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ABSTRACT
Most of the applications require information security on network.
Cryptography is a method to provide information confidentiality,
authenticity, and integrity. Double Data Encryption Standard al-
gorithm (2DES) is used by several applications to protect their
information security. However, current implementations of 2DES
algorithm suffer from large execution time. Parallel computation
is a promising technique to improve the performance of an al-
gorithm. Divide and conquer method is mainly used in parallel
computation to solve the algorithm in parallel by partitioning a
task into sub-task and allocating them to available processors. In
this paper, sequential and parallel 2DES are evaluated and com-
pared in terms of the running time and the speedup. The paral-
lel 2DES algorithm is implemented using Message Passing In-
terface (MPI) library, and the results have been conducted using
IMAN1 supercomputer. Results showed that the run time of paral-
lel 2DES algorithm outperforms the sequential one. Moreover, on
a large number of processors, parallel 2DES achieves better paral-
lel efficiency. Therefore, the parallel 2DES provides much better
performance in term of execution time than the serial ones and
would be useful to apply it to encrypt and decrypt multimedia.
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1. INTRODUCTION
Computer networks are required for exchanging information be-
tween the sender and the receiver. A key requirements of such net-
works is ensuring a secure flow of information. Cryptography is
one such technique that offers the most secure manner of trans-
mitting sensitive information from the sender to the recipient [11].
A critical objective of a cryptography algorithm is to turn sensi-
tive information indecipherable to everyone except the intended re-
cipient. An example of a cryptography algorithm that offers the
much-needed confidentiality is the 2DES algorithm. However, this

algorithm suffers from several performance-related drawbacks-for
example, execution time and memory requirement [10].

Parallel computation can be deployed for decreasing the execution
time of this algorithm [17]. In this case, several computations are
conducted at the same time, based on the principle that major prob-
lems can usually be split into smaller ones that can be then executed
in parallel [5].

The main topic of concern for this paper is scrutinizing the paral-
lel execution of the 2DES algorithm at the data level, considering
the nature of this algorithm is not sequential. The MPI Library is
utilized for executing the parallel 2DES algorithm. An IMAN1 su-
percomputer, which engages a distributed memory architecture, is
used for carrying out the experiments. This supercomputer is uti-
lized for decreasing the algorithmś execution time. The assessment
is carried out with regards to the speedup and execution time as per
various file sizes and varying number of processors.

The structure of the remaining paper is as follows: Section 2 offers
a synopsis of some related studies. Section 3 offers a synopsis of
the DES algorithm. Section 4 comprises a report on the 2DES al-
gorithm. Section 5 talks about the parallelization tools, while the
parallelzation of the 2DES algorithm is depicted in the following
section. The assessment outcomes of the parallel and sequential
2DES algorithm are outlined in Section 7, while Section 8 presents
the conclusion and recommendations for future research.

2. RELATED WORKS
Literature works cite several strategies for augmenting the DES
algorithmś performance. Optimization happens either at the soft-
ware level or the hardware level. The objective of these strategies
is to enhance the DES algorithmś efficacy. Rivest [15] provides
a straightforward error model for gauging the accuracy of a DES
execution in the majority of DES operations. Utilizing a Simple
Instruction Multiple Data Stream (SIMD) framework, Biham [2]
presents a DES execution that is five times faster on a 64−bit Al-
pha computer. This program can also be employed for a quick and
exhaustive key search. Anderson et al. [9] applied the DES S−box
structure to a new block cipher as a candidate for the Advanced
Encryption Standard and achieved speed at par with the DES algo-
rithm. Seidel [18] provides a more rapid bit-slice execution of DES
devised for the Motorola G4 featuring an AltiVec vector process-
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Fig. 1: General structure of DES algorithm.

