
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.19, February 2018

16

Parallel Hill Cipher Encryption Algorithm

Mais Haj Qasem
Computer Science Department University of

Jordan
Amman, Jordan

Mohammad Qatawneh
Computer Science Department University of

Jordan
Amman, Jordan

ABSTRACT

Cryptography is the discipline of encoding and decoding

messages. Cryptography is used frequently in people’s daily

lives to keep sensitive information, such as credit card

information, safe. Many everyday activities can be easily

monitored by unintended third parties via Internet. Hill cipher

is a classic cryptography based on linear algebra that is simply

a linear transformation represented by a matrix. The encoding

and decoding process in Hill cipher involves matrix

multiplication, which is potentially time consuming, making it

one of the most well-studied problems in this field. In this

paper, we implement the message passing interface (MPI) and

MapReduce methods to demonstrate their effectiveness in

expediting Hill cipher algorithm in parallel algorithms on a

multi-core system. Simulation results show that the efficiency

rates of MPI and MapReduce are 93.71 % and 53.43

respectively, with a multi-core processor on the large file size,

indicating better performances compared with sequential

methods.

Keywords

Cryptography, Hadoop, Hill Cipher, MPI, MapReduce, Matrix

Multiplication.

1. INTRODUCTION
Cryptography is the encoding and decoding secret messages

into unreadable form to ensure privacy by keeping

information hidden from third parties. Recently,

mathematicians and research scientists have worked on

cryptography to find the best and suitable algorithm to

securely store and transfer sensitive information over the

Internet, which can be easily monitored by unintended third

parties [6], [17]. Cryptography has been proven a critical

factor of success in war and business.

Hill cipher is a classic cryptography that is technically

a polygraphic substitution cipher. Hill cipher is one of the first

practical applications of linear algebra to polygraphic ciphers.

Creator Lester Hill first described ciphers in 1929 in The

American Mathematical Monthly [11], and he wrote another

article about them in 1931[12].

Hill cipher acts on groups of letters, where plaintext is divided

into groups of letters of a fixed size, and each group is

transformed to a different group of letters. This transformation

is accomplished using matrix multiplication, which is

involved in encoding and decoding. A large amount of

information is sent over the Internet every second, and one

type of information is extremely difficult to break, namely,

that which uses matrix to encode a message. In Hill cipher, the

first matrix is called the encoding matrix and its inverse is

called the decoding matrix.

Using matrix multiplication focuses on computational

problems that should be investigated thoroughly to enhance

the efficiency of the implemented algorithms. Hence, several

parallel and distributed systems for matrix multiplication

methods have been proposed over the years to reduce cost and

time of matrix multiplication over multiple processors [5],

[16],[24].

Parallel and distributed computing systems are high-

performance computing systems that spread out a single

application over many multi-core and multi-

processor computers to rapidly complete the task

[25],[26],[27],[29]. Parallel and distributed computing systems

divide large problems into smaller sub-problems and assign

each of them to different processors in a typically distributed

system running concurrently in parallel [28]. MapReduce [19]

and message passing interface (MPI) are among these

computing systems, which will be discussed in the following

section.

In this study, we applied Hill cipher encryption algorithm on

different sizes of files by using efficient MapReduce with an

optimized mapper set produced by [14] and MPI library. We

used this method to demonstrate the performance of Hill

cipher encryption algorithm by using parallel computing and

compared it with sequential methods.

This paper is organized as follows. Section 2 reviews works

that are closely related with using the matrix multiplication in

many applications. Section 3 presents hill cipher

implementation. Section 4 presents all methods used in this

work. Section 5 presents the experimental results. Section 6

gives the conclusion.

2. RELATED WORK
Mathematicians and research scientists have found many

matrix algorithms. The advent of personal and large-scale

computers increased the use of matrices in a wide variety of

applications, such as economics, engineering, statistics, and

other sciences.

Traditional sequential algorithms for matrix multiplication

consume considerable space and time. Fox [10], and Cannon

[4], algorithms have been proposed for parallelizing matrix

multiplication to enhance its efficiency. These approaches

balance inter-process communication, dependencies, and

parallelism level to maximize efficiency. Parallel matrix

multiplication relies on the independence of multiplication,

which includes multiple independent element-to-element

multiplications and multiple aggregations of independent

multiplication results.

