
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.22, February 2018

13

To Study the Performance of ACL (Access Control

Model) to Identify the Security Issues and to resolve the

Problem of Assign Authorization to Object Through SSO

(Single Sign-On)

Dharmendra Choukse
Institute of Engg & Science

IPS Academy
Indore, India

Umesh Kumar Singh
Institute of Comp. Science

Vikram University
Ujjain, India

ABSTRACT
Access control models to identify the benefits and security

challenges associated with them and then also discusses how

can reduce the complexity of Web services development

through access control model to resolve the identified issues.

Information Security involves the activities that organisations,

enterprises, and institutions undertake to defend the value and

continuing usability of assets, the integrity, and continuity of

operations. The term Access Control really mentions to the

control over access to system resources after a user's account

credentials and identity have been authenticated and access to

the system granted. Several Data, Access Control models, have

been introduced by keeping in view the requirements of an

organisation, and the sensitivity of the data.

Keywords
Webservices,ACL,SSO

1. INTRODUCTION
A. Mandatory Access Control (MAC):

Mandatory Access Control utilises hard-coded security rules.
Rules are coded into an application or operating system [1]. The
security policy is centrally controlled and can be overridden by
the users, and it is functional to various properties, objects, and
requests. The data organisation of MAC security policy begins
with complex, undisclosed, and private, and next to the
organization of resources that will be making demands for data.
MAC concept is integrated mostly in military and governmental
applications where high-level security is essential.

The benefit of this model is that the rules are hard-coded into
the software, so there are decidedly fewer chances of an
administrative error or social engineering.

B. Discretionary Access Control (DAC)
Discretionary Access Control can be used as a centralised and
distributed model [1]. DAC centralised model is administered
by an administrator or a team of administrators, who are
answerable to make security policies and allocate privileges as
per policy, but this approach is time-consuming, particularly if
the administrator is off or outsourced. In the distributed method,
the data access is distributed to some answerable person such as
managers, supervisors, or team. This method provides a way to
avoid delays in the administration of accounts is dispersed.

C. Role-Based Access Control (RBAC):
In this modest atmosphere, the risk of dropping info is more for
leading organisation. MAC and DAC model secure data, but
they have boundaries. To overcome their shortcomings, RBAC

has been proposed [1]. The common architecture of Role-based
Access Control is shown in figure 1.

Figure 1: Role-based Access Control Architecture

As Role Based Access controls are in presence in last 20 years,
particularly in UNIX and mainframe environments, but they
lack some principles as each system use its own propriety
elements. There was a need to design such a system which is
standardised, scalable, logical in design, and non-system
dependent.

RBAC0 is the first proposed model in this series, this model
consists of separation of duties and providing lowest privileges
to each role. It doesn't have the order mechanism, so the
permissions were allocated directly to the users within a specific
role or function. By considering the need of order as it exists in
any organisation such as Administrator, Manager, and team
members RBAC1 is presented based on RBAC0. It provides a
standard distribution of tasks within an institute that is usually
layered as senior and junior roles. This covered security
distribution method is suitable for big atmospheres.

Constraints are presented in RBAC2 which offer more control
over any network in large atmospheres. Constraints help to
implement the policies while not having the order. Constraints
work as limiters and ensure that the policies are being enforced.
For instance, if an institute wants to give administrative rights to
one user or role, the constraints confirms that only one user has
the system administration rights.

D. Extensible Access Control Markup Language

(XACML):

The Extensible Access Control Markup Language (XACML) is
a general-purpose language for specifying access control
policies [2]. In XML terms, it describes a core schema with a
namespace that can be used to direct access control and
authorisation policies for XML objects. Then it is based on
XML, it is, as its name proposes, easily extensible. XACML
supports a broad range of security policies [1], and uses a

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.22, February 2018

14

consistent syntax for arranging requests so that any one of the
following responses to an access request will be effective:

• Permit: action allowable

• Deny: action disallowed

• Indeterminate: error or incorrect/missing value
prevents a decision

• Not applicable: the request cannot be processed.

As shown in figure 2, XACML’s standardised architecture
for this decision making uses two primary mechanisms: the
Policy Enforcement Point (PEP) and the Policy Decision Point
(PDP). The PEP creates the request based on the user’s
attributes, the resource requested, the action specified, and other
situation-dependent information through Policy Information
Point (PIP). The PDP receives the constructed request,
compares it with the applicable policy and system state through
the Policy Access Point (PAP), and then returns one of the four
responses specified above to the PEP. The PEP then allows or
denies access to the resource. The PEP and PDP mechanisms
may be embedded within a single application or may be
distributed across a network.

