
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.25, March 2018

26

Review of Ontology Evolution Process

Helna Wardhana
Computer Science & Electronic

Department, Gadjah Mada
University, Yogyakarta STMIK

Bumigora Mataram, Lombok,
Indonesia

Ahmad Ashari
Computer Science & Electronic

Department, Gadjah Mada
University, Yogyakarta

Anny Kartika Sari
Computer Science & Electronic

Department, Gadjah Mada
University, Yogyakarta

ABSTRACT

Ontologies are formal artifacts that are designed to represent

the knowledge related to a specific or generic domain in terms

of the relevant concepts, relationships between these concepts

and the instances of these concepts. Ontology evolution can

be defined as the process to adapt and change the ontology in

a timely and consistent manner. In this paper, we present a

brief description of ontology evolution process of recent

research.

General Terms

Ontology change, knowledge representation

Keywords

Ontology, ontology evolution, semantics of change

1. INTRODUCTION
Information semantics and semantic interoperability between

applications, systems, and services are mostly based on

ontology [1]. It is increase usage in information systems and

knowledge sharing systems raises the importance of ontology

maintenance. Ontologies are formal artifacts that are designed

to represent the knowledge related to a specific or generic

domain in terms of the relevant concepts, relationships

between these concepts and the instances of these concepts.

With rising importance of knowledge interchange, many

industrial and academic applications have adopted ontologies

as their conceptual backbone. Ontologies, to be effective,

need to change as fast as the parts of the world they describe.

A modification in one part of the ontology may generate many

inconsistencies in other parts of the same ontology, in the

ontology-based instances as well as in depending ontologies

and applications that are based on this ontology [2]. Ontology

evolution can be defined as the process to adapt and change

the ontology in a timely and consistent manner.

2. PRELIMINARIES

2.1 Ontology
An ontology is an explicit specification of a conceptualization

[3]. According to [4] an ontology is a representation

vocabulary, often specialized to some domain or subject

matter. More precisely, it is not the vocabulary as such that

qualifies as an ontology, but the conceptualizations that the

terms in the vocabulary are intended to capture. An ontology

became important because without ontologies, or the

conceptualizations that underlie knowledge, there cannot be a

vocabulary for representing knowledge [4]. Thus, the first step

in devising an effective knowledge representation system, and

vocabulary, is to perform an effective ontological analysis of

the field, or domain. Weak analyses lead to incoherent

knowledge bases. According to [1] in computer science,

ontology is defined as formal and explicit specifications of a

shared conceptualization of a domain of discourse and is the

main driving force behind Semantic Web vision.

Ontologies enable knowledge to be made explicit, formalize

the relevant underlying view of the world (domain model) and

make such models machine processable and interpretable [5].

In [6], ontologies to be effective, need to change as fast as the

parts of the world they describe. There are two main

challenges in adapting ontologies. The evolution of ontologies

should reflect both the changing interests of people and the

changing data, for example the documents stored in a digital

library.

2.2 Ontology Change
Ontology change refers to the generic process of changing an

ontology in response to a certain need. Some of the aspects

that will initiate a change when requested for accommodation

in the ontology [1]:

 New Concept: This is the most common change in

any ontology. New concepts emerge and have to be

accommodated in the concept hierarchy.

 Concept with Changed Properties: This is the case

when the concept in focus is already present in the

ontology but its properties and restrictions are different

from those associated with existing concepts.

 Simple vs. Aggregated Concept: The concept in

focus might be a combination of two or more existing

concepts (or vice versa). The ontology framework shall

preferably detect and act accordingly to accommodate the

change.

 Concept vs. Property: Different modeling

approaches are followed by ontology engineers for

building ontologies. One such case is modeling the same

concept either as a class in OWL or as a property of some

other existing class. For example, the concept

Luxury_Vehicle could be a separate subclass of Vehicle or

could be modeled as property of the concept Vehicle.

 Concept with Changed Hierarchy: Different

modeling approaches may fix the same concept in

different hierarchical locations in two different ontologies.

Following figure 1 shown a classification of ontology change

subfields.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.25, March 2018

27

Any field handling any type of change or related issues

(Ontology Change)

Figure 1. The Rotation of Ontology Evolution

2.3 Ontology Evolution
Evolution is an intrinsic part of the Semantic Web. Alterations

in a particular domain, changes to user requirements or

corrections of design flaws, they all may induce changes to

the corresponding ontologies. Moreover, changes to one

ontology may have implications on many depending artifacts

[7]. [8] see ontology evolution as the process to ‘adapt and

change the ontology in a timely and consistent manner’.

