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ABSTRACT  
Grid computing is an infrastructure for supporting complex 

computing. That is organized with the different scale of 

computational and network resources. In addition of that it is 

capable to process the request of multiple users. In this context 

the effective scheduling of resources according to the 

submitted tasks are required for efficient computational 

outcome. This paper provides an experimental study for the 

three popular load balancing techniques i.e. space shared, 

distributed and Hierarchical. The experiments are performed 

using GridSim technology and with help of JAVA based 

implemented scripts. The two kinds of experiments are 

reported in this work first with the increasing workload and 

secondly with the varying number of resources i.e. number of 

machines and number of processing elements. The different 

experiments show that the space shared is a promising 

algorithm for load balancing but the hierarchical load balancing 

algorithm comparatively enhances the performance of grid. 

Finally, the distributed load balancing algorithm demonstrates 

its superiority among all of them. 

General Terms 
Computational Grids, Grid Computing, Load Balancing, 

Distributed Grid, Hierarchical Grid 

Keywords 
Grid Computing, Load Balancing, Performance Evaluation,   

Distributed Algorithm, Space Shared, Hierarchical Algorithm. 

1. INTRODUCTION 
Grid computing enables the creation of a single IT 

infrastructure that can be shared by multiple business 

processes. Grid computing is a group of networked computers 

which work together as a virtual supercomputer to perform 

large tasks, such as analyzing huge sets of data or weather 

modeling. Through the cloud, you can assemble and use vast 

computer grids for specific time periods and purposes, paying, 

if necessary, only for what you use to save both the time and 

expense of purchasing and deploying the necessary resources 

yourself. Also by splitting tasks over multiple machines, 

processing time is significantly reduced to increase efficiency 

and minimize wasted resources. Unlike with parallel 

computing, grid computing projects typically have no time 

dependency associated with them. They use computers which 

are part of the grid only when idle and operators can perform 

tasks unrelated to the grid at any time. Security must be 

considered when using computer grids as controls on member 

nodes are usually very loose. Redundancy should also be built 

in as many computers may disconnect or fail during processing 

[1] [2]. 

Normally, grid works on different tasks in network, but that is 

also suitable to working on particular applications. That is 

designed for solving large problems with maintaining 

flexibility by dividing into number of smaller problems. 

Computing grids works on multiuser environment that offers 

discontinuous demands of huge information processing. Grids 

consist of a variety of resources such as software and hardware, 

computer languages, and frameworks. That is connected 

through a network or by using open standards to achieve a 

common goal [3]. 

1.1 Grid Computing System 
Grid computing is an extension of distributed computing that 

incorporates coordinating and sharing of computational power, 

data storage and network resources across dynamic and 

geographically dispersed organizations. Rapid growth in use of 

computers has increased the number of applications which uses 

the shared hardware and software resources (e.g. memory, 

processor, files etc.) and ultimately increased the amount of 

submitted tasks across internet. Problem can be solved if we 

distribute the applications across different computer, in such a 

manner that it reduces the task response time and the overhead 

on a single computer. Proper distribution of applications across 

different available resources is termed as Load Balancing [4]. 

The Computational Grid category represents a system that has 

a higher aggregate computational capacity available for single 

applications. These can be additionally subdivided into 

circulated supercomputing and high throughput classes relying 

upon how the total limit is used. A circulated supercomputing 

Grid executes the application in parallel on different machines 

to decrease the finish time of a task. 

 
Figure 1.1 Grid System Taxonomy 

The Data Grid classification is for frameworks that give a 

foundation for combining new data from information archives, 

for example, advanced libraries or information stockrooms that 

are conveyed in a wide territory arrange. Computational Grids 

additionally need to give information benefits however the 

significant contrast between a Data Grid and a computational 

Grid is the specific framework gave to applications to capacity 

administration and information get to. 

The Service Grid category is for frameworks that give benefits 

that are not given by any single machine. This class is 
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additionally subdivided into On-Demand, Collaborative, and 

Multimedia Grid systems [5] [6]. 