Zhang et al. [23] presented an outsourcing computation

schema in an amortized model for matrix multiplication of

two arbitrary matrices that meet the requirements for both

security and efficiency. They compared their scheme

functionalities with existing works, such as Fiore’s [7], Li’s

[16], and Jia’s schema [11]. Zhang et al. [23] proved that their

schema is more efficient in terms of functionality as well as

computation, storage, and communication overhead.

https://en.wikipedia.org/wiki/Classical_cryptography
https://en.wikipedia.org/wiki/Substitution_cipher#Polygraphic
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/High_performance_computing
https://en.wikipedia.org/wiki/High_performance_computing
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Symmetric_multiprocessing

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.19, February 2018

17

Kumar et al. [15] proposed a privacy-preserving, verifiable,

and efficient algorithm for matrix multiplication in

outsourcing paradigm to solve the lack of computing

resources, where the client with a large dataset can perform

matrix multiplication using cloud server. Kumar et al. [13]

evaluated their algorithm on security, efficiency, and

variability parameters. With high efficiency and practical

usability, their algorithm can mostly replace costly

cryptographic operations and securely solve matrix

multiplication algorithm.

Acharya et al. [1] proposed a novel advanced Hill (AdvHill)

encryption technique to encrypt an image using a technique

different from the conventional Hill cipher. This fast

encryption scheme overcomes problems of encrypting the

images with homogeneous background. Acharya et al.

concluded that their proposed AdvHill algorithm is more

secure to brute force attacks and quite reliable and robust after

a comparative study of the proposed encryption and the

existing schemes was done.

Panigrahy et al. [21] proposed an efficient method of

generating self-invertible matrix for Hill cipher algorithm for

use in image encryption. It is not only limited to this area but

can also be widely applied in other information security fields,

such as video encryption. They concluded that these methods

eliminate the computational complexity as inverse of the

matrix is not required, whereas decrypting in Hill cipher

involves finding the inverse of the matrix in decryption

AL-Laham [20] enhanced technique of color image

encryption-decryption based on random matrix key encoding

is proposed, which utilizes matrix multiplication and inverse

matrices. They concluded that his proposed technique rapidly

increases the image transmission security and enhances the

encryption-decryption process by eliminating the mean square

error and maximizing the speed of the encryption decryption

process.

3. HILL CIPHER IMPLEMENTATION
Hill ciphers apply matrices to cryptography. Ciphers are

methods for transforming a secret message called

plaintext into a particular form so that only those for whom it

is intended and know the key can read and process it. In a

cipher, the key transforms the plaintext letters into other

characters known as the cipher text. The secret rule, that is,

the inverse key, is required to reverse the transformation to

recover the original message. Using the key to transform

plaintext into cipher text is to encipher the plaintext. Using the

inverse key to transform the cipher text back into plaintext is

to decipher the cipher text. We need to understand modular

arithmetic and multiply invert matrices to understand Hill

ciphers.

A common way to send coded messages is to assign numerical

values from 1–26 to the alphabet, as shown in Figure 1 below,

and send the message as a string of integers. Codes such as

these are easily broken using an analysis of the frequency of

numbers that appear in the coded messages.

 Fig 1: Numerical Values to The Alphabet

The encoder is a matrix and the decoder is its inverse. On the

sender side, A is the encoding matrix, B is the message

matrix, and C is the encrypted matrix. The sizes of A and B

must be consistent and will determine the size of C.

Mathematically, the operation is

𝒎𝒐𝒅 𝟐𝟔 (𝑨𝑩) = 𝑪

On the receiver side, the intended user who wants to recover

the original message B must have C and know A. Thus, this

situation would be the same as solving the matrix equation for

B by multiplying both sides of the equation on the left by 𝐴−1.

The operation is

𝑩 = 𝑨−𝟏𝑪

The following step shows an example of matrix multiplication

encryption for plaintext message “hello mohamad” using the

keyword “alphabet” and a 3 𝑥 3 matrix.