Ontology evolution defined as a process aiming to ‘respond to

a change in the domain or its conceptualization’ by

implementing a set of change operators over a source

ontology [9]. The recently compiled NeOn Glossary of

ontology engineering tasks states that ontology evolution is

‘the activity of facilitating the modification of an ontology by

preserving its consistency [9]. According to [2] ontology

evolution is the timely adaptation of an ontology to the arisen

changes and the consistent propagation of these changes to

dependent artefacts. The complexity of ontology evolution

increases as ontologies grow in size, so a structured ontology

evolution process is required. Ontology evolution is defined

as the formal interpretation of all change requirements

captured from different sources, the application of changes to

the ontology, and their propagation to dependent artifacts

while preserving consistency. Dependent artifacts include

objects referenced by the ontology and, dependent ontologies

and applications. In [10], ontology evolution means

modifying or upgrading the ontology when there is a certain

need for change or there comes a change in the domain

knowledge. Ontology evolution is the timely adaptation of an

ontology to changed business requirements, to trends in

ontology instances and patterns of usage of the ontology

based application, as well as the consistent

management/propagation of these changes to dependent

elements [11]. Ontology evolution is a complex problem:

Besides identifying change requirements from several sources

(modeled domain, usage environment, internal

conceptualization, etc.), the management of a change –from a

request to the final validation and application– needs to

formally specify the required change, to analyze and resolve

change effects on ontology, to implement the change, and to

validate its final application [12].

Why would someone want to develop an ontology? Some of

the reasons are: To share common understanding of the

structure of information among people or software agents, To

enable reuse of domain knowledge, To make domain

assumptions explicit, To separate domain knowledge from the

operational knowledge, To analyze domain knowledge [13].

3. ONTOLOGY EVOLUTION PROCESS
An ontology is a ‘specification of a shared conceptualization

of a domain’ [3] and therefore needs to change (i.e., to evolve)

whenever changes occur in the underlying domain or in its

conceptualization. According [1] The current ontology

evolution techniques have several hidden weaknesses which

Resolving heterogeneity of ontologies

(Heterogeneity Resolution)

Resolve vocabulary

heterogeneity using mapping

(Ontology Mapping)

Resolve vocabulary

heterogeneity using

intermediate ontology

(Ontology Articulation)

Resolve vocabulary

heterogeneity using relation

(Ontology Matching)

Its output is called

Ontology Alignment

Resolve vocabulary and

axiom heterogeneity using

mapping

(Ontology Morphism)

Translate ontology to

another language

(Ontology Translation,

first reading)

Implement a mapping

(Ontology Translation,

second reading)

Modifying ontologies

(Ontology Editing)

Resolve inconsistencies/incoherencies

(Ontology Debugging)

is split into Ontology Diagnosis and

Ontology Repair

Respond to a change request

(Ontology Evolution)

Combining information from ontologies

(Ontology Fusion)

Ontologies cover similar domains

(Ontology Integration)

Ontologies cover identical domains

(Ontology Merging)

Cope with different versions of

ontologies (Ontology Versioning)

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.25, March 2018

28

are still needed to be unfolded for the purpose of automatic

ontology evolution and minimizing its after effects. One

major weakness is that the specification of new changes due

to change in domain knowledge, resolving inconsistencies

because of new changes (selecting deduced changes from

available alternatives), and also undo and redo in case we

want to recover the ontology are all done manually [23]. In

order to automate the process of ontology evolution, we need

to automate all the mentioned tasks. This automation is

important because human intervention is time consuming and

error prone. In addition to these issues, the process of

evolution also brings consequent effects on dependent

applications and services using the evolving ontology, which

must be minimized [15, 24, 25].

The process starts with capturing changes either from explicit

requirements or from the result of change discovery methods.

Next, changes are represented formally and explicitly. The

semantics of change phase prevents inconsistencies by

computing additional changes that guarantee the transition of

the ontology into a consistent state. In the change propagation

phase, all dependent artifacts (ontology instances on the Web,

dependent ontologies, and application programs using the

changed ontology) are updated. During the change

implementation phase, required and induced changes are

applied to the ontology in a transactional manner. In the

change validation phase, the user evaluates the results and

restarts the cycle if necessary. According to [6], there are six-

phase evolution process, the phases being: (1) change

capturing, (2) change representation, (3) semantics of change,

(4) change propagation, (5) change implementation, and (6)

change validation. The following figure 2 show the rotation of

ontology evolution.