1.2 Resource Management in Grid 
Efficient resource management is one of the fundamental 

requirements in grid computing. Resource management is 

required in an environment where resources are quite limited 

and need to be utilized properly. The term resource 

management [7] refers to manage the different types of 

resources like bandwidth, processing power, etc. so that they 

can be efficiently utilized and satisfy the need of the users and 

as they are limited in the environment so to allocate to 

maximum number of sites. As resources are limited in the 

environment and number of users are far much greater than the 

number of resources, so we need to perform resource 

management so that effective utilization of resources take 

place. The various challenges that resource management in grid 

environment faces are as follows [8]:  

 Satisfactory end to end performance through multiple 

domains 

 Availability of computational resources needs to be 

checked in order to have knowledge regarding the 

resources present in the environment. 

 Handle of conflicts between common resource 

demands. 

 Fault tolerance. 

 Inter domain compatibility. 

The resources that are united in grid are geographically 

distributed and different individuals or organizations own each 

of them. Additionally they have their own access policies, 

processing cost, and mechanism. The resource administrators 

are responsible to manage and control using their desired 

management and scheduling system. That is also called local 

scheduler and grid users are expected to honor that and make 

sure they do not interfere with resource owners’ policies. They 

may charge diverse costs for various framework clients for 

their asset utilization and it might differ every now and then 

[9]. As given in figure 2 the connection between different 

network segments are finished utilizing numerous means, 

which are as per the following [10]: 

 The grid client pursues their application and 

investigation and determining their necessity, 

presents their undertakings to grid resource broker 

(GRB).  

 GRB gathers all asset data and perform asset 

disclosure.  

 After approving client and resource(s) GRB plan the 

undertaking to fitting resource(s) or registering hubs.  

 Resource(s) execute the undertaking and return 

computational outcome to GRB.  

 The GRB gathers result and give it to the matrix 

client. 

 
Figure 1.2 Grid Resource Management 

1.3 Load Balancing in Grid 
Grids functionally combine worldwide distributed computers 

and information systems for creating a universal source of 

computing power and information. A key characteristic of 

Grids is that resources are shared among numerous 

applications, and therefore, the amount of resources available 

to any given application is highly fluctuating over time. In 

present scenario, load balancing plays a key role. For 

applications that are Grid enabled, the Grid can offer a resource 

balancing effect by scheduling grid tasks on machines with low 

utilization. A proper scheduling and efficient load balancing 

across the grid can lead to improved overall system 

performance and a lower turnaround time for individual tasks. 

The main objective of load balancing is to minimize the make 

span time to enhance resource utilization, exploiting 

parallelism, maximize throughput and reduce response time 

through a suitable distribution of the application [11]. 

2. LITERATURE SURVEY 
This section is organized for providing the investigational 

details about the different relevant concept of load balancing 

which contributes to the research directions and guidelines for 

design and development of a unique model for load balancing 

in a grid environment.  

Karim Y. Kabalan et al. [12] discusses several adaptive load 

sharing algorithms for heterogeneous distributed computing 

systems. It proposes some modifications to existing algorithms 

that will account for the delay in transferring tasks from one 

node to another. It further verifies and validates those proposed 

changes with some of the simulation results obtained. 

Ant colony is a meta-heuristic method that can be instrumental 

for grid load balancing. Mohsen Amini Salehi et al. [13] 

presents a reverberate arrangement of versatile fluffy ants. The 

ants in this condition can make new ones and may likewise 

submit suicide relying upon existing conditions. Another idea 

called Ant level load adjusting is exhibited here for enhancing 

the execution of the instrument. An execution assessment 

display is likewise determined. The experimental results reveal 

that the proposed system outperforms its antecedent. 

Hongzhang Shan et al. [14] explored the impact of data 

migration under a variety of demanding grid conditions. They 

evaluated the grid scheduling algorithm through simulation of 

computing servers, different groupings of servers into sites, and 

inter-server networks, utilizing genuine workloads derived 

from real trace data collected at leading supercomputing 

centers. The study reveal that in the presence of input / output 

data migration, the sender initiated distributed approach 

resulted into reduction of average turnaround time by 60% as 

compared to the local approach.  
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Henrik Johansson et al. [15] performed a performance 

characterization of load balancing algorithms for parallel 

structured adaptive mesh refinement (SAMR). For a proficient 

parallel SAMR execution, dividing calculation must be 

powerfully chosen at run-time as to both application and PC 

state. Creators describe and analyze a typical apportioning 

algorithm and a large number of alternative partitioning 

algorithms. The results prove viability of dynamic algorithm 

selection and show benefits of using a large number of 

complementing partitioning algorithms. 

