Abstract

Biomedical imaging is a series of procedures which create images of the human body, or parts of the body, to help screen for possible illness or injury, diagnose the likely cause of symptoms and monitor health conditions or the effects of treatment. The objective of the paper is to provide an overview about various biomedical imaging techniques used in detection and diagnosis of Cancer. Each of these imaging techniques provides information about the anatomy, chemical or physiologic phenomena of the human body which are studied independently by doctors to identify Cancer. The biomedical imaging systems, applications, benefits, drawbacks and research challenges are discussed. Image Fusion and its role in biomedical imaging is also discussed. Image Fusion is the process of fusing two or more biomedical images which contain complementary information into a single composite image. These enrich image quality and avoid redundancy thereby increase the clinical applicability of medical images for cancer detection, prognosis and treatment planning of Cancer.
6. Thomas Flohr and Bernd Ohnesorge, "Multi Slice CT Technology ", Book Chapter.
19. MGP Cavalcanti, SS Rocha and MW Vannier, " Craniofacial measurements based on

30. Wolf-Dieter Heiss, Peter Raab and Heinrich Lanfermann, "Multimodality Assessment of Brain Tumors and Tumor Recurrence, "The Journal of Nuclear Medicine, August 12, 2011.

37. Abraham Varghese, Kannan Balakrishnan, Reji R Verghese and Joseph S Paul," Content Based Image Retrieval of T2 Weighted Brain MR Images similar to T1 Weighted
Advances in Biomedical Imaging and Image Fusion

Images,” Pattern Recognition and Machine Intelligence, Volume 8251, 2013. Journal of
Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, Vol.2,
Issue 1, January 2014.

39. Michael E Phelps, “Positron emission tomography provides molecular imaging of
biological processes,” Proceedings of the National Academy of Science of the United States,
2000.

40. Mian M Aladdin, "Positron Emission tomography (PET) imaging with F-based

Synchronized Positron Emission Tomography," IEEE Transactions on Medical Imaging, Vol.30,
Issue 2, Feb 2012.

42. Jaewon Yang, Tokihiro Yamamoto, Samuel R Mazin, et al,"The potential of PET for intra
treatment dynamic lung tumor tracking: A phantom study," The International Journal of Medical

43. Atsushi Teramoto, Hiroshi Fujita et al, "Hybrid method for detection of pulmonary
nodules using PET/CT a preliminary study," International Journal of Computer R Radiology and

44. Lartizien C, MArache Francisco, Prost, "Automatic detection of Lung and Liver Lesions
in 3D PET Images: A Pilot Study," IEEE Transactions on Nuclear Science, Vol. 59,Issue 1,
2012.

45. Jianhua Yan, Chaal J, Majewski, Vaigneur K, "Initial study design of a breast-dedicated
PET scanner with biopsy capability using GATE," Nuclear Science Symposium and Medical
Imaging Conference, 2011 IEEE.

46. Marlene Rossibel et al, "Assessment of inflammation in large arteries with 18F-FDG-in

47. Jan Bucur et al, "Prevalence and Risk Factors of Carotid Vessel Wall Inflammation in

48. Ciprian Catana, Daniel Procissi, Yibao Wu et al, " Simultaneous in vivo positron
emission tomography and magnetic resonance imaging, " Proceedings of the National Academy

49. Chih-Yu Hsu, Lai, Yeong-Lin, Chih-Cheng Chen, Yu-Tzu Lee, "Image Segmentation
Method with PET Time Sequence Images", 2011 Second International Conference on

50. Giampaolo Tomasi, Federico Turkheimer, Eric Aboagye," Importance of Quantification
for analysis of PET data in Oncology: A Review of Current methods and trends in future",
Journal of Molecular Imaging and Biology, 2011.

51. Alexander V. Stolin, Stan Majewski, Gangadhar Jaliparthi and Raymond R Raylam," Construction and Evaluation of a Prototypet High Resolution, Silicon Photomultiplier-Based,
Tandem Positron Emission Tomography System," IEEE Transactions on Nuclear Science,
Vol.60, No.1, Feb 2013.

52. N.Jon Shah, Hans Herzog, Christoph Weirich et al, "Effects of Magnetic Fields of up to
9.4T on Resolution and Contrast of PET Images as Measured with an MR-BrainPET," PLOS
ONE, Vol.9, Issue 4, April 2014.

53. Breuilly M, Malandain G, Ayache N, Guglielmi J, "Image based motion detection in 4D
images and application to respiratory motion suppression" 2013 IEEE 10th International Symposium on Biomedical Imaging.

72. Francisco Pereira, Matthew Botvinick, "A systematic approach to extracting semantic

108. Karl G Baum et al, "Techniques for Fusion of Multimodal Images: Application to Breast
Index Terms

Computer Science
Image Processing

Keywords

CT, MRI, PET, SPECT, Ultrasound imaging, Biomedical Image Fusion