Figure 2. The Rotation of Ontology Evolution

Ontology over time needs to be updated to accommodate

changes in domain of knowledge, user requirements, and to

incorporate incremental improvement in the system. The

following table 1 show different ontology evolution

approaches.

Table 1. Varian of Ontology Evolution Process

No Refs Stages of Ontology Evolution Process

1.
[14] [6]

[12]

Change Capturing, Change Representation,

Semantics of Change, Change Propagation,
Change Implementation, Change Validation

2.

[2] [11]

[10] [1]
[15]

Change Capturing, Change Representation,

Semantics of Change, Change Implementation,
Change Propagation, Change Validation

3. [7]

Evolution on Request (Change Request,

Consistency Maintenance, Change Detection,

Change Recovery, Change Implementation) and
Evolution in Response (Change Detection, Cost

of Evolution, Version Consistency)

4. [16] [17]

Requesting a change (change representation/
change request), Planning the change (change

impact analysis), Implementing the change

(change propagation, restructuring,
inconsistency management), Verifying and

Validating the change (formal verification,

testing, debugging, quality assurance)

5. [9]
Detecting the Need for Evolution, Suggesting
Changes, Validating Changes, Assessing

Impact, Managing Changes

Furthermore, to facilitate our understanding of ontology

evolution, we present the following table 2.

Table 2. Ontology Evolution Filling Table [17]

 Ontology Evolution

Definition

Ontology evolution refers to the activity of
facilitating the modification of an ontology by

preserving its consistency, it can be seen as

consequence of different activities during the
development of the ontology

Aim
The aim of ontology evolution is to modify and to

change an ontology based on arisen requirements

Input An ontology in a consistent state

Output
An ontology in a consistent state with the proposed

changes applied

Who
All ontology engineers that have to perform

changes/updates to a deployed ontology

When
Normally it occurs after the ontology has been

deployed and need to be updated.

Why

Because there is a certain requirement for change or

there comes a change in the domain knowledge,
consequently need to share common understanding

of the structure of information among people or

software agents

How
By implementing a set of change operators (add,

delete or modify) over a source ontology

3.1 Change Capturing
The ontology evolution process begins with change capturing

phase, it means to capture all the required changes to be

applied to an ontology [1]. Capturing changes could be done

either from explicit requirements or from the result of change

discovery methods, which cause changes from patterns in data

and usage [6]. Explicit requirements are produced by ontology

engineers who want to adjust the ontology to novel

requirements or by the end-users who present the explicit

feedback about the utilization of ontology entities. The

changes generating from those requirements are called top

down changes whereas implicit requirements leading to so-

called bottom-up changes are reflected in the behavior of the

Change Capturing Change Representation

Se

ma

nti

cs

of

Ch

an

ge

Change Propagation Change Implementation

Cha

nge

Vali

dati

on

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.25, March 2018

29

system and can be discovered only through the analysis of this

behavior [6].

According to [2], there are two types of change discovery,

namely usage-driven and data-driven change discovery.

Usage-driven changes result from the usage patterns created

over a period of time. Once ontologies reach certain levels of

size and complexity, the decision about which parts remain

relevant and which are outdated is an immense task for

ontology engineers. Usage patterns of ontologies and their

metadata allow the detection of often or less often used parts,

thus reflecting the interests of users in parts of ontologies.

They can be derived by tracking querying and browsing

behaviors of users during the application of ontologies. Data-

driven change discovery can be explained as the task of

deriving ontology changes from modifications to the

knowledge representation it has been constructed from [2].

While usage-driven changes arise out of usage patterns of the

ontology, data-driven changes are generated by modifications

of the reference-data such as text documents or a database

which contains the knowledge modeled by the ontology [6].

[11] and [15] first provided the functional requirements for

the system to properly interact with the underlying model and

also provided multiple types of changes related to class,

properties, hierarchy, instances, and restrictions.