In instruction to make the PEP and PDP work, XACML
provides a policy set, which is a container that grips either a
policy or other policy sets, plus links to other policies. Each
policy is stated using a set of rules. Conflicts are resolved
through policy-combining algorithms. XACML also includes
methods of merging these policies and policy sets, permitting
some to dominate others. This is needed because the policies
may overlap or conflict. For example, a simple policy-
combining algorithm is “Deny Overwrites,” which causes the
final choice to be “Deny” if any policy outcomes in an
“Overwrite.” Equally, other rules could be established to allow
an action if any of a set of policies results in “Allow.”
Determining what policy or policy set to apply is accomplished
using the “Target” component. A target is a set of rules or
conditions applied to each subject, object, and operation. When
a rule’s conditions are met for a user (subject), object, operation
combination, its associated policy or policy set is applied using
the process described above.

Figure 2: XACML’s Standardized Architecture

The associated access control data for a specified enterprise
domain can then be programmed in an XML document, and the
conformance of data to the enterprise access control model can
be obtained by validating the XML document against the XML
schema that represents the enterprise access control model using
XML parsers. These XML parsers are based on standard
application programming interfaces such as the Document

Object Model (DOM), and the parser libraries are implemented
in various procedural languages to enable an application
program to create, maintain, and retrieve XML-encoded data.
Although XML-based and other access control languages
provide capabilities for composing policies from scratch,
allowing users to specify access control policies, together with
the authorisations through the programming of the language,
they lack a formal specification language for access control
constraints (like historical based and domain constraints) that
prevent assigning overlapping privileges. As an example,
consider the case of constraints that require the manipulation
and recording of access states (such as granted privileges). This
is to avoid creating situations that result in users who were
previously denied access to certain files being unknowingly
granted access in a future state. Like most access control
languages, XACML does not provide tools for the expression of
historical constraints for historical-based access control policies,
thus leaving the completeness of the constraint logic to the
policy writer.

Domain constraints are based on the semantic information
pertaining to an enterprise context; a grammar-based language
cannot deal with content-based constraints. So, an XML schema
is insufficient for a complete specification of the RBAC model
for an enterprise since the latter contains content-based domain
constraints. An example is not allowing more than one user to
be assigned to the role of “security administrator” (role
cardinality constraint) and not allowing the roles “viewer” and
“uploader” to be assigned to the same user (separation-of-duty
constraint).

Here, again we note as before that the specification languages
assume a static environment where changes in access control
policies are generally effected manually by a security
administrator. So in essence, although XML-based access
control languages provide features that enable them to specify a
broad range of policies, a formal specification is still needed to
define constraint rules adaptively.

2. LITERATURE SURVEY
The research has been done in the field of SSO to find out

different solutions to secure the web services. These solutions

are based on the different authentication schemes like

Kerberos, X.509, SAML SSO and a single password. Driven

by the demand for suitable security for Web services, there

are several groups working on an extension of the basic Web

service specifications [3]. The first browser-based

authentication protocol was, to our best knowledge, Microsoft

Passport [4]. Because the protocol is not published, we only

refer to Microsoft’s whitepapers such as [5]. The work has

been done on the password based authentication; the protocol

proposed a single sign-on protocol for distributed web

applications based on standard internet mechanisms [6].

3. LIMITATION OF THE EXISTING

SYSTEMS

E. Mandatory Access Control (MAC):

The limitation of this model is that:

1) The rules are hardcoded, so it takes interval to
review

2) If the requirements change, then we need to
modify the rules

3) MAC is best right for a group of users with
related needs, so it is not common for all.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.22, February 2018

15

F. Discretionary Access Control (DAC):

The limitation of this model is that:

1) The consistency of data access for end-user with
same job functions can be diminished as access to
data is distributed at the discretion of the owner.

2) It is a time-consuming approach.

G. Role-Based Access Control (RBAC):

 The limitation of this model is that:

1) The main disadvantage of RBAC is related to the
role explosion: due to the growing number of
dissimilar (real world) roles (sometimes
differences are only very minor) we need a
growing number of (RBAC) roles to correctly
encapsulate the permissions (a permission in
RBAC is an action/operation on an object/entity).
Handling all those roles can become a complex
affair.

2) It is also not very well suited to manage
individual rights, but this is typically deemed less
of a problem.