In order to avoid the increase in waiting time and response time 

thereby causing reduction in performances of grid by reducing 

the resource utilization, an optimal resource sharing algorithm 

is required. D. Ramesh et al. [16] proposed a hybrid algorithm 

for streamlining the load sharing. It utilizes two major 

components viz. Hash Table (HT) and Distributed Hash Table 

(DHT). The experimental results reveal that the proposed 

algorithm enhances the performance in comparison to the 

existing ones. 

The Artificial Bee Colony (ABC) algorithm is an optimization 

algorithm based on the intelligent behavior of honey bee 

swarm. Preeti Gulia et al. [17] has compared various dynamic 

load balancing techniques. This paper also reviews various 

load balancing techniques using swarm intelligence. 

Load balancing is one of the critical issues considered for 

managing a grid environment. Sowmya Suryadevera et al. [18] 

proposed an Ant Colony Optimization algorithm for stack 

adjusting in framework figuring which will decide best asset to 

be dispensed to assignments, in view of asset limit and at the 

same time balances load of entire resources.  

Expecting homogeneous arrangement of hubs connected with 

homogeneous and quick systems, different load balancing 

approached were proposed. On the basis of past outcomes, 

Prakash Kumar et al. [19] introduced a model to enhance the 

execution and throughput. It proposes proficient calculations 

with better booking strategies. 

Volker Hamscher et al. [20] discuss scheduling structures for 

computational grids. Simulations were used to evaluate 

combinations of different Task and Machine Models. They use 

hierarchical scheduling as common scheduling structure and 

confirmed the benefit of Backfill.  

Abbas Karimi et al. [21] presented an approach for 

implementing dynamic load balancing with fuzzy logic, that 

can handle uncertainty and inconsistency, this algorithm shows 

better response time than round robin and randomize algorithm 

respectively by 30.84% and 45.45%. 

Yagoubi B et al. [22] proposed a hierarchical model for 

computational grids wherein the grid manager maintaining the 

global load information is vulnerable to become bottleneck.  

Yagoubi B et al. [23] proposed a distributed model by mapping 

a grid into a forest based model wherein the local load 

balancing is preferred over the global load balancing. 

3. PROPOSED WORK  
The main aim of this paper is to provide experimental 

performance study of two proposed load balancing algorithms 

for heterogeneous grids viz. Hierarchical and Distributed. In 

view of the heterogeneity involved in the grid environment, we 

have chosen Processing Time as the metric for workload 

estimation which is calculated as the ratio of workload on a 

node to its processing speed. For efficiency purposes the 

Binary Heaps are used to maintain the workload information at 

the manager level as it enables to locate the source and 

destinations in a migration decision in O(1) time and can be 

reorganized in O(log2n) time thereby ensuring efficient 

solution. 

The experiments are performed for finding the strengths of 

these algorithms on the basis of the following four performance 

parameters: 

1. Average Consumed Time: the combination of time 

unit for different stages involved in computational 

grid i.e. waiting time, processing time and delay 

associated for allocating the task to resource.  

2. Average Processing Cost: the distributed computing 

works on shared resources for that purpose the 

amount of cost is required for utilizing the server 

resources.  

3. Average Waiting time: the amount of time required to 

start execution when it is in a task queue is known as 

waiting time. 

4. Number of Task Migration: the tasks in a process 

queue are assigned with two parameters i.e. task 

length and priority flag. If the task is not processed 

within a threshold time then the task is migrated to 

other computational resource.  

The performance of these algorithms is studied and analyzed 

on the aforesaid parameters through simulations using an 

application developed in Java using GridSim4.0, NetBeans 

IDE 8.1 and Apache Derby RDBMS on Intel® Core™ i3-

5005U 2.00 GHz system. A comparison of the performance of 

these proposed algorithms is also done with the Space Shared 

Algorithm for grid load balancing used in GridSim4.0. The 

dataset for simulation experiments are downloaded from 

Parallel Workload Archive [24] and partitioned for 

experimental purposes.  

Next section provides the detailed investigation of the 

experimentations and the obtained values. 

4. RESULTS ANALYSIS 
The experiments performed on the aforesaid three algorithms 

are described in this section. To demonstrate the experiments 

across different performance parameters, as discussed in 

Section III, are considered their obtained values and the 

observations are described as: 

4.1 Average Consumed Time 
The average time consumed is the total amount of time 

required to process the entire request by the grid resources. 