3.1 Encryption
Step-1: Convert the characters of the key to integers between

1 and 26 using the figure above and fill the matrix. If the

keyword is longer than the 9 letters needed, only take only the

first 9 letters. Conversely, if it is shorter, fill it with the

alphabet in order.

0 11 15 7 0 1 4 19

A L P H A B E T

0 11 15
7 0 1
4 19 0

Step-2: Convert the characters of the plaintext to integers and

fill the matrix with the same size of key row length.

7 4 11 11 14 12 14 7 0 12 0 3

H E L L O M O H A M A D

7 4 11 11

14 12 14 7
0 12 0 3

Step-3: Encrypt the message by multiplying the message

matrix by the key matrix to perform the matrix multiplication

and obtain the encryption matrix as follows:

0 11 15
7 0 1
4 19 0

 𝑥
7 4 11 11

14 12 14 7
0 12 0 3

 =

154 312 154 122
49 40 77 80

294 244 310 177

154 312 154 122
49 40 77 80

294 244 310 177
 𝑚𝑜𝑑 26 =

24 0 24 18
23 4 25 2
8 10 24 21

Encrypted message will now be

24 0 24 18 23 4 25 2 8 10 24 21

Y A Y S X E Z C I K Y V

3.2 Decryption
We will focus on finding the inverse key matrix that is not an

easy task, because the majority of the process is the same as

encryption. We perform the calculation below equation,

where A is the key matrix, D is the determinant of the key

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.19, February 2018

18

matrix, and 𝑎𝑑𝑗(𝐴) is the adjugate matrix of A to find the

inverse of the key matrix.

𝑨−𝟏 = 𝑫−𝟏 × 𝒂𝒅𝒋 (𝑨)

Step-1: Find determinant of the key

The determinant is a number that relates directly to the entries

of the matrix. For our 3 × 3 matrix example, it is found by

multiplying the top left entry by the determinant of the 2 × 2

matrix formed by the entries that are not in the same row or

column as that entry. Similar steps are done with the other two

elements in the top row, and the middle value is subtracted

from the sum of the other two as shown below.

0 11 15
7 0 1
4 19 0

 = 0
0 1

19 1
 − 11

7 1
4 0

 + 11
7 0
4 9

= 2039 = 11 𝑚𝑜𝑑 26

We must now find the multiplicative inverse of the

determinant working mod 26, that is, the number between 1

and 25 that gives an answer of 1 when multiplied by the

determinant. In this case, we are looking for the number that

we need to multiply 11 by to get an answer of 1 mod 26.

11 × 𝑥 = 1 𝑚𝑜𝑑 26

𝑑𝑑−1 = 1 𝑚𝑜𝑑 26

11 × 19 = 209 = 1 𝑚𝑜𝑑 26

Step-2: Find the adjugate matrix

𝑎𝑑𝑗
0 11 15
7 0 1
4 19 0

=
+

0 1
19 0

 −
11 15
19 0

 +
11 15
0 1

 −
7 1
4 0

 +

0 15
4 0

 −
0 15
7 1

 +
7 0
4 19

0 11
4 19

0 1
7 0

=
−19 285 11

4 −60 105
133 44 −77

 𝑚𝑜𝑑 26 =
7 25 11
4 18 1
3 18 1

Step-3: Multiply the multiplicative inverse of the determinant

by the adjugate matrix.

We now multiply the inverse determinant (that was 19 in our

case) from Step 1 by each of the elements of the adjugate

matrix from Step 2 to obtain the inverse key matrix. Next, we

take each of these answers’ mod 26.

19 ×
7 25 11
4 18 1
3 18 1

 =
133 475 209
76 342 19
57 342 19

 𝑚𝑜𝑑 26 =

3 7 1

24 4 19
5 4 19

So, if
0 11 15
7 0 1
4 19 0

 𝑡ℎ𝑒𝑛, 𝑘−1 =
3 7 1

24 4 19
5 4 19

Finally, we have the inverse key matrix, and we multiply this

by the encrypted message received to get the original message

as follows:

3 7 1

24 4 19
5 4 19

 ×
24 0 24 18
23 4 25 2
8 10 24 21

 =
7 4 11 11

14 12 14 7
0 12 0 3

Encrypted message will be:

7 4 11 11 14 12 14 7 0 12 0 3

H E L L O M O H A M A D

4. METHODS
MapReduce [19] and MPI are parallel and distributed

computing systems with high-performance computing that

spread out a single application over many multi-

core and multi-processor computers to rapidly complete the

task. MapReduce [19] and MPI divide large problems into

smaller sub-problems and assign each of them to different

processors in a typically distributed system running

concurrently in parallel.