H. Extensible Access Control Markup Language

(XACML):Problem with the existing system

1) The current system is identity-centric, i.e., it
focuses on the user identity, the user role, and
optionally the user group

2) Usually entirely managed by the Identity and
Access Management (IAM) teams like Oracle
Identity Manager, CyberArk, and IBM.

3) Administrator-time: roles and permissions are
assigned at administration time and live for the
duration they are provisioned for.

4. CONSTRUCTING RBAC BASED TEST

MODEL
RBAC testing involves testing of role-permission assignments
(i.e., rules) and testing of user-role assignments with SSOD and
DSOD constraints. We present two methods for constructing
role-permission test models, discuss modelling of user-role
assignments, and describe the analysis of test models. Building
Role-Permission Test Models from Functional Test Models
RBAC rules are security constraints on system functions. If a
functional test model is already available, we can integrate into
it RBAC rules as constraints for access control testing. In our
work, we demonstrated that test models nets could be used to
build test models for automated functional testing of various
applications. One approach to building a functional test model
as a test model net (referred to as functional net) is to formulate
a test design (or workflow) by using the building blocks of test
model nets, including sequence, condition, repetition,
concurrency, and modularity/hierarchy. This is similar to
programming, which transforms a program design into code by
using the building blocks (sequence, if-then-else,
for/while/repeat, multi-threading, classes/ function calls) of the
given programming language.

The RBAC model follows the more general representation of
role permission assignments (i.e., RBAC rules to be defined
below). It consists of the following elements:

• A set of roles R,

• A role hierarchy H⸦R×R, a partial order relation on
R. <r1, r2> denotes that r1 is a direct super-role of r2 or r2 is a
direct sub-role of r1 (r2 inherits all permissions of r1),

• A set of subjects/users (human or computer agents)
Sub,

• Role assignments Sub˗›2R (one subject can play a set
of roles),

• A set of constraints on static separation of duties:

• SSOD⸦R×R, where <r1, r2>∈ SSOD means that
r1and r2 cannot be assigned to the same subject,

• A set of constraints on dynamic separation of duties:

• DSOD⸦R×R, where <r1, r2>∈ DSOD means that r1
and r2 assigned to the same subject cannot be activated within
the same session, and

• A set of role permission/prohibition rules R.

Let O be a set of objects (or resources), A be a set of operations
(called activities related to the resources), C be a set of contexts
(representing Boolean expression constraints, for instance,
temporal contexts, location-based context, etc.), and
{Permission, Prohibition} be a set of authorization types.

In a library management system (LMS), for example, the set of
roles is {student, teacher, director, secretary, admin, borrower,
personnel}, the role order is {<borrower, student>, <borrower,
teacher>, <personnel, director>, <personnel, secretary>}
(borrower is the super role of student, whereas teacher and
personnel is the super-role of director and secretary), SSOD
={<borrower, personnel>, < admin, borrower>},
DSOD={<admin, director>}, the set of objects is {book,
borrower Account, personnelAccount}, and the set of activities
is {BorrowBook, ReserveBook, GiveBackBook,
AdminActivity, ManageAccess, CreateAccount,
ModifyAccount, DeliverBook, FixBook}, and the set of
contexts is {day(WD), day(HD), day (MD)}, where WD, HD,
and MD refer to working day, holiday, and maintenance day,
respectively. In Table 1, rules 1-6 are specified for the borrower
role. day(HD) can also be understood as day(d) and d=HD,
where d is a variable.

According to law 1, a borrower is not permitted to give back
books on holidays. According to rule 3, a borrower is allowed to
borrow books on working days. Given a set of specified RBAC
rules, there can be situations under which neither permission nor
prohibition is specified. We treat these situations as “undefined
conditions” and extend the set of authorisation types to
{Permission, Prohibition, and Undefined}. From security
assurance perspective, the undefined conditions must be tested
because they likely lead to security holes in an implementation.

To generate tests for these conditions, test modelling needs to
cover both defined and undefined access control conditions. Our
approach can automatically find such undefined conditions for a
given set of RBAC rules.

In the following, we discuss rare examples. In Table 1, rules 1-6
are the specified access control conditions whereas rules 7-10
are added according to the undefined conditions. Among the
specified rules 1-6, rules 2 and 3 are the only ones that are
related to activity BorrowBook for the borrower. Their contexts
are a day(HD) and day(WD). They do not cover maintenance
days (MD) – whether a borrower can borrow books on
maintenance days is not defined. This rule 7 is added. This is
similar to ReserveBook (rule 8) and GiveBackBook (rule 9).
Consider FixBook for the borrower. There is no specified rule
for FixBook under any context because it is a responsibility of
secretary.

