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ABSTRACT 

Cryptography is the discipline of encoding and decoding 

messages. Cryptography is used frequently in people’s daily 

lives to keep sensitive information, such as credit card 

information, safe. Many everyday activities can be easily 

monitored by unintended third parties via Internet. Hill cipher 

is a classic cryptography based on linear algebra that is simply 

a linear transformation represented by a matrix. The encoding 

and decoding process in Hill cipher involves matrix 

multiplication, which is potentially time consuming, making it 

one of the most well-studied problems in this field. In this 

paper, we implement the message passing interface (MPI) and 

MapReduce methods to demonstrate their effectiveness in 

expediting Hill cipher algorithm in parallel algorithms on a 

multi-core system. Simulation results show that the efficiency 

rates of MPI and MapReduce are 93.71 % and 53.43 

respectively, with a multi-core processor on the large file size, 

indicating better performances compared with sequential 

methods. 

Keywords 
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1. INTRODUCTION 
Cryptography is the encoding and decoding secret messages 

into unreadable form to ensure privacy by keeping 

information hidden from third parties. Recently, 

mathematicians and research scientists have worked on 

cryptography to find the best and suitable algorithm to 

securely store and transfer sensitive information over the 

Internet, which can be easily monitored by unintended third 

parties [6], [17]. Cryptography has been proven a critical 

factor of success in war and business. 

Hill cipher is a classic cryptography that is technically 

a polygraphic substitution cipher. Hill cipher is one of the first 

practical applications of linear algebra to polygraphic ciphers. 

Creator Lester Hill first described ciphers in 1929 in The 

American Mathematical Monthly [11], and he wrote another 

article about them in 1931[12]. 

Hill cipher acts on groups of letters, where plaintext is divided 

into groups of letters of a fixed size, and each group is 

transformed to a different group of letters. This transformation 

is accomplished using matrix multiplication, which is 

involved in encoding and decoding. A large amount of 

information is sent over the Internet every second, and one 

type of information is extremely difficult to break, namely, 

that which uses matrix to encode a message. In Hill cipher, the 

first matrix is called the encoding matrix and its inverse is 

called the decoding matrix.  

Using matrix multiplication focuses on computational 

problems that should be investigated thoroughly to enhance 

the efficiency of the implemented algorithms. Hence, several 

parallel and distributed systems for matrix multiplication 

methods have been proposed over the years to reduce cost and 

time of matrix multiplication over multiple processors [5], 

[16],[24].  

Parallel and distributed computing systems are high-

performance computing systems that spread out a single 

application over many multi-core and multi-

processor computers to rapidly complete the task 

[25],[26],[27],[29]. Parallel and distributed computing systems 

divide large problems into smaller sub-problems and assign 

each of them to different processors in a typically distributed 

system running concurrently in parallel [28]. MapReduce [19] 

and message passing interface (MPI) are among these 

computing systems, which will be discussed in the following 

section. 

In this study, we applied Hill cipher encryption algorithm on 

different sizes of files by using efficient MapReduce with an 

optimized mapper set produced by [14] and MPI library. We 

used this method to demonstrate the performance of Hill 

cipher encryption algorithm by using parallel computing and 

compared it with sequential methods. 

This paper is organized as follows. Section 2 reviews works 

that are closely related with using the matrix multiplication in 

many applications. Section 3 presents hill cipher 

implementation. Section 4 presents all methods used in this 

work. Section 5 presents the experimental results. Section 6 

gives the conclusion. 

2. RELATED WORK  
Mathematicians and research scientists have found many 

matrix algorithms. The advent of personal and large-scale 

computers increased the use of matrices in a wide variety of 

applications, such as economics, engineering, statistics, and 

other sciences. 

Traditional sequential algorithms for matrix multiplication 

consume considerable space and time. Fox [10], and Cannon 

[4], algorithms have been proposed for parallelizing matrix 

multiplication to enhance its efficiency. These approaches 

balance inter-process communication, dependencies, and 

parallelism level to maximize efficiency. Parallel matrix 

multiplication relies on the independence of multiplication, 

which includes multiple independent element-to-element 

multiplications and multiple aggregations of independent 

multiplication results. 