 First Method: Sequential is accessed code by a single

thread. This means that a single thread can only

do code in a specific order, hence it being sequential.

 Second Method: MPI is a library of routines that can be

used to create parallel programs in C, C++, and

Fortran77 using commonly-available operating system

services to create parallel processes and exchange

information among these processes, as shown in Figure

2. The design process of MPI includes vendors (such as

IBM, Intel, TMC, Cray, and Convex), parallel library

authors (involved in the development of PVM, and

Linda), and application specialists. The final version for

the draft standard became available in May of 1994 [2].

Fig 2: MPI Parallel Processes

MPI is a standardized means of exchanging messages among

multiple computers running a parallel program across a

distributed memory to improve scalability, performance,

multi-core and cluster support, and interoperation with other

applications. These programs cannot use any MPI

communication routine. The two basic routines are MPI_Send,

to send a message to another process, and MPI_Recv, to

receive a message from another process.

We run MPI code in IMAN1, Jordan’s first and fastest high-

performance Computing resource, funded by JAEC and

SESAME. It is available for use by academia and industry in

Jordan and the region. In our project, we worked in a Zaina

server, an Intel Xeon-based computing cluster with 1G

Ethernet interconnection as shown in Table 1. The cluster is

mainly used for code development, code porting, and

synchrotron radiation application purposes. In addition, this

cluster is composed of two Dell PowerEdge R710 and five HP

ProLiant DL140 G3 server’s.

http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
https://en.wikipedia.org/wiki/High_performance_computing
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Symmetric_multiprocessing

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.19, February 2018

19

Table 1. Zaina Technical Details

 Properties Details

Server 7 Servers (Two Dell

PowerEdge R710 and five

HP ProLiant DL140 G3)

CPU per server Dell (2 X 8 cores Intel Xeon)

HP (2 X 4 cores Intel Xeon)

RAM per server Dell (16 GB) HP (6 GB)

Total storage (TB) 1 TB NFS Share

OS Scientific Linux 6.4

 Third Method: MapReduce is an algorithm design and

processing paradigm proposed by Dean and Ghemawat in

2004 [7]. MapReduce enables efficient parallel and

distributed computing and consists of two serial tasks,

namely, map and reduce. Each serial task is implemented

with several parallel subtasks. Specific MapReduce

paradigms include MapReduce with expectation

maximization for text filtering [4], MapReduce with K-

means for remote-sensing image clustering [18], and

MapReduce with decision tree for classification [9].

MapReduce has also been used for job scheduling [22]

and real-time systems.

Traditional parallel-based matrix multiplication has been

recently replaced with MapReduce, a parallel and distributed

framework for large-scale data [3]. Typical MapReduce-based

matrix multiplication requires two MapReduce jobs:

- The first job: A pair of elements is created for

multiplication by combining input arrays together

during map task. The reduce task of this job is

inactive at this point.

- The second job: The map task independently

implements the multiplication operations on each

pair of elements. The reduce job aggregates the

results corresponding to each output element.

Hadoop is a Java open-source platform used for developing

MapReduce applications. Google developed this platform [8].

Figure 3 illustrates the Hadoop architecture.

Fig 3: Hadoop MapReduce Architecture

In this study, we used MapReduce-based matrix multiplication

proposed by [14], which reduces both time and memory

utilization compared with existing schemas [14]. In the

proposed technique, matrix multiplication is implemented as

an element-to-block schema, as illustrated in Figure 4.

Fig 4: Efficient MapReduce Matrix Multiplication

techniques

5. EXPERIMENTS AND RESULTS
In our research, we used different plaintext sizes and two key

size, then we ran them in parallel using Hill cipher algorithm

coded by MPI and MapReduce. We then compared their

efficiencies and time performances in a large plaintext size.