From a testing perspective, we need to test whether a borrower
is allowed to perform FixBook. Thus we add rule 10, where
day(d) is true for any d ϵ{HD, WD, MD}. Applying all
activities to each role may require many rules to complete the

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.22, February 2018

16

specification. To deal with the complexity, our method allows
tests to be generated concerning several coverage standards and
can reduce the search space by using partial ordering and
pairwise combination techniques.

Table 1 Rbac Rules For The Borrower/Student Role

No

.

Object Activity Context Auth

_Type

1 Book GiveBackBoo

k

day(HD) Prohibition

2 Book BorrowBook day(HD) Prohibition

3 Book BorrowBook day(WD) Permission

4 Book GiveBackBoo

k

day(WD) Permission

5 Book ReserveBook day(HD) Prohibition

6 Book ReserveBook day(WD) Permission

7 Book BorrowBook day(MD) Undefined

8 Book ReserveBook day(MD) Undefined

9 Book GiveBackBoo

k

day(MD) Undefined

10 Book FixBook day(d) Undefined

Handling of role hierarchies in our approach will be discussed
below. Constrained RBAC uses static and dynamic constraints
to deal with separation of duties. In our approach, SSOD and
DSOD specify the pairs of roles that cannot be assigned or
activated together. Symmetric RBAC adds the notion of role
permission review, which allows determining permissions of
operations on objects assigned to specific roles.

This is addressed by RBAC rules defined roles, operations, and
objects. As a more general formalism of permission
specification, the RBAC rules also allow the specification of
access contexts and prohibitions (i.e., negative permissions).

In a role hierarchy, each role r inherits all permissions (i.e.,
RBAC rules) from its super roles. Let S(r) be the set of all
super-roles of role r, and (r) be the set of all rules concerning r,
including the rules defined for r and its super roles. (r) = {<r, o,
a, c, t> : <r, o, a, c, t>ϵR} {<r’, o, a, c, t> : <r’, o, a, c, t>R ϵ r’
and S(r)}. Here, we use (r) to build role-permission test models
that involve role r.

In the above LMS example, student, as a sub-role of the
borrower, inherits all the RBAC rules in Table 1. These rules
will be used to build the role permission test model for the
student as a running example.

Let us consider building a functional net for a subset of the
student role activities in LMS – borrow, reserve, and return the
book. A student may borrow an available book and return a
borrowed book. This consists of a sequence of two activities. A
student may reserve a book and then borrow it. This is also a
sequence of activities. When a borrowed book is returned, it can

be borrowed again this implies a loop structure. When interested
in a book, a student may borrow or reserve the book this is a
conditioning structure. Putting the above structures together
would result in the functional net shown in Fig. 3.

Figure. 3. Test Model net of student activities in LMS

Now we discuss how to build a role-permission test model by
integrating RBAC rules into a functional net.

For the sake of easiness, let us first assume that a functional net
involves the activities of a single role. An RBAC rule <r, o, a, c,
t> is related to a functional net only if activity appears as a
transition in the functional net. For example, rules 1-9 in Table
1 for the activities BorrowBook, GiveBackBook, and
ReserveBook are related to the functional net in Fig. 3. Suppose
the RBAC rules in (r) related to a functional net are <r, o1, a1,
c1, t1>, <r, o2, a2, c2, t2>, …, <r, om, am, cm, tm>. We
integrate each RBAC rule <r, oi, ai, ci, ti>

(1≤i≤m) into the functional net as follows:

If ti=Permission and ci=true. Nothing is needed in that the
rule is already represented by the activity transition ai,

If ti=Permission and predicates in ci have corresponding places
in the net (new places may be created for the predicates if
necessary). Add a bi-directional arc between each place, and the
activity transition ai (because the access does not change the
context) and add ci to the guard of ai. Consider rule 3 in Table 1
– the student is allowed to borrow book only on a working day.
The context day(d) and d=WD becomes an additional
constraint of borrow books in the functional net. As shown in
Fig. 4, we create a place day, add a bi-directional arc between
place day and transition BorrowBook, label the arc with
variable d, and add d=WD to the guard condition of
BorrowBook

Figure. 4. Test permission model of student activities in

LMS.