Zhang et al. [23] presented an outsourcing computation 

schema in an amortized model for matrix multiplication of 

two arbitrary matrices that meet the requirements for both 

security and efficiency. They compared their scheme 

functionalities with existing works, such as Fiore’s [7], Li’s 

[16], and Jia’s schema [11]. Zhang et al. [23] proved that their 

schema is more efficient in terms of functionality as well as 

computation, storage, and communication overhead. 

https://en.wikipedia.org/wiki/Classical_cryptography
https://en.wikipedia.org/wiki/Substitution_cipher#Polygraphic
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/High_performance_computing
https://en.wikipedia.org/wiki/High_performance_computing
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
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Kumar et al. [15] proposed a privacy-preserving, verifiable, 

and efficient algorithm for matrix multiplication in 

outsourcing paradigm to solve the lack of computing 

resources, where the client with a large dataset can perform 

matrix multiplication using cloud server. Kumar et al. [13] 

evaluated their algorithm on security, efficiency, and 

variability parameters. With high efficiency and practical 

usability, their algorithm can mostly replace costly 

cryptographic operations and securely solve matrix 

multiplication algorithm. 

Acharya et al. [1] proposed a novel advanced Hill (AdvHill) 

encryption technique to encrypt an image using a technique 

different from the conventional Hill cipher. This fast 

encryption scheme overcomes problems of encrypting the 

images with homogeneous background. Acharya et al. 

concluded that their proposed AdvHill algorithm is more 

secure to brute force attacks and quite reliable and robust after 

a comparative study of the proposed encryption and the 

existing schemes was done. 

Panigrahy et al. [21] proposed an efficient method of 

generating self-invertible matrix for Hill cipher algorithm for 

use in image encryption. It is not only limited to this area but 

can also be widely applied in other information security fields, 

such as video encryption. They concluded that these methods 

eliminate the computational complexity as inverse of the 

matrix is not required, whereas decrypting in Hill cipher 

involves finding the inverse of the matrix in decryption 

AL-Laham [20] enhanced technique of color image 

encryption-decryption based on random matrix key encoding 

is proposed, which utilizes matrix multiplication and inverse 

matrices. They concluded that his proposed technique rapidly 

increases the image transmission security and enhances the 

encryption-decryption process by eliminating the mean square 

error and maximizing the speed of the encryption decryption 

process. 

3. HILL CIPHER IMPLEMENTATION  
Hill ciphers apply matrices to cryptography. Ciphers are 

methods for transforming a secret message called 

plaintext into a particular form so that only those for whom it 

is intended and know the key can read and process it. In a 

cipher, the key transforms the plaintext letters into other 

characters known as the cipher text. The secret rule, that is, 

the inverse key, is required to reverse the transformation to 

recover the original message. Using the key to transform 

plaintext into cipher text is to encipher the plaintext. Using the 

inverse key to transform the cipher text back into plaintext is 

to decipher the cipher text. We need to understand modular 

arithmetic and multiply invert matrices to understand Hill 

ciphers.  

A common way to send coded messages is to assign numerical 

values from 1–26 to the alphabet, as shown in Figure 1 below, 

and send the message as a string of integers. Codes such as 

these are easily broken using an analysis of the frequency of 

numbers that appear in the coded messages. 

 Fig 1: Numerical Values to The Alphabet 

 

The encoder is a matrix and the decoder is its inverse. On the 

sender side, A is the encoding matrix, B is the message 

matrix, and C is the encrypted matrix. The sizes of A and B 

must be consistent and will determine the size of C. 

Mathematically, the operation is 

𝒎𝒐𝒅 𝟐𝟔 (𝑨𝑩) = 𝑪 

On the receiver side, the intended user who wants to recover 

the original message B must have C and know A. Thus, this 

situation would be the same as solving the matrix equation for 

B by multiplying both sides of the equation on the left by 𝐴−1. 