The results of the tested methods are discussed below.

 MPI Result:

Table 2 presents the results for different numbers of cores.

The plaintext which is less than 1.80 KB does not need more

than 4 cores, and 100×100 key size, because of the small

problem size, whereas the plaintext within the range of 1.80

KB to 7.21 KB does not need more than 8 cores for its

problem because it is inefficient and takes more time, where

plaintext with size 1.80 KB is fair enough to use 100×100 key

size, and 200×200 key size for plaintext 7.21 KB In addition,

we concluded that when testing a large plaintext more than

7.21 KB, increasing the number of cores to 32, and using

200×200 key size is more effective and efficient because of

the large problem size that needs more parallelism.

Table 2. MPI Run Time Results

Plaintext

Size

Core 2 Core 4 Core 8 Core

16

Core

32

Key Size 𝟏𝟎𝟎 × 𝟏𝟎𝟎

Encryption Time

461 KB 1.88

sec

1.80

sec

1.84

sec

2.00

sec

2.35

sec

1.80 MB 2.59

sec

1.91

sec

1.80

sec

1.81

sec

2.22

sec

7.21 MB 9.09

sec

4.16

sec

3.34

sec

2.98

sec

3.27

sec

28.8 MB 86.21

sec

30.89

sec

23.95

sec

17.54

sec

16.46

sec

Decryption Time

461 KB 1.98

sec

1.90

sec

1.94

sec

2.10

sec

2.40

sec

1.80 MB 2.60

sec

1.92

sec

1.81

sec

1.82

sec

2.23

sec

7.21 MB 9.29

sec

4.36

sec

3.54

sec

3.18

sec

3.47

sec

28.8 MB 86.22

sec

30.90

sec

23.96

sec

17.55

sec

16.47

sec

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.19, February 2018

20

Total Time

461 KB 3.86

sec

3.70

sec

3.78

sec

4.10

sec

4.75

sec

1.80 MB 5.19

sec

3.83

sec

3.61

sec

3.63

sec

4.45

sec

7.21 MB 18.38

sec

8.52

sec

6.88

sec

6.16

sec

6.74

sec

28.8 MB 172.43

sec

61.79

sec

47.91

sec

35.09

sec

32.93

sec

Key Size 𝟐𝟎𝟎 × 𝟐𝟎𝟎

Encryption Time

461 KB 2.01

sec

1.92

sec

1.96

sec

2.13

sec

2.51

sec

1.80 MB 2.02

sec

1.49

sec

1.46

sec

1.41

sec

1.74

sec

7.21 MB 10.52

sec

4.81

sec

3.86

sec

3.45

sec

3.79

sec

28.8 MB 77.27

sec

27.69

sec

21.47

sec

15.72

sec

14.75

sec

Decryption Time

461 KB 2.11

sec

2.02

sec

2.06

sec

2.23

sec

5.02

sec

1.80 MB 2.03

sec

1.50

sec

1.47

sec

1.42

sec

1.75

sec

7.21 MB 10.72

sec

5.01

sec

4.06

sec

3.65

sec

3.99

sec

28.8 MB 77.28

sec

27.70

sec

21.48

sec

15.73

sec

14.76

sec

Total Time

461 KB 4.12

sec

3.94

sec

4.02

sec

4.36

sec

7.53

sec

1.80 MB 4.05

sec

2.99

sec

2.93

sec

2.83

sec

3.49

sec

7.21 MB 21.24

sec

9.82

sec

7.92

sec

7.10

sec

7.78

sec

28.8 MB 154.55

sec

55.39

sec

42.95

sec

31.45

sec

29.51

sec

The speedup is the ratio between sequential and parallel time.

The speedup for different numbers of core on different

plaintext sizes with different key size are illustrated in Figure

5 for key size 100×100 encryption, and Figure 6 for key size

200×200 encryption, whereas Figure 7 for key size 200×200

decryption, and Figure 8 for key size 200×200 decryption. The

results show that MPI achieves the best speedup values.