ing unit. This is an execution running certain tests that are almost
nine times quicker than libdes, the most rapid open source DES ex-
ecution for the G4. In [1], Beletskyy et al. depict the outcomes of
parallelising DES by deploying OpenMP, an application program
interface. They segregated DES algorithm into parallelisable and
un-parallelisable segments. The researchers indicate that block ci-
phers parallelisation in the Electronic Code Book (ECB) mode is
conceivable as well as effectual. Celikel et al. [3] perform the de-
sign and execution of the DES encryption in the ECB mode with
parallelisation schemes based on the following: pipeline, block and
plain-text. Parallelisation based on plain-text rendered the best out-
comes among the three. Furthermore, the authors indicate that the
DES speed is not reliant on the source language. Khaddour et al. [8]
investigates the execution of a block cipher Triple Data Encryption
Standard (TDES) algorithm on a 16 processor single chip multi-
processor utilizing two parallelisation methods-the first is by data
parallelism in which every processor implements the whole TDES
algorithm and the second is a pipelined TDES disseminated on the
16 processors. The data parallelism approach offered an improved
performance compared to the pipelined technique.

Our design presents a new parallel execution of the 2DES algo-
rithm in the manner that it disseminates the workload among the
processors.

3. OVERVIEW OF THE DES ALGORITHM
The DES algorithm is extensively deployed in several applications.
As per NIST [17], this algorithm is a symmetric-key block cipher.
Fig. 1 shows the overall organization of DES cryptography algo-
rithm.
In the course of encryption, DES considers a 64−bit block of plain-
text as input and generates a 64-bit block of cipher-text as output
by utilizing of permutation as well as substitution. Likewise, at the
time of decryption, DES considers a 64−bit block of cipher-text
as input and generates a 64−bit plain-text block. The same key is
utilized in the course of encryption and decryption, albeit in reverse
fashion, wherein the size of the key is 56−bit. There are multiple

approaches for the DES algorithm but the ECB approach was used.
Here, each 64−bit block of data undergoes encryption individually.

1. Create sixteen sub-keys, each of them is 48 bits long.
1.1 Choose 64 bit from the key, then remove its parity bits and

then make permutation using (PC−1) table.
1.2 Divide the key into two equivalent parts: the first 28 bits is

called C0 and the last 28 bits is called D0.
1.3 Begin with i= 1, compute the sixteen 48 bit sub-keys K1−

K16.
1.3.1 Do left shifts on Ci−1 and Di−1 to obtain Ci and Di

respectively.
1.3.2 Permute the concatenation Ci Di with (PC−2) table.
1.3.3 Returned back to 1.3.1 until K16 has been computed.

2. Make encoding for each 64 bit block of data.
2.1 Take 64 bit block of plain-text and make permutation us-

ing (IP) table.
2.2 Divide the block into two equal parts: the first 32 bits is

called L0 and the last 32 bits is called R0.
3. Start with i = l, then use sixteen different 48 bits sub-keys to

the data block K1 −K16.
3.1 Make expansion of 32−bit sub-block Ri−1 into 48 bits us-

ing expansion function (E).
3.2 Do ⊕E(Ri−1) with Ki .
3.3 Divide E(Ri−1)⊕Ki into eight 6 bit blocks B1 −B8.
3.4 Beginning with j = l, substitute the values that are in

S−boxes for all B, (S−Boxes-Substitution Boxes).
3.4.1 The value of first and last bits B j, (called m) means

the row in S[ j] in order to find the value.
3.4.2 The value of the second and fifth bits B j, (called n)

determines the values in S[ j] to find the value.
3.4.3 Swap B j, with S[ j][m][n].
3.4.4 Returned back to 3.4.1 until all eight blocks of data

have been replaced.
3.5 Make Permutation of the concatenation of B1 −B8 with

Permutation (P) table.
3.6 Do ⊕ with the value with Li−1. Ri =

Li−1 ⊕ f (Ri−1,Ki), where f (Ri−1,Ki) =
P(S[l](Bl)S[l](B1)S[2](B2)S[3](B3)S[4](B4)S[5](B5)S[6](B6)
S[7](B7)S[8](B8)) and where B j is a six bit block of
E(Ri−1)⊕Ki

3.7 let Li = Ri−1.
3.8 Returned back to 3.1 until K16 has been reached.

4. Make permutation of the block R16 L16 with the (IP− 1). IP
and IP−1 permutations are inverses with each another.

DES cryptography algorithm uses 16 rounds. Fig. 2(a) shows the
structure of single round of DES algorithm. On the other hands,
Fig. 2(b) shows that the DES function is the core of DES algo-
rithm. The DES function takes as input 48 bit of key and produce a
32 bit of output.