The operation is  

𝑩 = 𝑨−𝟏𝑪 

The following step shows an example of matrix multiplication 

encryption for plaintext message “hello mohamad” using the 

keyword “alphabet” and a 3 𝑥 3 matrix.  

3.1 Encryption  
Step-1: Convert the characters of the key to integers between 

1 and 26 using the figure above and fill the matrix. If the 

keyword is longer than the 9 letters needed, only take only the 

first 9 letters. Conversely, if it is shorter, fill it with the 

alphabet in order. 

0 11 15 7 0 1 4 19 

A L P H A B E T 

 
0 11 15
7 0 1
4 19 0

  

Step-2: Convert the characters of the plaintext to integers and 

fill the matrix with the same size of key row length. 

7 4 11 11 14 12 14 7 0 12 0 3 

H E L L O M O H A M A D 

 
7 4 11 11 

14 12 14 7
0 12 0 3

  

Step-3: Encrypt the message by multiplying the message 

matrix by the key matrix to perform the matrix multiplication 

and obtain the encryption matrix as follows: 

   
0 11 15
7 0 1
4 19 0

  𝑥  
7 4 11 11 

14 12 14 7
0 12 0 3

    = 

  
154 312 154 122
49 40 77 80

294 244 310 177
   

 

 
154 312 154 122
49 40 77 80

294 244 310 177
  𝑚𝑜𝑑 26 =    

24 0 24 18
23 4 25 2
8 10 24 21

  

Encrypted message will now be 

24 0 24 18 23 4 25 2 8 10 24 21 

Y A Y S X E Z C I K Y V 

3.2 Decryption  
We will focus on finding the inverse key matrix that is not an 

easy task, because the majority of the process is the same as 

encryption. We perform the calculation below equation, 

where A is the key matrix, D is the determinant of the key 
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matrix, and 𝑎𝑑𝑗(𝐴) is the adjugate matrix of A to find the 

inverse of the key matrix. 

𝑨−𝟏 = 𝑫−𝟏  × 𝒂𝒅𝒋 (𝑨) 

Step-1: Find determinant of the key 

The determinant is a number that relates directly to the entries 

of the matrix. For our 3 × 3 matrix example, it is found by 

multiplying the top left entry by the determinant of the 2 × 2 

matrix formed by the entries that are not in the same row or 

column as that entry. Similar steps are done with the other two 

elements in the top row, and the middle value is subtracted 

from the sum of the other two as shown below.  

 
0 11 15
7 0 1
4 19 0

 = 0  
0 1

19 1
 −  11  

7 1
4 0

 + 11  
7 0
4 9

 

=  2039 = 11 𝑚𝑜𝑑 26 

We must now find the multiplicative inverse of the 

determinant working mod 26, that is, the number between 1 

and 25 that gives an answer of 1 when multiplied by the 

determinant. In this case, we are looking for the number that 

we need to multiply 11 by to get an answer of 1 mod 26.  

11 × 𝑥 = 1 𝑚𝑜𝑑 26 

𝑑𝑑−1 = 1 𝑚𝑜𝑑 26 

11 × 19 = 209 = 1 𝑚𝑜𝑑 26 

Step-2: Find the adjugate matrix 

𝑎𝑑𝑗  
0 11 15
7 0 1
4 19 0

   

=  
+  

0 1
19 0

  −  
11 15
19 0

  +   
11 15
0 1

 −  
7 1
4 0

 +

 
0 15
4 0

 −   
0 15
7 1

    +  
7 0
4 19

   
0 11
4 19

   
0 1
7 0

 
   

 

=  
−19 285 11

4 −60 105
133 44 −77

  𝑚𝑜𝑑 26 =  
7 25 11
4 18 1
3 18 1

  

Step-3: Multiply the multiplicative inverse of the determinant 

by the adjugate matrix. 

We now multiply the inverse determinant (that was 19 in our 

case) from Step 1 by each of the elements of the adjugate 

matrix from Step 2 to obtain the inverse key matrix. Next, we 

take each of these answers’ mod 26.  