Fig 5: MPI Encryption Speedup plotting for Key Size

𝟏𝟎𝟎 ×

𝟏𝟎𝟎

Fig 6: MPI Encryption Speedup plotting for Key Size

𝟐𝟎𝟎 × 𝟐𝟎𝟎

Fig 7: MPI Decryption Speedup plotting for Key Size

𝟏𝟎𝟎 × 𝟏𝟎𝟎

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.19, February 2018

21

Fig. 8. MPI Decryption Speedup plotting for Key Size

𝟐𝟎𝟎 × 𝟐𝟎𝟎

 MapReduce Result

The MapReduce results of the Hill cipher using Hadoop for

inputs with various plaintext sizes and two key size are

presented. The running time was cut down in the proposed

schemes, as the sorting process in the shuffling process was

reduced. As the plaintext size grows, the stability of the

proposed scheme is almost linear. Table 3 provides the results.

 Table 3. MapReduce Run Time Result

Plaintext

Size

Encryption

Time

Decryption

Time

Total Time

Key Size 𝟏𝟎𝟎 × 𝟏𝟎𝟎

461 KB 6.1 sec 6.20 sec 12.3 sec

1.80 MB 15.22 sec 15.23 sec 30.445 sec

7.21 MB 114.41 sec 114.61 sec 229.02 sec

28.8 MB 155.11 sec 155.12 sec 310.225 sec

Key Size 𝟐𝟎𝟎 × 𝟐𝟎𝟎

461 KB 6.5 sec 6.60 sec 13.1 sec

1.80 MB 11.89 sec 11.90 sec 23.785 sec

7.21 MB 132.32 sec 132.52 sec 264.84 sec

28.8 MB 139.02 sec 139.03 sec 278.045 sec

The speedup for different plaintext sizes with different key

size are illustrated in Figure 9 for key size 100×100

encryption, and Figure 10 for key size 200×200 encryption,

whereas Figure 11 for key size 200×200 decryption, and

Figure 12 for key size 200×200 decryption. The results show

that MapReduce achieves speedup values less than MPI,

especially on large number of processors.

 Fig. 9. MapReduce Encryption Speedup plotting for

Key Size 𝟏𝟎𝟎 × 𝟏𝟎𝟎

Fig. 10. MapReduce Encryption Speedup plotting for Key

Size 𝟐𝟎𝟎 × 𝟐𝟎𝟎

Fig. 11. MapReduce Decryption Speedup plotting for Key

Size 𝟏𝟎𝟎 × 𝟏𝟎𝟎

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.19, February 2018

22

Fig. 12. MapReduce Decryption Speedup plotting for Key

Size 𝟐𝟎𝟎 × 𝟐𝟎𝟎

 Sequential Result

The sequential results of Hill cipher were tested on various

plaintext sizes with different key size. The algorithm is written

in java and the experimental results are calculated on HP®

core™ i7-5500U CPU @ 2.40GHz / 8 GB RAM. The results

are given in Table 4.

 Table 4. Sequential Run Time Results
Plaintext

Size

Encryption

Time

Decryption

Time

Total Time

Key Size 𝟏𝟎𝟎 × 𝟏𝟎𝟎

461 KB 11.16 sec 11.26 sec 22.42 sec

1.80 MB 44.52 sec 44.52 sec 89.04 sec

7.21 MB 158.32 sec 158.52 sec 316.84 sec

28.8 MB 621.38 sec 621.38 sec 1242.76 sec

Key Size 𝟐𝟎𝟎 × 𝟐𝟎𝟎

461 KB 11.89 sec 11.99 sec 23.87 sec

1.80 MB 34.77 sec 34.77 sec 69.54 sec

7.21 MB 183.09 sec 183.29 sec 366.39 sec

28.8 MB 556.95 sec 556.95 sec 1113.90 sec

 Comparison

The comparison between MPI and MapReduce results are

always faster and more efficient than sequential methods for

the different plaintext size, as shown in the efficiency table 5

below. The MPI outperformed the MapReduce; thus, the

research goal is achieved. Comparison are illustrated in Figure

13 for key size 100×100 encryption, and Figure 14 for key

size 200×200 encryption, whereas Figure 15 for key size

200×200 decryption, and Figure 16 for key size 200×200

decryption.