4. DOUBLE DES ALGORITHM
This cipher utilizes instances of DES cipher to encrypt and two
instances of reverse ciphers to decrypt. Every instance utilizes a
different key and the key size is increased twofold [6]. Considering
a plain-text P and two encryption keys K1 and K2, a cipher-text can
be produced as:

C = E(K2,E(K1,P))

Decryption entails the keys to be employed in reverse manner:

P = D(K1,D(K2,C))
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(a)

(b)

Fig. 2: (a) Single Round of DES, (b) DES function.

5. TOOLS OF PARALLELISATION

A. MPI
MPI is a homogenous standard of trading messages between
several computers that run a parallel program, by employing

Fig. 3: ECB mode of encryption for 2DES algorithm.

FORTRAN, C or C++. It is a set of library routines, compiler
directives, and environment variables which can be utilized for
stipulating shared memory parallelism. MPI is devised for al-
lowing users to formulate programs which can operate compe-
tently on the majority of parallel architectures [13].

Furthermore, the MPI can support distributed program execu-
tion on a heterogeneous hardware. In other words, one can run
a program which begins processes on several computer sys-
tems for operating on the same problem. Such processes are
unable to communicate with each other by trading informa-
tion by means of shared memory. Rather, they might employ
few of the MPI communication routines. The two fundamen-
tal routines are MPI-Send (for sending a message to another
process) and MPI-Recv (for receiving a message from another
process) [14].

B. IMAN1 Supercomputer
The MPI code used the IMAN1 supercomputer. This super-
computer is Jordans first and quickest high-performance com-
puting resource, with funding by SESAME and JAEC. It can
be used by the academia and for industrial purposes within the
expanse of Jordan. IMAN1 offers several resources and clus-
ters for running and testing high-performance computing codes
[12, 16].

6. PARALLELISATION OF THE 2DES
ALGORITHM

The Electronic Code Book (ECB) approach is the easiest way of
operation utilised with a block cipher for executing the entire en-
cryption algorithm in cryptography [4]. The whole plain-text is
split into chunks of fixed length that can be processed individually.
The same key as with the unit encrypts each chunk of plain-text,
which is converted into a cipher-text block.

The ECB encryption technique is espoused for executing the 2DES
algorithm. Fig. 3 depicts the ECB encryption technique for this
algorithm. Blocks 64−bit in length are generated from the men-
tioned plain-text. The ECB mode aids a parallel architecture since
the individual plain-text blocks can be processed separately. The
cipher-textś decryption can be carried out in a similar manner.
The sequential algorithm could be rendered certain modifications
so as to capitalise on the multiprocessing units. As per the parallel
computation paradigms [7], the individual parts of the algorithms
should be determined and then equipped to work in an independent
processor.

2DES is relatively sequential in nature because every following
round is dependent on the output of the previous round. There-
fore, there is no attention to accelerate the 2DES encryption itself,
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b

Fig. 4: Block diagram for Parallel Implementation of 2DES
Algorithm.

but instead the blocks are encrypted separately. Doing this success-
fully would offer us significant gains in efficacy as well as speedup.
Fig. 4 depicts the steps that are carried out to do the parallelisation
according to the steps given below:

• Allot every processor a copy of the whole data;
• Every processor is allocated a part of the data, divided into

64−bit blocks;
• Every block then undergoes encryption by a processor for cre-

ating cipher-text blocks; every processor encrypts its blocks
separately; however, the blocks themselves are encrypted in
sequence per processor;

• Data is reclaimed using a master processor; cipher-text is writ-
ten to the output file.

The result of the parallelisation process is a parallelised 2DES al-
gorithm that depicts enhanced performance over a sequential exe-
cution.

7. PERFORMANCE ASSESSMENT AND RESULTS
The execution results mentioned in this section make a comparison
between the parallel and sequential execution of the 2DES algo-
rithm. The sequential 2DES was executed utilizing C programming
language. It has been assessed with respect to the execution time of
encryption as well as decryption. The sequential experiment was
carried out on a laptop with an Intel(R) Core(TM) i7−4500U hav-
ing a RAM of 8GB and a speed of 2.4 GHz. The file sizes were in
the range of 8KB to 16MB.