19 ×  
7 25 11
4 18 1
3 18 1

 =  
133 475 209
76 342 19
57 342 19

  𝑚𝑜𝑑 26 =

 
3 7 1

24 4 19
5 4 19

  

So, if   
0 11 15
7 0 1
4 19 0

  𝑡ℎ𝑒𝑛, 𝑘−1 =  
3 7 1

24 4 19
5 4 19

  

Finally, we have the inverse key matrix, and we multiply this 

by the encrypted message received to get the original message 

as follows: 

 
3 7 1

24 4 19
5 4 19

 ×  
24 0 24 18
23 4 25 2
8 10 24 21

 =  
7 4 11 11 

14 12 14 7
0 12 0 3

  

Encrypted message will be: 

7 4 11 11 14 12 14 7 0 12 0 3 

H E L L O M O H A M A D 

4. METHODS  
MapReduce [19] and MPI are parallel and distributed 

computing systems with high-performance computing that 

spread out a single application over many multi-

core and multi-processor computers to rapidly complete the 

task. MapReduce [19] and MPI divide large problems into 

smaller sub-problems and assign each of them to different 

processors in a typically distributed system running 

concurrently in parallel. 

 First Method: Sequential is accessed code by a single 

thread. This means that a single thread can only 

do code in a specific order, hence it being sequential.  

 Second Method: MPI is a library of routines that can be 

used to create parallel programs in C, C++, and 

Fortran77 using commonly-available operating system 

services to create parallel processes and exchange 

information among these processes, as shown in Figure 

2. The design process of MPI includes vendors (such as 

IBM, Intel, TMC, Cray, and Convex), parallel library 

authors (involved in the development of PVM, and 

Linda), and application specialists. The final version for 

the draft standard became available in May of 1994 [2]. 

 
Fig 2: MPI Parallel Processes 

MPI is a standardized means of exchanging messages among 

multiple computers running a parallel program across a 

distributed memory to improve scalability, performance, 

multi-core and cluster support, and interoperation with other 

applications. These programs cannot use any MPI 

communication routine. The two basic routines are MPI_Send, 

to send a message to another process, and MPI_Recv, to 

receive a message from another process.  

We run MPI code in IMAN1, Jordan’s first and fastest high-

performance Computing resource, funded by JAEC and 

SESAME. It is available for use by academia and industry in 

Jordan and the region. In our project, we worked in a Zaina 

server, an Intel Xeon-based computing cluster with 1G 

Ethernet interconnection as shown in Table 1. The cluster is 

mainly used for code development, code porting, and 

synchrotron radiation application purposes. In addition, this 

cluster is composed of two Dell PowerEdge R710 and five HP 

ProLiant DL140 G3 server’s.  

http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
https://en.wikipedia.org/wiki/High_performance_computing
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
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Table 1. Zaina Technical Details 

 Properties  Details  

Server 7 Servers (Two Dell 

PowerEdge R710 and five 

HP ProLiant DL140 G3) 

CPU per server Dell (2 X 8 cores Intel Xeon) 

HP (2 X 4 cores Intel Xeon) 

RAM per server Dell (16 GB) HP (6 GB) 

Total storage (TB) 1 TB NFS Share 

OS Scientific Linux 6.4   

 

 Third Method: MapReduce is an algorithm design and 

processing paradigm proposed by Dean and Ghemawat in 

2004 [7]. MapReduce enables efficient parallel and 

distributed computing and consists of two serial tasks, 

namely, map and reduce. Each serial task is implemented 

with several parallel subtasks. Specific MapReduce 

paradigms include MapReduce with expectation 

maximization for text filtering [4], MapReduce with K-

means for remote-sensing image clustering [18], and 

MapReduce with decision tree for classification [9]. 

MapReduce has also been used for job scheduling [22] 

and real-time systems. 

Traditional parallel-based matrix multiplication has been 

recently replaced with MapReduce, a parallel and distributed 

framework for large-scale data [3]. Typical MapReduce-based 

matrix multiplication requires two MapReduce jobs:  

- The first job: A pair of elements is created for 

multiplication by combining input arrays together 

during map task. The reduce task of this job is 

inactive at this point.  