That is measured using the following formula: 

Average Consumed Time =
1

N
 CPUi

N

i=1

 

Where N is the total number of gridlets to be processed and 

CPUi is the time for processing ith gridlet. 

Figure 4.1 and Table 4.1 show the average time consumed for 

processing the input gridlets by the configured grid server. In 

figure the x axis contains the length of different dataset and the 

corresponding time consumed is reported on Y axis. The 

average consumed time for space shared algorithm is reported 

using blue line, distributed algorithm is shown using red line 

and gray line is used for hierarchical algorithm. According to 

the observations the mean time consumption for the algorithm 

is initially higher and with the increased length of dataset it is 

continuously decreased. Results show that the distributed 

algorithm for load balancing is more effective than the other 

two algorithms. 
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Table 4.1 Average Consumed Time 

Dataset 

Size 

Space 

Shared 

Distributed Hierarchical 

250 25816.79 18218.82 23182.77 

500 22205.88 19315.63 20541.4 

1000 18279.23 15915.15 16706.55 

1500 18210.44 17141.09 17185.62 

2000 17469.82 16406.33 16020.8 

2500 16218.02 14692.92 15574.38 

 

 

Figure 4.1 Average Consumed Time 

 

4.2 Average Processing Cost  
The amount of mean cost required to execute all the submitted 

tasks is termed as the Average processing cost. The Average 

processing cost can be computed using the following formula: 

Average Processing Cost =
1

N
 costi

N

i=1

 

Where N is the total number of gridlets to be processed and 

costi is the cost for processing ith gridlet. 
 

Table 4.2 Average Processing Cost 

Dataset 

Size 

Space 

Shared 

Distributed Hierarchical 

250 77450.32 54656.47 69548.3 

500 66617.63 57946.9 61624.2 

1000 54837.7 47745.45 50119.66 

1500 54631.31 51423.27 51556.85 

2000 52409.45 49218.98 48062.39 

2500 48654.22 44078.75 46723.13 

 

The average processing costs of the implemented algorithms 

are demonstrated using Figure 4.2 and Table 4.2. According to 

the obtained results, the space shared algorithm is costly as 

compared to both the Distributed and Hierarchical algorithms. 

But the distributed algorithm is cost effective than the 

hierarchical algorithm. 

 

 

Figure 4.2 Average Processing Cost 

4.3 Average Waiting Time 
The time consumed before assigning a task to a server resource 

is termed as the waiting time. The Average Waiting Time is the 

mean time consumed for allocating the resource. The Average 

Waiting Time can be computed using the following formula:  

Average Waiting Time =  
1

N
 WTi

N

i=1

 

Where N is the total number of gridlets to be processed and 

WTi is the waiting time for ith gridlet. 

 

Figure 4.3 Average Waiting Time 

 

Table 4.3 Average Waiting Time 

Dataset 

Size 

Space 

Shared 

Distributed Hierarchical 

250 15242.16 7644.199 12608.14 

500 12943.98 10053.74 11279.51 

1000 10409.49 8045.404 8836.808 

1500 10120.78 9051.432 9095.96 

2000 9708.813 8645.322 8259.792 

2500 9040.187 7515.031 8396.493 
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The Average Waiting Time for all the algorithms is shown in 

Figure 4.3 and Table 4.3. According to the experimental results 

distributed algorithm demonstrate a lower waiting time in 

comparison to the other two algorithms. Additionally, the 

hierarchical algorithm shows the efficiency as compared to the 

space shared algorithm. 

 

4.4 Number of Task Migration 
The task migration is an event when task is not executed with 

current assigned resource due to load or other reasons thus the 

task transferred to other resource for execution. The total 

number of tasks migrated for all the three algorithms are 

described in Figure 4.4 and Table 4.4. In this figure, the X axis 

contains the dataset size and the Y axis shows the total number 

of tasks migrated with respect to the size of the dataset. 

 

Figure 4.4 Number of Task Migration 

 

Table 4.4 Number of Task Migration 

Dataset 

Size 

Space 

Shared 
Distributed Hierarchical 

250 0 192 208 

500 0 416 629 

1000 0 869 1307 

1500 0 1385 1987 

2000 0 1828 2360 

2500 0 2324 2329 

 

According to the outcomes, the space shared algorithm 

demonstrates 0 task migration. On the other hand, both the 

algorithms undergo task migrations. Further, the hierarchical 

algorithm demonstrates comparatively higher task migration 

than the distributed algorithm. 