Conversely, the parallel 2DES was executed using MPI library and
C language. It was assessed with respect to speedup, running time,
and parallel efficacy performance metrics as per various file sizes
and varying quantity of processors. On average, three runs are con-
sidered for recording the outcomes. The parallel experiment was

Table 1. : The Hardware and Software Specifications.
Hardware specification Dual Quad Core Intel Xeon CPU with SMP, 16 GB RAM
Software Specification Scientific Linux 6.4 with open MPI 1.5.4, C and C++ compiler.

File size 8KB, 16KB, 32KB,64KB,128KB, 265KB, 1MB
Number of Processors 1, 2, 4, 8, 16, 32, 64
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Fig. 5: Execution Time for Sequential and parallel 2DES.

carried out on a IMAN1 supercomputer real distributed system.
The software and hardware details coupled with the used execution
parameters are mentioned in Table 1.

7.1 Run Time Assessment
Table 2 depicts the run time of parallel and sequential execution
of the 2DES algorithm for various file sizes with varying quantity
of processors. As shown in the table, as the size of data grows, the
run time goes up because of the higher time needed for data split-
ting and collection. The outcomes indicate that deploying up to 8
processors at the same time with the 2DES can deliver improved
outcomes compared to the sequential one. It can be concluded that
as the size of the file grew, the parallelised code with two processors
decreased the time in comparison with the sequential time required
for encrypting a file. Fig. 5 indicates that the sequential codes ex-
ecution time is more compared to the parallelised code. When the
size of the file is under 16KB, the difference is negligible. Thus,
when the size of the file grows, the differences between parallel
and sequential running time would rise considerably.

7.2 Speedup Assessment
The 2DES is also assessed with regards to speedup i.e., the ratio
of the sequential time to the parallel time. Fig. 6 depicts the exe-
cution time on 2, 4, 8, 16, 32, and 64 processors with varying file
sizes. Furthermore, it indicates that employing up to 8 processors
can deliver the best outcomes in terms of encryption for all cases.
For 16, 32, and 64 processors, the running time rose as the size
of the file grew, driven by the communication between the proces-
sors to send and obtain data. As the size of the file and the quantity
of processors rose, the communication between the processors was
augmented as well; this took more time compared to the time re-
quired for sequential. It can be concluded that irrespective of the
available
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Fig. 6: The Speedup of parallel 2DES.

8. CONCLUSION AND FUTURE WORKS
2DES is utilized in several real-time applications. Therefore, it is
essential to encrypt and decrypt big files in real time. The objective
of this paper is to decrease the time of encryption and decryption
for the 2DES algorithm. A parallel 2DES encryption algorithm in
ECB operation mode is devised and executed by utilizing the MPI
library. Here, the plain-text is split into equal partitions which equal
the quantity of processors available. The experiment outcomes are
executed on an IMAN1 supercomputer. Following the assessment
of the execution time and the speedup, the parallel execution of the
2DES algorithm utilizing more than one processor consumes less
time and offers improved speedup for encrypting and decrypting
large-sized files, like videos, compared to the sequential execution.
In general, one can say that parallel computation offers an effectual
and dependable mode of executing the 2DES algorithm.

Future research will encompass effectual parallel executions of
other encryption algorithms, assessed using the IMAN1 supercom-
puter for decreasing their execution time.
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Table 2. : Execution Times of Sequential and Parallelized Code in Seconds.

File Size

Execution Time

Sequential Implementation
Parallel Implementation
Number of Processors

2 4 8 16 32 64
8KB 0.120 0.056 0.034 0.021 3.067 5.966 6.65
16KB 0.177 0.103 0.091 0.078 2.996 4.259 5.178
32KB 0.634 0.177 0.135 0.092 2.536 3.687 4.66
64KB 0.985 0.643 0.354 0.246 1.455 2.233 3.597
128KB 1.198 0.801 0.553 0.345 0.824 1.284 2.559
256KB 3.228 2.876 1.768 0.95 0.655 0.972 1.522
512KB 4.328 3.961 3.704 1.635 0.447 0.762 1.365
1MB 5.235 4.543 3.91 2.615 0.306 0.636 0.969
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