Table 5. Time Efficiency Result

Fig. 13. Encryption Methods Compassion plotting for Key

Size 𝟏𝟎𝟎 × 𝟏𝟎𝟎

Plaintext Size Encryption

Efficiency

Decryption

Efficiency

Key Size 𝟏𝟎𝟎 × 𝟏𝟎𝟎

MPI

461 KB 83.87% 83.12%

1.80 MB 95.96% 95.95%

7.21 MB 98.12% 97.99%

28.8 MB 97.35% 97.35%

MapReduce

461 KB 45.34% 44.93%

1.80 MB 65.81% 65.80%

7.21 MB 27.74% 27.70%

28.8 MB 75.04% 75.04%

Key Size 𝟐𝟎𝟎 × 𝟐𝟎𝟎

MPI

461 KB 83.85% 83.15%

1.80 MB 95.94% 95.93%

7.21 MB 98.12% 98.01%

28.8 MB 97.35% 97.35%

MapReduce

461 KB 45.34% 44.93%

1.80 MB 65.81% 65.80%

7.21 MB 27.74% 27.70%

28.8 MB 75.04% 75.04%

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.19, February 2018

23

Fig. 14. Encryption Methods Compassion plotting for Key

Size 𝟐𝟎𝟎 × 𝟐𝟎𝟎

Fig. 15. Decryption Methods Compassion plotting for Key

Size 𝟏𝟎𝟎 × 𝟏𝟎𝟎

Fig. 16. Decryption Methods Compassion plotting for Key

Size 𝟐𝟎𝟎 × 𝟐𝟎𝟎

6. CONCLUSION
Using the conducted experimental study as basis, MPI and

MapReduce Hill cipher are always faster than the sequential

methods, with 93.71 % and 53.43 % efficiency, respectively.

Hence, parallel and distributed computing for hill cipher

algorithm have been proposed to reduce the cost and time of

matrix multiplication over multiple processors. MPI hill

cipher is also more efficient than MapReduce hill cipher

because its matrix size growth outperforms sequential

methods.

10. REFERENCES
[1] charya, B., Panigrahy, S. K., Patra, S. K., & Panda, G.

(2009). Image encryption using advanced hill cipher

algorithm. International Journal of Recent Trends in

Engineering, 1(1).

[2] Burns, G., Daoud, R., & Vaigl, J. (1994, June). LAM: An

open cluster environment for MPI. In Proceedings of

supercomputing symposium (Vol. 94, pp. 379-386).

[3] Catalyurek, U. V., & Aykanat, C. (1999). Hypergraph-

partitioning-based decomposition for parallel sparse-

matrix vector multiplication. IEEE Transactions on

Parallel and Distributed Systems, 10(7), 673- 693.

[4] Cannon, Lynn E. A Cellular Computer to Implement the

Kalman Filter Algorithm. No. 603-Tl-0769. Montana

State Univ Bozeman Engineering Research Labs, 1969.

[5] Coppersmith, D., & Winograd, S. (1987, January).

Matrix multiplication via arithmetic progressions. In

Proceedings of the nineteenth annual ACM symposium

on Theory of computing (pp. 1-6). ACM.

[6] Chatterjee, D., Nath, J., Dasgupta, S., & Nath, A. (2011,

June). A new Symmetric key Cryptography Algorithm

using extended MSA method: DJSA symmetric key

algorithm. In Communication Systems and Network

Technologies (CSNT), 2011 International Conference

on (pp. 89-94). IEEE.

[7] Dean, G. (2004). J. Dean, S. Ghemawat. Mapreduce:

simplified data processing on large clusters, OSDI.

USENIX (2004), 10.

[8] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: a

flexible data processing tool." Communications of the

ACM 53.1 (2010): 72-77.

[9] Dekel, Eliezer, David Nassimi, and Sartaj Sahni.

"Parallel matrix and graph algorithms." SIAM Journal on

computing 10.4 (1981): 657-675.

[10] Fox, Geoffrey C., Steve W. Otto, and Anthony JG Hey.

"Matrix algorithms on a hypercube I: Matrix

multiplication." Parallel computing 4.1 (1987): 17-31.