If ti = Prohibition, we add to the net a new transition Pai, which
means ai is prohibited. This transition shares the input and

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.22, February 2018

17

inhibitor places (i.e., functional preconditions) with ai. If the
predicates in ci are corresponding to places, we add a bi-
directional arc between each place and transition Pai (because it
does not change the context) and add ci to the guard of ai.
Consider rule 2 in Table 1 – the student is not allowed to borrow
books on holiday.

This is represented by transition PBorrowBook in Fig. 4.

If ti=Undefined, we handle the same way as Prohibition except
that the new transition is named Pai. Consider rule 7 in Table 1
– borrowing books on a maintenance day is undefined. This is
represented by transition UBorrowBook in Fig. 4. The role-
permission test model in Fig. 4 results from integrating rules 2,
3, and 7 in Table 1 into the functional net in Fig. 3. Other rules
can be handled similarly except for rule 10 whose activity
Fixbook does not appear in the functional net in Fig. 3. Since
Fixbook is an activity of the secretary role, we can integrate rule
10 into the functional net of secretary. To represent multiple
roles in a model, we use a global place role, which is connected
to each transition with a bi-directional arc labelled by a role
variable <r>. Which role can or cannot perform an activity is
then represented by such a guard condition as r=R or r!=R,
Where R is a particular role. For example, rule 10 can be
integrated into the secretary test model by using a new transition
UFixBook, whose guard includes r=student. This transition
means that fixed book is undefined for the student.

Building User-Role Assignment Test Models
A test model of user-role assignments specifies the test
requirements related to assigning/assigning users to roles and
activating/deactivating roles assigned to users. The assignment
and activation must satisfy the static and dynamic constraints on
separation of duties, i.e., SSOD and DSOD. As shown in Fig. 5,
test model nets can be used to formalize the above test
requirements.

Figure. 5. A test model for user-role assignments.

In Fig. 5, places user and role represent users and roles,
respectively. Places assigned role and activatedRole represent
the roles that are assigned to users and the roles that are
activated, respectively.

Places ssod and dsod represent the role pairs in SSOD and
DSOD, respectively. Two “assign” transitions intend to assign
roles to users. The lower “assign” transition assigns role r2 to
user u if u is not yet assigned to any role. The upper “assign”
transition assigns role r2 to user u which already plays role r1
only when <r1, r2> ϵ SSOD (i.e., the inhibitor arc from ssod to
assign) and r1≠r2 (i.e., the guard condition). Similarly, the
lower “activate” transition activates role r2 assigned to user u
when u has no activated role yet. The upper "activate” transition
activates role r2 assigned to user u when u has an activated role
r1, r1 r2, and <r1, r2> ϵ DSOD. In addition, transitions design
and deactivate remove role assignment and activation relations,
respectively.

5. SIMULATION AND RESULT

ANALYSIS
Our case studies are based on three Dot net application program,
LMS (Library Management System). Table 2 presents the main
parameters of these programs. LMS offers services to achieve
books in a public library. The books can be borrowed and
refunded by the users of the library on working days. LMS
differentiates three types of users: public users who can borrow
five books for three weeks, students who can borrow ten books
for three weeks and teachers who can borrow ten books for two
months.

Table 2 Subjects Of The Empirical Studies

Subje

ct

LO

C

#Classes/Meth

ods

#

R

#

O

#

A

#Rul

es

LMS 3204 62/335 5 4 12 33

LMS is managed by an administrator who can create, modify,
and remove user accounts. Books in the library are managed by
a secretary who orders books or adds them when they are
distributed. The secretary can also fix the broken books on
certain days dedicated to maintenance. When a book is
damaged, it must be fixed. While it is being fixed, this book
cannot be borrowed, but a user can reserve it. The director of
the library has the similar accesses than the secretary and can
consult the accounts of the employees. The administrator and
the secretary can refer all user accounts. All users can consult
the list of books in the library.

The results of our research are summarized in Table 3. For
LMS, there were 207 test cases in 3,185 lines of code. 56.2% of
the test code was generated. The tests killed 233 out of 243
mutants, with an overall detection rate of 95.9%. The ten
outstanding mutants not killed by the tests have the same
environment – they contain a new rule created by the adding-
rule operative but can never because security harms because the
useful prerequisite of the activity in the added rule is not
satisfied. These mutants do not violate the required security
policies. Consider a mutant with the following added rule that
allows the admin role to return books on any day: (admin,
Book, GiveBackBook, true, Permission). According to the
required access control policies, none of the Borrower’s
activities, BorrowBook, ReserveBook, and GiveBackBook, is
intended for use by the admin role (no access control rules
concerning these activities are specified for admin). The above-
added rule can never allow the admin role to return books
because of the prerequisite of GiveBackBook- “the book is
borrowed” (by the same person) - is unsatisfiable. This
prerequisite can only be fulfilled by BorrowBook. In the mutant,
however, Admin is not able to borrow books (BorrowBook is
undefined for admin). It is worth pointing out that our approach
killed the mutant with the following added rule that allows
admin to borrow books: (admin, Book, BorrowBook, true,
Permission).