 

5. RESULTS DISCUSSION 
This section extends the analysis by interpreting the results 

obtained through various experiments with two datasets of 

different seizes (i.e. 250 & 2500) and variable number of 

Resources, PEs, and Machines. 

5.1 Average Consumed Time 
The evaluation of Average consumed time is demonstrated on 

section IV with the similar set of resources and fluctuating the 

dataset set size. In this section two datasets are considered first 

the set of 250 tasks and 2500 tasks and the different set of 

resources are considered to measure the effect of resource on 

load balancing.  

 

 

Figure 5.1(a) Average Consumed Time with 250 tasks 

 

 

Figure 5.1(b) Average Consumed Time with 2500 tasks 

 

The Figure 5.1(a) contains the Average Consumed Time for 

fixed length of tasks i.e. 250 and the Figure 5.1(b) contains for 

2500 tasks. To demonstrate the Average Consumed Time, X 

axis contains the different server resources in terms of number 

of resources, number of machines and the processing elements 

and the Y axis contains the time required to process the tasks. 

According to the obtained results two conclusions are made; 

Firstly, the amount of task size reduces the amount of time of 

process execution. and Secondly, the large scale of resource 

configuration is not affecting much for executing the loads. 

The results of the experiments are shown in Table 5.1 under 

Appendix A. 

5.2 Average Processing Cost  
With the similar scenarios as described above for Average 

Consumed Time, the performance for Average processing cost 

is computed and the performance analysis is demonstrated in 
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Figure 5.2(a) and Figure 5.2(b) for 250 tasks and 2500 tasks 

respectively.  

 

Figure 5.2(a) Average Processing Cost for 250 dataset 

 

Figure 5.2(b) Average Processing Cost for 2500 tasks 

In this context the X axis shows the grid configurations in 

terms of number of total resources, processing elements and the 

number of machines in each resource. According to the 

obtained results, as the number of tasks is increased with the 

similar resources, the processing cost is reduced and the grid 

performance is not much affected due to the increased size of 

dataset. The results of the experiments are listed in Table 5.2 

under appendix A. 

5.3 Average Waiting Time 
This section analyzes the Average Waiting Time of a task for 

allocation of a resource after appearing in the process queue for 

the datasets of length 250 and 2500. The performance in both 

the scenarios is demonstrated in Figure 5.3(a) and Figure 

5.3(b). The experiments are performed for finding the effect of 

increasing and decreasing the number of resources. Therefore 

the X Axis of the graph denotes the different combinations of 

resources and Y axis denotes the Average Waiting Time. 

 

 

 

Figure 5.3(a) Average Waiting Time for 250 tasks 

 

The performance graphs show that the Average Waiting Time 

is decreased when the larger datasets are executed on the 

similar configuration of resources in comparison to the smaller 

datasets. Further, on the front of Average Waiting Time, the 

distributed algorithm proves to be more efficient than the other 

two algorithms. The results are also shown in Table 5.3 under 

Appendix A. 

 

 

Figure 5.3(b) Average Waiting Time for 2500 tasks 
 

5.4 Number of Task Migration 
This section presents an analysis of the number of task 

migrations for the three algorithms. Figure 5.4(a) & Figure 

5.4(b) presents the number of tasks migrated for the datasets 

comprising of 250 tasks and 2500 tasks respectively. The 

experimental results reveal that the length of dataset increases 

the number of task migrations. 

Further, for smaller datasets the task migration increases with 

the increase of resources while for larger datasets, the task 

migration decreases with the increase of resources. Finally, in 

both the cases the Distributed load balancing algorithm 

demonstrates the higher task migration as compared to 

Hierarchical load balancing algorithm. The results are shown in 

the Table 5.4 under Appendix A. 
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Figure 5.4(a) Number of Task Migration for 250 tasks 

 

Figure 5.4(b) Number of Task Migration for 2500 tasks 

6.   CONCLUSION  
The present work is dedicated to analyze and compare the three 

load balancing algorithms in computational grid environment 

viz. Space Shared, Distributed and Hierarchical in the 

following two perspectives: 

First set of experiments are conducted to compute the 

performance parameters viz. Average Consumed Time, 

Average Processing Cost, Average Waiting Time and Number 

of Task Migration by increasing the length of datasets for fixed  

resource parameters. The results demonstrate that the values of 

all the aforesaid performance parameters are decreased with 

increase in length of datasets. In other words, with an increase 

in the number of tasks to be executed, the time and cost of 

resources is reduced.  