The change capturing phase was phase where changes to be

applied to the ontology are identified. Three types of changes

are identified based on usage-driven change discovery (i.e.,

derived from user behavior), data-driven discovery (i.e.,

derived from changes to the ontology instances) and structure-

driven change discovery where changes are derived from the

analysis on the structure of the ontology [9].

3.2 Change Representation
The second phase in ontology evolution is change

representation. Change representation is the phase where all

the required changes are represented using formal

representational format ([1], [10]) or following a specific

model [9]. According to [6] and [2], the set of ontology

change operations depends heavily on the underlying

ontology model. Most existing work on ontology evolution

builds on frame-like or object models, centered around

classes, properties, etc. To complete those changes [6], the

required changes have to be identified and represented in a

suitable format which means that the change representation

needs to be defined for a given ontology model. The identified

changes are reflected according to the specification of KAON

language. Change can be represented on three granularity

levels: elementary change, composite change, and complex

change ([2], [12], [15]). A taxonomy of elementary changes is

derived as the cross product of the set of entities of the

ontology model and the meta-change transformations add and

remove. The author also mentions that this level of change

representation is not always appropriate and therefore

introduces the notion of composite changes. A composite

change is an ontology change that modifies (creates, removes

or changes) one and only one level of neighborhood of entities

in the ontology. Examples for these composite changes would

be: “Pull concept up”, “Concept Copy”, “Split Concept”, etc.

Furthermore, a complex change is an ontology change that

can be decomposed into any mix of at least two elementary

and composite ontology changes ([2], [15]).

[2] derives a set of ontology changes for the KAON ontology

model. Information about changes can be represented in many

different ways [18]. The author describes different

representations and propose a framework that integrates them.

[19] describes a set of changes for the OWL ontology

language, based on an OWL meta-model. The author

considers also modify operations in addition to Delete and

Add operations. Another form of change representation for

OWL is defined by [8], who follow an ontology model

influenced by Description Logics, which treats an ontology as

a knowledge base consisting of a set of axioms. Models for

change representations for other ontology language exist, too:

a formal method for tracking changes in the RDF repository is

proposed in [20].

3.3 Semantics of Change
The third phase in ontology evolution process is semantics of

change, i.e. the phase that enables the resolution of ontology

changes in a systematic manner by ensuring the consistency

of the ontology [15]. The goal from this phase is to evaluate

and resolve change effects in a systematic manner by ensuring

the consistency of the whole ontology [12].

According to [1], semantics of change is the phase where the

effects of the required changes are tested on ontology for its

consistency and if required then some deduced changes are

also included in the change request to avoid conflicts.

The ontology change operations need to be managed such that

the ontology remains consistent throughout [6]. The

consistency of an ontology is defined in terms of consistency

conditions, or invariants that must be satisfied by the

ontology. The meaning of consistency depends heavily on the

underlying ontology model. It can for example be defined

using a set of constraints or it can be given a model-theoretic

definition. In the following we provide an overview of various

notions of consistency and approaches for the realization of

the changes. Ontology consistency is defined as following: “A

single ontology is defined to be consistent with the respect to

its model if and only if, it preserves the constraints defined for

underlying ontology model” [2]. The global approach focuses

on KAON ontology. In [8], the authors describe the semantics

of change for the consistent evolution of OWL ontologies,

considering the structural, logical, and user-defined

consistency conditions:

a) Structural Consistency ensures that the ontology

obeys the constraints of the ontology language with respect to

how the constructs of the ontology language are used.

b) Logical Consistency regards the formal semantics of

the ontology: viewing the ontology as a logical theory, an

ontology as logically consistent if it is satisfiable, meaning

that it does not contain contradicting information.

c) User-defined Consistency: Finally, there may be

definitions of consistency that are not captured by the

underlying ontology language itself, but rather given by some

application or usage context. The conditions are explicitly

defined by the user and they must be met in order for the

ontology to be considered consistent.

[2] explains and compares two approaches to verify ontology

consistency, called a posteriori verification and a priori

verification. The first approaches, a posteriori verification,

where first the changes are executed, and then the updated

ontology is checked to determine whether it satisfies the

consistency constraints. Whereas a priori verification, which

defines a respective set of preconditions for each change. It

must be proven that, for each change, the consistency will be

maintained if an ontology is consistent prior to an update and

the preconditions are satisfied.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.25, March 2018

30

The semantics of change phase, during which syntactic and

semantic inconsistencies that could arise as a result of the

changes are addressed [9]. Yet another problem is that the

change may introduce inconsistency in the ontology.