As part of our primary experiment, the request for transition
reporting to the student role in LMS only killed about 50% of
the mutants because many access contexts were not exercised.

Table 3 Results Of The Empirical Studies

 #T LOC GLOC %GLOC #M # K Score

LMS 207 3185 1789 56.2% 243 233 95.9%

 #T: number of test cases generated; LOC: lines of executable Dot
net test code; GLOC: lines of Dot net test code; %GLOC: percentage of

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.22, February 2018

18

Dot net test code; #M: number of access control mutants; #K: number of
mutants killed by the generated test cases; Score: mutation score =
#K/#M.

In the literature on RBAC specification and analysis, the
number of roles and depth of role hierarchies is important
factors for measuring the complexity and scalability of RBAC
systems. For a complex real-world RBAC system with a large
number of roles and a deep role hierarchy, our approach relies

on the “divide and conquer” strategy and builds a number of
test models to deal with subsets of roles and access control rules
(rather than a single model for all roles and rules). Building test
models (e.g., contracts and functional models) is essentially a
manual process. It is also different from system modelling for
design and verification. The former focuses on what needs to be
tested with carefully selected test data, whereas the latter often
deals with system-wide behaviours and input spaces. Thus, the
complexity and scalability of test generation for individual test
models in our approach is not directly related to the total
number of roles and the depth of role hierarchy in the SUT.
Instead, it depends on the number of access control rules,
number of objects, number of activities, number of access
contexts, and test data involved in a given test model. In theory,
the complexity of our approach for reachability coverage is
exponential to the sizes of these factors because it aims to cover
every possible state transition. These factors determine the
number of states and state transitions in the model.

The main outcome of our study is that our approach is highly
effective in detecting access control defects. The key features
that have led to this result include formalization of function nets
and contracts, generation of access control tests with the
reachability graph coverage, generation of executable test code,
and mutation analysis of access control rules. In the following,
we debate how these aspects can be affected when our approach
is applied to general software applications where access control

is an important security mechanism.

6. SUMMARY

We have presented the tool-supported, model-based approach to
automated conformance testing of RBAC policies. It provides
structured processes for building role-permission test models
from functional nets and contract specifications.

It also automatically generates executable access control tests
from the test models. The empirical studies using Dot net based
application programs have demonstrated that our approach is
highly effective in detecting access control defects and that 56%
- 82% of the executable test code is generated automatically.

This study has focused on the testing of role-permission
assignments and user-role assignments in RBAC, where users,
roles, and permission rules are predefined.

7. REFERENCES
[1] R. Bhatti, J. B. D. Joshi, E. Bertino, A. Ghafoor, “Access

Control in Dynamic XML-based Web-Services with

XRBAC”, In Proceedings of The First International

Conference on Web Services, Las Vegas, June 23-26,

2003.

[2] The eXtensible Access Control Markup Language

(XACML), Version 3.0, OASIS Standard, January

22, 2013. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-

core-spec-osen.pdf

[3] M. Hillenbrand, J. G. otze, J. Muller, and P. Muller, "A

Single Sign-On Framework for Web-Services based

Distributed Applications", 8th International Conference

on Telecommunications, 2005, pp 273-279.

[4] T. Grob, "Security Analysis of the SAML Single Sign-on

Browser/Artifact Profile", Proceedings of the 19th Annual

Computer Security Applications Conference, 2003, pp

298-307.

[5] Microsoft. .net passport review guide, 2002.

[6] J. Gantner, A. G. Schulz, and A. Thede, "A Single Sign-

On Protocol for Distributed Web Applications Based on

Standard Internet Mechanisms", e-business and

telecommunications networks Springer Netherland, 2006,

pp I53-I59.

[7] T. Fleury, J. Basney, and V. Welch, "Single sign-on for

Java web start applications using MyProxy", Proceedings

of the 3rd ACM workshop on Secure web services, 2006,

pp 95-I0I.

IJCATM : www.ijcaonline.org