In the next set of experiments the dataset size is fixed to 250 

and the experiments are performed with the four aforesaid 

performance parameters with the varying set of resources. 

Thereafter, the similar experiments are conducted for the 

dataset size of 2500. These experiments help to analyze the 

effect of increasing resources for scheduling the tasks in a 

computational grid. Therefore, a set of different resources are 

prepared and the similar set of dataset is used for conducting 

experiments. The experiments demonstrate that the Average 

Consumed Time, Average Processing Cost, and Average 

Waiting Time are reduced with the increase in length of 

datasets and number of resources. On the other hand, the 

number of tasks migrated are increased with the increase in 

length of datasets and number of resources.  

Finally, in terms of time and cost the distributed approach 

shows the efficient outcomes in comparison to other two 

approaches. On the other hand, in terms of the number of tasks 

migrated the hierarchical approach outperforms the distributed 

approach.    

The future directions for research include further 

improvements in distributed and hierarchical algorithms for 

better results along with the study of fault tolerance of the 

proposed algorithms. 
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8. APPENDIX 

 

Appendix A (List of tables) 

 

Table 5.1 Values for Average Consumed Time 

Number of 

Resources, PE 

and Machines 

Dataset size 250 Dataset size 2500 

Space Shared Distributed Hierarchical Space Shared Distributed Hierarchical 

(3,5,5) 15919.48 13045.45 14270.72 10398.3 8820.48 9677.7 

(5,10,10) 15257.94 13031.04 14222.69 10391.6 8775.53 9701.79 

(10,15,20) 15278.21 12977.3 14256.26 10401 8806.48 9693.56 

(15,20,25) 15229.34 13021.88 14376.82 10398.1 8779.93 9682.72 

(20,25,30) 15387.97 13003.69 14238.24 10406.3 8822.25 9700.42 

(25,30,35) 15290.36 12925.69 14274.18 10406.3 8809.9 9693.11 

 

 

Table 5.2 Values for Average Processing Cost 

Number of 

Resources, PE 

and Machines 

Dataset size 250 Dataset size 2500 

Space Shared Distributed Hierarchical Space Shared Distributed Hierarchical 

(3,5,5) 45958.44 39136.37 42812.18 31195 26461.4 29033.1 

(5,10,10) 45773.82 39093.12 42668.01 31174.8 26326.6 29105.4 
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(10,15,20) 45834.63 38931.9 42768.79 31203 26419.5 29080.7 

(15,20,25) 45688.03 39065.64 43130.46 31197.3 26339.8 29048.2 

(20,25,30) 46154 39011.07 42714.73 31218.9 26466.8 29101.3 

(25,30,35) 45871.09 38777.07 42822 31168.7 26429.7 29079.3 

 

Table 5.3 Values for Average Waiting Time 

Number of 

Resources, PE 

and Machines 

Dataset size 250 Dataset size 2500 

Space Shared Distributed Hierarchical Space Shared Distributed Hierarchical 

(3,5,5) 4744.85 2470.83 3696.1 3220.45 1642.59 2499.82 

(5,10,10) 4683.31 2456.41 3648.04 3213.7 1597.65 2523.9 

(10,15,20) 4703.58 2402.68 3681.63 3223.12 1628.6 2515.67 

(15,20,25) 4654.72 2447.25 3802.19 3220.22 1602.05 2504.82 

(20,25,30) 4810.35 2429.06 3663.62 3228.42 1644.37 2522.53 

(25,30,35) 4715.73 2351.06 3699.56 3211.68 1632.02 2515.22 

 

Table 5.4 Values for Number of Task Migration 

Number of 

Resources, PE 

and Machines 

Dataset size 250 Dataset size 2500 

Space Shared Distributed Hierarchical Space Shared Distributed Hierarchical 

(3,5,5) 0 174 18 0 1564 140 

(5,10,10) 0 174 101 0 2073 209 

(10,15,20) 0 174 19 0 1565 185 

(15,20,25) 0 167 17 0 1566 252 

(20,25,30) 0 204 6 0 695 100 

(25,30,35) 0 204 55 0 1146 97 
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