According to [21], an inconsistency is any situation in which a

set of descriptions does not obey some relationship that should

hold between them. The relationship between descriptions can

be expressed as a consistency rule against which the

descriptions can be checked.

3.4 Change Propagation
The fourth phase in ontology evolution process is change

propagation. According to ([12], [1], [22]) the change of

propagation phase aims to propagate ontology changes to the

possible dependent artifacts, applications and services in order

to preserve the overall consistency. The task of this phase is to

bring automatically all dependent artefacts into a consistent

state after an ontology update has been performed [2]. These

artifacts can be ontologies reused or extended by the evolved

ontology or distributed applications. Propagation consists in

tracking and broadcasting applied changes. Synchronization

approaches proposed are described in detail in ([2], [14]).

According to [6], the task of the change propagation phase of

the ontology evolution process is to ensure consistency of

dependent artefacts after an ontology update has been

performed. These artefacts may include dependent ontologies,

instances, as well as application programs using the ontology.

Change propagation allowing the update of outdated instances

as well as recursively reflecting changes in referenced

ontologies in the case of interconnected ontologies [9].

An approach for evolution in the context of dependent and

distributed ontologies have been provided by [14]. In [14],

definition of Dependent Ontology Consistency is state of an

ontology if the ontology itself and all its included ontologies,

observed alone and independently of the ontologies in which

are reused, are single ontology consistent. [14] compared

Push-based and Pull based approaches for the

synchronization of dependent ontologies. The authors follow a

push-based approach for dependent ontologies on one node

and present an algorithm for dependent ontology evolution.

Push-based synchronization is a variant of immediate

conversion. Furthermore, for the case of multiple ontologies

on multiple nodes, the authors define Replication Ontology

Consistency (An ontology is replication consistent if it is

equivalent to its original and all its included ontologies

(directly and indirectly) are replication consistent). The

authors follow a pull-based approach for the synchronization

between originals and replicas. With pull-based

synchronization, the changes are propagated at explicit

request, which implies a deferred approach.

According to [16], during the change planning phase, the

impact of the change has been analyzed, and it may turn out

that a local change will propagate to many different types of

dependent artefacts. Based on the cost and impact analysis,

the ontology engineer might consider to cancel the change or

not.

3.5 Change Implementation
The fifth phase in ontology evolution process is the

implementation of change, coupled with user interaction for

approving or cancelling changes [9]. Change implementation

is the phase where the complete change request (modified) is

executed on the ontology ([1], [10]).

In ([6], [2], [15]), the role of the change implementation phase

of the ontology evolution process is: (i) to inform an ontology

engineer about all consequences of a change request, (ii) to

apply all the (required and derived) changes, and (iii) to keep

track of performed changes. Furthermore, we describe these

functionalities in detail.

 Change Notification: In order to avoid performing

undesired changes, a list of all implications for the

ontology and dependent artefacts should be generated and

presented to the ontology engineer, who should then be

able to accept or abort these changes.

 Change Application: The application of a change

should have transactional properties, that is (A) Atomicity,

(C) Consistency, (I) Isolation, and (D) Durability. The

approach of [2] realizes this requirement by the strict

separation between the request specification and the

change implementation. This allows the set of change

operations to be easily treated as one atomic transaction,

since all the changes are applied at once.

 Change Logging: There are various ways to keep

track of the performed changes. [2] provides an evolution

log based on an evolution ontology for the KAON

ontology model. KAON Change logging is based on two

specific notions: evolution ontology and evolution log.

Evolution ontology defines a model of applicable changes

on an ontology, facilitating the management of these

changes. Evolution log describes applied-change historic

through chronological information sequences about each

change. It holds knowledge about the ontology

development and maintenance. Modeling change

(evolution ontology) and their application historic

(evolution log) help in synchronizing the ontology

evolution. If a c hange needs to be cancelled, evolution log

based on a formal change model, helps in guiding revoke

operations. The evolution ontology covers the various

types of changes, dependencies between changes (causal

dependencies as well as ordering), as well as the decision-

making process [2].

According to [12], this phase consists in the physical

implementation of the required change and the derived

changes resolving it. First, changes are notified to the

ontology engineer to be approved and then, applied. Besides,

all performed changes are logged in order to support recovery

facilities.