- The second job: The map task independently 

implements the multiplication operations on each 

pair of elements. The reduce job aggregates the 

results corresponding to each output element. 

Hadoop is a Java open-source platform used for developing 

MapReduce applications. Google developed this platform [8]. 

Figure 3 illustrates the Hadoop architecture. 

 
Fig 3: Hadoop MapReduce Architecture 

In this study, we used MapReduce-based matrix multiplication 

proposed by [14], which reduces both time and memory 

utilization compared with existing schemas [14]. In the 

proposed technique, matrix multiplication is implemented as 

an element-to-block schema, as illustrated in Figure 4. 

 

Fig 4: Efficient MapReduce Matrix Multiplication 

techniques 

5. EXPERIMENTS AND RESULTS  
In our research, we used different plaintext sizes and two key 

size, then we ran them in parallel using Hill cipher algorithm 

coded by MPI and MapReduce. We then compared their 

efficiencies and time performances in a large plaintext size. 

The results of the tested methods are discussed below. 

 MPI Result: 

Table 2 presents the results for different numbers of cores. 

The plaintext which is less than 1.80 KB does not need more 

than 4 cores, and 100×100 key size, because of the small 

problem size, whereas the plaintext within the range of 1.80 

KB to 7.21 KB does not need more than 8 cores for its 

problem because it is inefficient and takes more time, where 

plaintext with size 1.80 KB is fair enough to use 100×100 key 

size, and 200×200 key size for plaintext 7.21 KB  In addition, 

we concluded that when testing a large plaintext more than 

7.21 KB, increasing the number of cores to 32, and using 

200×200 key size is more effective and efficient because of 

the large problem size that needs more parallelism. 

