time balances load of entire resources.

Expecting homogeneous arrangement of hubs connected with

homogeneous and quick systems, different load balancing

approached were proposed. On the basis of past outcomes,

Prakash Kumar et al. [19] introduced a model to enhance the

execution and throughput. It proposes proficient calculations

with better booking strategies.

Volker Hamscher et al. [20] discuss scheduling structures for

computational grids. Simulations were used to evaluate

combinations of different Task and Machine Models. They use

hierarchical scheduling as common scheduling structure and

confirmed the benefit of Backfill.

Abbas Karimi et al. [21] presented an approach for

implementing dynamic load balancing with fuzzy logic, that

can handle uncertainty and inconsistency, this algorithm shows

better response time than round robin and randomize algorithm

respectively by 30.84% and 45.45%.

Yagoubi B et al. [22] proposed a hierarchical model for

computational grids wherein the grid manager maintaining the

global load information is vulnerable to become bottleneck.

Yagoubi B et al. [23] proposed a distributed model by mapping

a grid into a forest based model wherein the local load

balancing is preferred over the global load balancing.

3. PROPOSED WORK
The main aim of this paper is to provide experimental

performance study of two proposed load balancing algorithms

for heterogeneous grids viz. Hierarchical and Distributed. In

view of the heterogeneity involved in the grid environment, we

have chosen Processing Time as the metric for workload

estimation which is calculated as the ratio of workload on a

node to its processing speed. For efficiency purposes the

Binary Heaps are used to maintain the workload information at

the manager level as it enables to locate the source and

destinations in a migration decision in O(1) time and can be

reorganized in O(log2n) time thereby ensuring efficient

solution.

The experiments are performed for finding the strengths of

these algorithms on the basis of the following four performance

parameters:

1. Average Consumed Time: the combination of time

unit for different stages involved in computational

grid i.e. waiting time, processing time and delay

associated for allocating the task to resource.

2. Average Processing Cost: the distributed computing

works on shared resources for that purpose the

amount of cost is required for utilizing the server

resources.

3. Average Waiting time: the amount of time required to

start execution when it is in a task queue is known as

waiting time.

4. Number of Task Migration: the tasks in a process

queue are assigned with two parameters i.e. task

length and priority flag. If the task is not processed

within a threshold time then the task is migrated to

other computational resource.

The performance of these algorithms is studied and analyzed

on the aforesaid parameters through simulations using an

application developed in Java using GridSim4.0, NetBeans

IDE 8.1 and Apache Derby RDBMS on Intel® Core™ i3-

5005U 2.00 GHz system. A comparison of the performance of

these proposed algorithms is also done with the Space Shared

Algorithm for grid load balancing used in GridSim4.0. The

dataset for simulation experiments are downloaded from

Parallel Workload Archive [24] and partitioned for

experimental purposes.

Next section provides the detailed investigation of the

experimentations and the obtained values.

4. RESULTS ANALYSIS
The experiments performed on the aforesaid three algorithms

are described in this section. To demonstrate the experiments

across different performance parameters, as discussed in

Section III, are considered their obtained values and the

observations are described as:

4.1 Average Consumed Time
The average time consumed is the total amount of time

required to process the entire request by the grid resources.

That is measured using the following formula:

Average Consumed Time =
1

N
 CPUi

N

i=1

Where N is the total number of gridlets to be processed and

CPUi is the time for processing ith gridlet.

Figure 4.1 and Table 4.1 show the average time consumed for

processing the input gridlets by the configured grid server. In

figure the x axis contains the length of different dataset and the

corresponding time consumed is reported on Y axis. The

average consumed time for space shared algorithm is reported

using blue line, distributed algorithm is shown using red line

and gray line is used for hierarchical algorithm. According to

the observations the mean time consumption for the algorithm

is initially higher and with the increased length of dataset it is

continuously decreased. Results show that the distributed

algorithm for load balancing is more effective than the other

two algorithms.

mailto:i3-5005U@2.00
mailto:i3-5005U@2.00

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

28

Table 4.1 Average Consumed Time

Dataset

Size

Space

Shared

Distributed Hierarchical

250 25816.79 18218.82 23182.77

500 22205.88 19315.63 20541.4

1000 18279.23 15915.15 16706.55

1500 18210.44 17141.09 17185.62

2000 17469.82 16406.33 16020.8

2500 16218.02 14692.92 15574.38

Figure 4.1 Average Consumed Time

4.2 Average Processing Cost
The amount of mean cost required to execute all the submitted

tasks is termed as the Average processing cost. The Average

processing cost can be computed using the following formula:

Average Processing Cost =
1

N
 costi

N

i=1

Where N is the total number of gridlets to be processed and

costi is the cost for processing ith gridlet.