[11] Hill, L. S. (1931). Concerning certain linear

transformation apparatus of cryptography. The American

Mathematical Monthly, 38(3), 135-154.

[12] Hill, L. S. (1929). Cryptography in an algebraic

alphabet. The American Mathematical Monthly, 36(6),

306-312.

[13] H. Li, S. Zhang, T. H. Luan, H. Ren, Y. Dai, and L.

Zhou, “Enabling efficient publicly verifiable outsourcing

computation for matrix multiplication,” in

Telecommunication Networks and Applications

Conference (ITNAC), 2015 International. IEEE, 2015,

pp. 44–50.

[14] Kadhum, M., Qasem, M. H., Sleit, A., & Sharieh, A.

(2017, April). Efficient MapReduce Matrix

Multiplication with Optimized Mapper Set. In Computer

Science On-line Conference (pp. 186-196). Springer,

Cham.

https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Distributed_computing

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.19, February 2018

24

[15] Kumar, M., Meena, J., & Vardhan, M. (2017). Privacy

preserving, verifiable and efficient outsourcing algorithm

for matrix multiplication to a malicious cloud

server. Cogent Engineering, (just-accepted), 1295783

[16] Liu, Xiufeng, Nadeem Iftikhar, and Xike Xie. "Survey of

real-time processing systems for big data." Proceedings

of the 18th International Database Engineering &

Applications Symposium. ACM, 2014.

[17] Lee, K. H., & Chiu, P. L. (2012). An extended visual

cryptography algorithm for general access structures. ieee

transactions on information forensics and security, 7(1),

219-229.

[18] Lv, Zhenhua, et al. "Parallel K-means clustering of

remote sensing images based on MapReduce."

[19] Norstad, John. "A mapreduce algorithm for matrix

multiplication." 2013-02-19]. http://www. norstad.

org/matrix-multiply/index. html (2009).

[20] AL-Laham, M. M. (2015). Encryption-Decryption RGB

Color Image Using Matrix Multiplication.

[21] Panigrahy, S. K., Acharya, B., & Jena, D. (2008). Image

encryption using self-invertible key matrix of hill cipher

algorithm.

[22] Zaharia, Matei, et al. "Job scheduling for multi-user

mapreduce clusters." EECS Department, University of

California, Berkeley, Tech. Rep. UCB/EECS-2009-55

(2009).

[23] Zhang, S., Li, H., Jia, K., Dai, Y., & Zhao, L. (2016,

December). Efficient Secure Outsourcing Computation

of Matrix Multiplication in Cloud Computing. In Global

Communications Conference (GLOBECOM), 2016

IEEE (pp. 1-6). IEEE.

[24] Azzam Sleit, Wesam AlMobaideen, Mohammad

Qatawneh, Heba Saadeh.”2008”. Efficient Processing for

Binary Submatrix Matching. American Journal of

Applied Sciences 6 (1): 78-88, 2008, ISSN 1546-9239.

[25] Mohammad Qatawneh, Azzam Sleit, Wesam

Almobaideen. “2009”. Parallel Implementation of

Polygon Clipping Using Transputer. American Journal of

Applied Sciences 6 (2): 214-218, 2009. ISSN 1546-9239.

[26] Mohammad Qatawneh. “2011”.Multilayer Hex-Cells: A

New Class of Hex-Cell Interconnection Networks for

Massively Parallel Systems. Int. J. Communications,

Network and System Sciences, 2011, 4, 704-708.

[27] Mais Haj Qasem, Mohammad Qatawneh. “2017”.

Parallel Matrix Multiplication for Business Applications.

Proceedings of the Computational Methods in Systems

and Software. 2017, 24-36.

[28] Azzam Sleit, Wesam Almobaideen, Mohammad

Qatawneh, Heba Saadeh. “2008”. Efficient Processing

for binary Submatrix matching. American Journal od

Applied Science, 2017, 6(1): 78-88.

[29] Ola M. Surakhi, Mohammad Qatawneh, Hussein A.

al Ofeishat. “2017”. A parallel Genetic Algorithm

IJCATM : www.ijcaonline.org

https://link.springer.com/chapter/10.1007/978-3-319-67621-0_3