Table 2. MPI Run Time Results 

Plaintext 

Size 

Core 2 Core 4 Core 8 Core 

16 

Core 

32 

Key Size 𝟏𝟎𝟎 × 𝟏𝟎𝟎 

Encryption Time 

461 KB 1.88 

sec 

1.80 

sec 

1.84 

sec 

2.00 

sec 

2.35 

sec 

1.80 MB 2.59 

sec 

1.91 

sec 

1.80 

sec 

1.81 

sec 

2.22 

sec 

7.21 MB 9.09 

sec 

4.16 

sec 

3.34 

sec 

2.98 

sec 

3.27 

sec 

28.8 MB 86.21 

sec 

30.89 

sec 

23.95 

sec 

17.54 

sec 

16.46 

sec 

Decryption Time 

461 KB 1.98 

sec 

1.90 

sec 

1.94 

sec 

2.10 

sec 

2.40 

sec 

1.80 MB 2.60 

sec 

1.92 

sec 

1.81 

sec 

1.82 

sec 

2.23 

sec 

7.21 MB 9.29 

sec 

4.36 

sec 

3.54 

sec 

3.18 

sec 

3.47 

sec 

28.8 MB 86.22 

sec 

30.90 

sec 

23.96 

sec 

17.55 

sec 

16.47 

sec 
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Total Time 

461 KB 3.86 

sec 

3.70 

sec 

3.78 

sec 

4.10 

sec 

4.75 

sec 

1.80 MB 5.19 

sec 

3.83 

sec 

3.61 

sec 

3.63 

sec 

4.45 

sec 

7.21 MB 18.38 

sec 

8.52 

sec 

6.88 

sec 

6.16 

sec 

6.74 

sec 

28.8 MB 172.43 

sec 

61.79 

sec 

47.91 

sec 

35.09 

sec 

32.93 

sec 

Key Size 𝟐𝟎𝟎 × 𝟐𝟎𝟎 

Encryption Time 

461 KB 2.01 

sec 

1.92 

sec 

1.96 

sec 

2.13 

sec 

2.51 

sec 

1.80 MB 2.02 

sec 

1.49 

sec 

1.46 

sec 

1.41 

sec 

1.74 

sec 

7.21 MB 10.52 

sec 

4.81 

sec 

3.86 

sec 

3.45 

sec 

3.79 

sec 

28.8 MB 77.27 

sec 

27.69 

sec 

21.47 

sec 

15.72 

sec 

14.75 

sec 

Decryption Time 

461 KB 2.11 

sec 

2.02 

sec 

2.06 

sec 

2.23 

sec 

5.02 

sec 

1.80 MB 2.03 

sec 

1.50 

sec 

1.47 

sec 

1.42 

sec 

1.75 

sec 

7.21 MB 10.72 

sec 

5.01 

sec 

4.06 

sec 

3.65 

sec 

3.99 

sec 

28.8 MB 77.28 

sec 

27.70 

sec 

21.48 

sec 

15.73 

sec 

14.76 

sec 

Total Time 

461 KB 4.12 

sec 

3.94 

sec 

4.02 

sec 

4.36 

sec 

7.53 

sec 

1.80 MB 4.05 

sec 

2.99 

sec 

2.93 

sec 

2.83 

sec 

3.49 

sec 

7.21 MB 21.24 

sec 

9.82 

sec 

7.92 

sec 

7.10 

sec 

7.78 

sec 

28.8 MB 154.55 

sec 

55.39 

sec 

42.95 

sec 

31.45 

sec 

29.51 

sec 

 

The speedup is the ratio between sequential and parallel time. 

The speedup for different numbers of core on different 

plaintext sizes with different key size are illustrated in Figure 

5 for key size 100×100 encryption, and Figure 6 for key size 

200×200 encryption, whereas Figure 7 for key size 200×200 

decryption, and Figure 8 for key size 200×200 decryption. The 

results show that MPI achieves the best speedup values. 

 

Fig 5: MPI Encryption Speedup plotting for Key Size 

𝟏𝟎𝟎 ×

𝟏𝟎𝟎  

Fig 6: MPI Encryption Speedup plotting for Key Size 

𝟐𝟎𝟎 × 𝟐𝟎𝟎 

 
Fig 7: MPI Decryption Speedup plotting for Key Size 

𝟏𝟎𝟎 × 𝟏𝟎𝟎 
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Fig. 8. MPI Decryption Speedup plotting for Key Size 

𝟐𝟎𝟎 × 𝟐𝟎𝟎 

 MapReduce Result  

The MapReduce results of the Hill cipher using Hadoop for 

inputs with various plaintext sizes and two key size are 

presented. The running time was cut down in the proposed 

schemes, as the sorting process in the shuffling process was 

reduced. As the plaintext size grows, the stability of the 

proposed scheme is almost linear. Table 3 provides the results. 

 Table 3. MapReduce Run Time Result 

Plaintext 

Size 

Encryption 

Time 

Decryption 

Time 

Total Time 

Key Size 𝟏𝟎𝟎 × 𝟏𝟎𝟎 

461 KB 6.1 sec 6.20 sec 12.3 sec 

1.80 MB 15.22 sec 15.23 sec 30.445 sec 

7.21 MB 114.41 sec 114.61 sec 229.02 sec 

28.8 MB 155.11 sec 155.12 sec 310.225 sec 

Key Size 𝟐𝟎𝟎 × 𝟐𝟎𝟎 

461 KB 6.5 sec 6.60 sec 13.1 sec 

1.80 MB 11.89 sec 11.90 sec 23.785 sec 

7.21 MB 132.32 sec 132.52 sec 264.84 sec 

28.8 MB 139.02 sec 139.03 sec 278.045 sec 

 

The speedup for different plaintext sizes with different key 

size are illustrated in Figure 9 for key size 100×100 

encryption, and Figure 10 for key size 200×200 encryption, 

whereas Figure 11 for key size 200×200 decryption, and 

Figure 12 for key size 200×200 decryption. The results show 

that MapReduce achieves speedup values less than MPI, 

especially on large number of processors. 