Table 4.2 Average Processing Cost

Dataset

Size

Space

Shared

Distributed Hierarchical

250 77450.32 54656.47 69548.3

500 66617.63 57946.9 61624.2

1000 54837.7 47745.45 50119.66

1500 54631.31 51423.27 51556.85

2000 52409.45 49218.98 48062.39

2500 48654.22 44078.75 46723.13

The average processing costs of the implemented algorithms

are demonstrated using Figure 4.2 and Table 4.2. According to

the obtained results, the space shared algorithm is costly as

compared to both the Distributed and Hierarchical algorithms.

But the distributed algorithm is cost effective than the

hierarchical algorithm.

Figure 4.2 Average Processing Cost

4.3 Average Waiting Time
The time consumed before assigning a task to a server resource

is termed as the waiting time. The Average Waiting Time is the

mean time consumed for allocating the resource. The Average

Waiting Time can be computed using the following formula:

Average Waiting Time =
1

N
 WTi

N

i=1

Where N is the total number of gridlets to be processed and

WTi is the waiting time for ith gridlet.

Figure 4.3 Average Waiting Time

Table 4.3 Average Waiting Time

Dataset

Size

Space

Shared

Distributed Hierarchical

250 15242.16 7644.199 12608.14

500 12943.98 10053.74 11279.51

1000 10409.49 8045.404 8836.808

1500 10120.78 9051.432 9095.96

2000 9708.813 8645.322 8259.792

2500 9040.187 7515.031 8396.493

0

5000

10000

15000

20000

25000

30000

250 500 1000 1500 2000 2500

T
im

e
in

 M
S

.

Datasets

AVERAGE CONSUMED TIME

Space Shared Distributed Hierarchical

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

250 500 1000 1500 2000 2500

C
o

st
 i

n
 R

u
p

ee
s

Datasets

AVERAGE PROCESSING COST

Space Shared Distributed Hierarchical

0

5000

10000

15000

20000

250 500 1000 1500 2000 2500

T
im

e
in

 S
ec

.

Datasets

AVERAGE WAITING TIME

Space Shared Distributed Hierarchical

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

29

The Average Waiting Time for all the algorithms is shown in

Figure 4.3 and Table 4.3. According to the experimental results

distributed algorithm demonstrate a lower waiting time in

comparison to the other two algorithms. Additionally, the

hierarchical algorithm shows the efficiency as compared to the

space shared algorithm.

4.4 Number of Task Migration
The task migration is an event when task is not executed with

current assigned resource due to load or other reasons thus the

task transferred to other resource for execution. The total

number of tasks migrated for all the three algorithms are

described in Figure 4.4 and Table 4.4. In this figure, the X axis

contains the dataset size and the Y axis shows the total number

of tasks migrated with respect to the size of the dataset.

Figure 4.4 Number of Task Migration

Table 4.4 Number of Task Migration

Dataset

Size

Space

Shared
Distributed Hierarchical

250 0 192 208

500 0 416 629

1000 0 869 1307

1500 0 1385 1987

2000 0 1828 2360

2500 0 2324 2329

According to the outcomes, the space shared algorithm

demonstrates 0 task migration. On the other hand, both the

algorithms undergo task migrations. Further, the hierarchical

algorithm demonstrates comparatively higher task migration

than the distributed algorithm.

5. RESULTS DISCUSSION
This section extends the analysis by interpreting the results

obtained through various experiments with two datasets of

different seizes (i.e. 250 & 2500) and variable number of

Resources, PEs, and Machines.

5.1 Average Consumed Time
The evaluation of Average consumed time is demonstrated on

section IV with the similar set of resources and fluctuating the

dataset set size. In this section two datasets are considered first

the set of 250 tasks and 2500 tasks and the different set of

resources are considered to measure the effect of resource on

load balancing.

Figure 5.1(a) Average Consumed Time with 250 tasks

Figure 5.1(b) Average Consumed Time with 2500 tasks

The Figure 5.1(a) contains the Average Consumed Time for

fixed length of tasks i.e. 250 and the Figure 5.1(b) contains for

2500 tasks. To demonstrate the Average Consumed Time, X

axis contains the different server resources in terms of number

of resources, number of machines and the processing elements

and the Y axis contains the time required to process the tasks.

According to the obtained results two conclusions are made;

Firstly, the amount of task size reduces the amount of time of

process execution. and Secondly, the large scale of resource

configuration is not affecting much for executing the loads.

