Abstract

In this paper, a novel approach at circuit level named LSP is proposed by combination of LECTOR, Stack and Pass transistors techniques to decrease leakage power dissipation during active and standby mode. As a result, pass transistors are utilized to maintain logic state of network in the standby mode. Proposed technique simulation has been performed using HSPICE software in 32 nanometer technology with supply voltage 0.6V. According to achieved results by NAND gate and full adder circuits, sub-threshold current is decreased by 80% in compared to base case, 70% to LECTOR and 20% to Sleepy Keeper.

References

2. P. Kumar, and R. K. Sharma, “Low voltage high performance hybrid full adder,”

19. A. P. Shah, V. Neema, and S. Daulatabad, “Effect of process, voltage and temperature (PVT) variations in LECTOR-B (leakage reduction technique) at 70 nm technology node,” In
IEEE International Conference on Computer, Communication and Control, pp. 1–6, June. 2015.

Index Terms

Computer Science
Circuits and Systems

Keywords

Leakage power, LECTOR technique, Low power, Stack technique, VLSI.