 
       Fig. 9. MapReduce Encryption Speedup plotting for 

Key Size 𝟏𝟎𝟎 × 𝟏𝟎𝟎 

 
Fig. 10. MapReduce Encryption Speedup plotting for Key 

Size 𝟐𝟎𝟎 × 𝟐𝟎𝟎 

 
Fig. 11. MapReduce Decryption Speedup plotting for Key 

Size 𝟏𝟎𝟎 × 𝟏𝟎𝟎 
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Fig. 12. MapReduce Decryption Speedup plotting for Key 

Size 𝟐𝟎𝟎 × 𝟐𝟎𝟎 

 Sequential Result  

The sequential results of Hill cipher were tested on various 

plaintext sizes with different key size. The algorithm is written 

in java and the experimental results are calculated on HP® 

core™ i7-5500U CPU @ 2.40GHz / 8 GB RAM. The results 

are given in Table 4. 

 Table 4. Sequential Run Time Results 
Plaintext 

Size 

Encryption 

Time 

Decryption 

Time 

Total Time 

Key Size 𝟏𝟎𝟎 × 𝟏𝟎𝟎 

461 KB 11.16 sec  11.26 sec 22.42 sec 

1.80 MB 44.52 sec 44.52 sec 89.04 sec 

7.21 MB 158.32 sec 158.52 sec 316.84 sec 

28.8 MB 621.38 sec 621.38 sec 1242.76 sec 

Key Size 𝟐𝟎𝟎 × 𝟐𝟎𝟎 

461 KB 11.89 sec 11.99 sec 23.87 sec 

1.80 MB 34.77 sec 34.77 sec 69.54 sec 

7.21 MB 183.09 sec 183.29 sec 366.39 sec 

28.8 MB 556.95 sec 556.95 sec 1113.90 sec 

 

 Comparison  

The comparison between MPI and MapReduce results are 

always faster and more efficient than sequential methods for 

the different plaintext size, as shown in the efficiency table 5 

below. The MPI outperformed the MapReduce; thus, the 

research goal is achieved. Comparison are illustrated in Figure 

13 for key size 100×100 encryption, and Figure 14 for key 

size 200×200 encryption, whereas Figure 15 for key size 

200×200 decryption, and Figure 16 for key size 200×200 

decryption.  

 

 

 

 

 

 

Table 5. Time Efficiency Result 

 
Fig. 13. Encryption Methods Compassion plotting for Key 

Size 𝟏𝟎𝟎 × 𝟏𝟎𝟎 

Plaintext Size Encryption 

Efficiency 

Decryption 

Efficiency 

Key Size 𝟏𝟎𝟎 × 𝟏𝟎𝟎 

MPI 

461 KB 83.87% 83.12% 

1.80 MB 95.96% 95.95% 

7.21 MB 98.12% 97.99% 

28.8 MB 97.35% 97.35% 

MapReduce 

461 KB 45.34% 44.93% 

1.80 MB 65.81% 65.80% 

7.21 MB 27.74% 27.70% 

28.8 MB 75.04% 75.04% 

Key Size 𝟐𝟎𝟎 × 𝟐𝟎𝟎 

MPI 

461 KB 83.85% 83.15% 

1.80 MB 95.94% 95.93% 

7.21 MB 98.12% 98.01% 

28.8 MB 97.35% 97.35% 

MapReduce 

461 KB 45.34% 44.93% 

1.80 MB 65.81% 65.80% 

7.21 MB 27.74% 27.70% 

   

28.8 MB 75.04% 75.04% 
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Fig. 14. Encryption Methods Compassion plotting for Key 

Size 𝟐𝟎𝟎 × 𝟐𝟎𝟎 

 
Fig. 15. Decryption Methods Compassion plotting for Key 

Size 𝟏𝟎𝟎 × 𝟏𝟎𝟎 

 
Fig. 16. Decryption Methods Compassion plotting for Key 

Size 𝟐𝟎𝟎 × 𝟐𝟎𝟎 

6. CONCLUSION  
Using the conducted experimental study as basis, MPI and 

MapReduce Hill cipher are always faster than the sequential 

methods, with 93.71 % and 53.43 % efficiency, respectively. 

Hence, parallel and distributed computing for hill cipher 

algorithm have been proposed to reduce the cost and time of 

matrix multiplication over multiple processors. MPI hill 

cipher is also more efficient than MapReduce hill cipher 

because its matrix size growth outperforms sequential 

methods.  
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