The results of the experiments are shown in Table 5.1 under

Appendix A.

5.2 Average Processing Cost
With the similar scenarios as described above for Average

Consumed Time, the performance for Average processing cost

is computed and the performance analysis is demonstrated in

0

500

1000

1500

2000

2500

250 500 1000 1500 2000 2500

Datasets

NUMBER OF TASK MIGRATED

Space Shared Distributed Hierarchical

0

5000

10000

15000

20000

Ti
m

e
 in

 M
S

Number of Resources, PE and Machines

Space Shared (250) Distributed(250)

Hierarchical (250)

7500
8000
8500
9000
9500

10000
10500
11000

Ti
m

e
 in

 M
S

Number of Resources, PE and Machines

Space Shared (2500)

Distributed(2500)

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

30

Figure 5.2(a) and Figure 5.2(b) for 250 tasks and 2500 tasks

respectively.

Figure 5.2(a) Average Processing Cost for 250 dataset

Figure 5.2(b) Average Processing Cost for 2500 tasks

In this context the X axis shows the grid configurations in

terms of number of total resources, processing elements and the

number of machines in each resource. According to the

obtained results, as the number of tasks is increased with the

similar resources, the processing cost is reduced and the grid

performance is not much affected due to the increased size of

dataset. The results of the experiments are listed in Table 5.2

under appendix A.

5.3 Average Waiting Time
This section analyzes the Average Waiting Time of a task for

allocation of a resource after appearing in the process queue for

the datasets of length 250 and 2500. The performance in both

the scenarios is demonstrated in Figure 5.3(a) and Figure

5.3(b). The experiments are performed for finding the effect of

increasing and decreasing the number of resources. Therefore

the X Axis of the graph denotes the different combinations of

resources and Y axis denotes the Average Waiting Time.

Figure 5.3(a) Average Waiting Time for 250 tasks

The performance graphs show that the Average Waiting Time

is decreased when the larger datasets are executed on the

similar configuration of resources in comparison to the smaller

datasets. Further, on the front of Average Waiting Time, the

distributed algorithm proves to be more efficient than the other

two algorithms. The results are also shown in Table 5.3 under

Appendix A.

Figure 5.3(b) Average Waiting Time for 2500 tasks

5.4 Number of Task Migration
This section presents an analysis of the number of task

migrations for the three algorithms. Figure 5.4(a) & Figure

5.4(b) presents the number of tasks migrated for the datasets

comprising of 250 tasks and 2500 tasks respectively. The

experimental results reveal that the length of dataset increases

the number of task migrations.

Further, for smaller datasets the task migration increases with

the increase of resources while for larger datasets, the task

migration decreases with the increase of resources. Finally, in

both the cases the Distributed load balancing algorithm

demonstrates the higher task migration as compared to

Hierarchical load balancing algorithm. The results are shown in

the Table 5.4 under Appendix A.

34000
36000
38000
40000
42000
44000
46000
48000

C
o

st
 in

 IN
R

Number of Resources, PE and Machines

Space Shared (250) Distributed(250)

Hierarchical (250)

23000
24000
25000
26000
27000
28000
29000
30000
31000
32000

C
o

st
 in

 IN
R

Number of Resources, PE and Machines

Space Shared (2500) Distributed(2500)

Hierarchical (2500)

0

1000

2000

3000

4000

5000

6000

TI
m

e
 in

 M
S

Number of Resources, PE and Machines

Space Shared (250)
Distributed(250)
Hierarchical (250)

0
500

1000
1500
2000
2500
3000
3500

Ti
m

e
 in

 M
S

Number of Resources, PE and Machines

Space Shared (2500) Distributed(2500)

Hierarchical (2500)

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

31

Figure 5.4(a) Number of Task Migration for 250 tasks

Figure 5.4(b) Number of Task Migration for 2500 tasks

6. CONCLUSION
The present work is dedicated to analyze and compare the three

load balancing algorithms in computational grid environment

viz. Space Shared, Distributed and Hierarchical in the

following two perspectives:

First set of experiments are conducted to compute the

performance parameters viz. Average Consumed Time,

Average Processing Cost, Average Waiting Time and Number

of Task Migration by increasing the length of datasets for fixed

resource parameters. The results demonstrate that the values of

all the aforesaid performance parameters are decreased with

increase in length of datasets. In other words, with an increase

in the number of tasks to be executed, the time and cost of

resources is reduced.

In the next set of experiments the dataset size is fixed to 250

and the experiments are performed with the four aforesaid

performance parameters with the varying set of resources.

Thereafter, the similar experiments are conducted for the

dataset size of 2500. These experiments help to analyze the

effect of increasing resources for scheduling the tasks in a

computational grid. Therefore, a set of different resources are

prepared and the similar set of dataset is used for conducting

experiments. The experiments demonstrate that the Average

Consumed Time, Average Processing Cost, and Average

Waiting Time are reduced with the increase in length of

datasets and number of resources. On the other hand, the

number of tasks migrated are increased with the increase in

length of datasets and number of resources.

Finally, in terms of time and cost the distributed approach

shows the efficient outcomes in comparison to other two

approaches. On the other hand, in terms of the number of tasks

migrated the hierarchical approach outperforms the distributed

approach.

The future directions for research include further

improvements in distributed and hierarchical algorithms for

better results along with the study of fault tolerance of the

proposed algorithms.

7. REFERENCES
[1] What is grid computing? Available online at:

https://azure.microsoft.com/en-in/overview/what-is-grid-

computing/

[2] B. Jacob, Brown, M., Fukui, K., & Trivedi, N. (2005),

Introduction to grid computing. IBM redb, 2005

[3] Frederic Magoules, Kiat-An Tan and Abhinit Kuma,

―Introduction to grid computing‖, CRC press, 2009

[4] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger,

and K. Stockinger, Data Management in an International

Data Grid Project, Proceedings of the first IEEE/ACM

International Workshop on Grid Computing, India, 2000

[5] Klaus Krauter, Rajkumar Buyya, and Muthucumaru

Maheswaran, "A taxonomy and survey of grid resource

management systems for distributed computing",

Software: Practice and Experience 32, Number 2 (2002):

pp. 135-164.

[6] Mark Baker, Rajkumar Buyya and Domenico Laforenza,

―Grids and Grid technologies for wide-area distributed

computing‖, Software—Practice and Experience, 32, no.

15 (2002): 1437-1466.

[7] Karl Czajkowski, Ian Foster, Nick Karonis, and Steven

Tuecke, "A resource management architecture for

metacomputing systems", In Workshop on Job Scheduling

Strategies for Parallel Processing, pp. 62-82. Springer,

Berlin, Heidelberg, 1998

[8] Neeraj Mangla and Bhavya Bhatia, "Efficient Resource

Management in Grid Computing", (2013)

[9] Buyya, Rajkumar, David Abramson, and Jonathan Giddy,

"Grid Resource Management, Scheduling, and

Computational Economy", In International Workshop on

Global and Cluster Computing, Japan, Volume 21, pp.

2002-2040. 2000.

[10] Neeraj Pandey and Shashi Kant Verma, ―Load Balancing

Approaches in Grid Computing Environment‖,

International Journal of Computer Applications (IJCA),

Volume 72– No.12, June 2013

[11] Belabbas Yagoubi and Yahya Slimani, ―Dynamic Load

Balancing Strategy for Grid Computing‖, World Academy

of Science, Engineering and Technology International

Journal of Computer and Information Engineering

Volume 2, Number 7, 2008

[12] Karim Kabalan Y., Waleed W. Smari, and Jacques Y.

Hakimian, "Adaptive load sharing in heterogeneous

systems: Policies, modifications, and simulation",

0
50

100
150
200
250

Number of Resources, PE and Machines

Space Shared (250) Distributed(250)

Hierarchical (250)

0

500

1000

1500

2000

2500

C
o

st
 in

 IN
R

Number of Resources, PE and Machines

Space Shared (2500) Distributed(2500)

Hierarchical (2500)

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

32

International Journal of Simulation, Systems, Science and

Technology 3.1-2 (2002): pp. 89-100.

[13] Mohsen Amini Salehi, Hossein Deldari and Bahare

Mokarram Dorri, "Balancing load in a computational grid

applying adaptive, intelligent colonies of ants",

Informatica 33.2 (2009)

[14] Hongzhang Shan, Leonid Oliker and Warren Smith,

"Scheduling in heterogeneous grid environments: The

effects of data migration", International Conference on

Advanced Computing and Communication, Gujarat, India.

2004.

[15] Henrik Johansson and Johan Steensland, "A performance

characterization of load balancing algorithms for parallel

SAMR applications", Uppsala University, Department of

Information Technology, Tech. Rep 47 (2006): 2006.

[16] D. Ramesh, and A. Krishnan, "Hybrid algorithm for

optimal load sharing in grid computing", Journal of

Computer Science, 2012.

[17] Preeti Gulia and Deepika Nee Miku, ―Analysis and

Review of Load Balancing in Grid Computing using

Artificial Bee Colony‖, International Journal of Computer

Applications (IJCA), Volume 71, Number 20, June 2013

[18] Suryadevera, Sowmya and Jaishri Chourasia, "Load

balancing in computational grids using ant colony

optimization algorithm", International Journal of

Computer & Communication Technology 3.3 (2012): 20-

23.

[19] Kumar, Prakash, Pradeep Kumar, and Vikas Kumar,

"Computational Grid System Load Balancing Using an

Efficient Scheduling Technique", International Journal of

Computer Science and Network Security (IJCSNS) 15.8

(2015): 72.

[20] Volker Hamscher and Uwe Schwiegelshohn, "Evaluation

of job-scheduling strategies for grid computing." Grid

Computing—GRID pp. 191-202, 2000

[21] Abbas Karimi and Faraneh Zarafshan, ―A New Fuzzy

Approach for Dynamic Load Balancing Algorithm‖,

(IJCSIS) International Journal of Computer Science and

Information Security, Volume 6, Number 1, 2009.

[22] Yagoubi B., ―Modele d’equilibrage de charge pour les

grilles de calcul‖, Revue Africaine de la Recherche en

Informatique et Mathematiques Appliquees: ARIMA, vol.

7, pages 1-19, 2007

[23] Yagoubi B., Meddeber M., ―Distributed Load Balancing

Model for Grid Computing‖, ARIMA, vol. 12, pages 43-

60, 2010

[24] Parallel Workload Archive from

http://www.cs.huji.ac.il/labs/parallel/workload/

8. APPENDIX

Appendix A (List of tables)

Table 5.1 Values for Average Consumed Time

Number of

Resources, PE

and Machines

Dataset size 250 Dataset size 2500

Space Shared Distributed Hierarchical Space Shared Distributed Hierarchical

(3,5,5) 15919.48 13045.45 14270.72 10398.3 8820.48 9677.7

(5,10,10) 15257.94 13031.04 14222.69 10391.6 8775.53 9701.79

(10,15,20) 15278.21 12977.3 14256.26 10401 8806.48 9693.56

(15,20,25) 15229.34 13021.88 14376.82 10398.1 8779.93 9682.72

(20,25,30) 15387.97 13003.69 14238.24 10406.3 8822.25 9700.42

(25,30,35) 15290.36 12925.69 14274.18 10406.3 8809.9 9693.11

Table 5.2 Values for Average Processing Cost

Number of

Resources, PE

and Machines

Dataset size 250 Dataset size 2500

Space Shared Distributed Hierarchical Space Shared Distributed Hierarchical

(3,5,5) 45958.44 39136.37 42812.18 31195 26461.4 29033.1

(5,10,10) 45773.82 39093.12 42668.01 31174.8 26326.6 29105.4

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.18, February 2018

33

(10,15,20) 45834.63 38931.9 42768.79 31203 26419.5 29080.7

(15,20,25) 45688.03 39065.64 43130.46 31197.3 26339.8 29048.2

(20,25,30) 46154 39011.07 42714.73 31218.9 26466.8 29101.3

(25,30,35) 45871.09 38777.07 42822 31168.7 26429.7 29079.3

Table 5.3 Values for Average Waiting Time

Number of

Resources, PE

and Machines

Dataset size 250 Dataset size 2500

Space Shared Distributed Hierarchical Space Shared Distributed Hierarchical

(3,5,5) 4744.85 2470.83 3696.1 3220.45 1642.59 2499.82

(5,10,10) 4683.31 2456.41 3648.04 3213.7 1597.65 2523.9

(10,15,20) 4703.58 2402.68 3681.63 3223.12 1628.6 2515.67

(15,20,25) 4654.72 2447.25 3802.19 3220.22 1602.05 2504.82

(20,25,30) 4810.35 2429.06 3663.62 3228.42 1644.37 2522.53

(25,30,35) 4715.73 2351.06 3699.56 3211.68 1632.02 2515.22

Table 5.4 Values for Number of Task Migration

Number of

Resources, PE

and Machines

Dataset size 250 Dataset size 2500

Space Shared Distributed Hierarchical Space Shared Distributed Hierarchical

(3,5,5) 0 174 18 0 1564 140

(5,10,10) 0 174 101 0 2073 209

(10,15,20) 0 174 19 0 1565 185

(15,20,25) 0 167 17 0 1566 252

(20,25,30) 0 204 6 0 695 100

(25,30,35) 0 204 55 0 1146 97

IJCATM : www.ijcaonline.org