3.6 Change Validation
The last phase in ontology evolution process is the validation

phase, which checks that the performed changes led to a valid

(or desirable) result, and allows the user to undo such changes

if this is not the case [9]. In [10], this phase called change of

verification, sub task validates the subject ontology to confirm

that the requested changes have been committed to the

ontology. This phase consists in the final validation of the

applied changes. It ensures the reversibility of the changes if

they are finally disapproved by users (may be due to no

convincing impacts, divergent points of view in collaborative

context, etc.), the rationale explanation of changes, and their

usability ([2], [12]).

According to [6], there are numerous circumstances where it

can be desirable to reverse the effects of the ontology

evolution, as for example in the following cases:

 The ontology engineer may fail to understand the

actual effect of the change and approve a change which

should not be performed.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.25, March 2018

31

 It may be desired to change the ontology for

experimental purposes.

 When working on an ontology collaboratively,

different ontology engineers may have different ideas about

how the ontology should be changed.

It is the task of the change validation phase to recover from

these situations. Change validation enables justification of

performed changes or undoing them at user’s request.

Consequently, the usability of the ontology evolution system

is increased.

In [17], before the ontology is considered evolved completely,

the last step deals with assessing questions whether the right

ontology is built and whether it is built in the right way.

During this assessment, usually not only the ontology

originally modified is verified in isolation, but in general, this

activity can include the verification of other artefacts related

to the ontology to ensure that they were not changed in a

wrong way or they have an unexpected behavior. [16] have

been mentioned that activity in the change process has to do

with verification and validation. Verification addresses the

question “did we build the system-right?”, whereas validation

addresses the question “did we build the right system?”. A

wide scale of different techniques has been proposed to

address these questions, including: testing, formal

verification, debugging and quality assurance.

4. DISCUSSION
According to [1], the evolution in ontology is mainly of two

types i.e., Ontology Population and Ontology Enrichment.

Ontology Population is when we get new instances for

concept that is already provided in the ontology. Here only the

new instance(s) of the concept is introduced and the ontology

is populated. Ontology Enrichment is when we get changes in

the structure of ontology. For example, when we get new

concept(s), which is totally new for the ontology or the

concept does have some sort of changes from its counter

concept in the ontology.

Based on the explanation in section 3, we can conclude

several methods/approaches used in each phase in ontology

evolution. The following table 3 shows methods proposed on

ontology evolution process.

Table 3. Summary of Methods on Ontology Evolution

Process

Ontology

Evolution

Process

Used Methods/Approaches Refs

Change

Capturing

Usage-driven change discovery, data-

driven change discovery and structure-
driven change discovery

[9],

[2],

[14]

Change

Presentation

KAON ontology [2]

OWL ontology [19]

Ontology of change operation (the kernel

of the framework)
[18]

Semantics of
Change

the structural, logical, and user-defined

consistency conditions for consistent
evolution of OWL ontologies

[8]

A posteriori verification and a priori

verification
[2]

Change
Propagation

Push-based and Pull based

synchronization
[14]

the creation and preservation of sub-
ontologies to deal with the frequent

changes in health ontologies

[23]

Change
Implementation

Change Notification, Change Application,
Change Logging

[6],

[2],
[15]

Change

Validation

Justification of the changes [2]

Relevance of the changes with respect to
the ontology

[24]

testing, formal verification, debugging and

quality assurance
[16]

Furthermore, the following is a brief explanation of used

method in each phase.

In [9], change capturing phase is equal to detecting the need

for evolution. The goal of the Detecting the Need for

Evolution stage is to detect whether new concepts and

relations should be added to the ontology, or whether some

ontology elements can be deleted. [2] defines data-driven

ontology evolution as the process of discovering ontology

changes based on the analysis of the ontology instances, for

example, by relying on data mining techniques. Another type

of change detection defined by [2] is structure driven, where

the evolution is initiated based on the analysis performed on

the ontology structure using a set of heuristics. For example,

‘if all sub concepts have the same property, the property may

be moved to the parent concept’, or ‘a concept with a single

sub concept should be merged with its sub concept’[2].

[18] have developed an ontology of change operations for the

OWL knowledge model as an example of a common language

for the interaction of tools and components in their

framework. The operations in this ontology are the elements

for the specification of a transformation set. The ontology

consists of two parts. The basis is an ontology of basic change

operations and there is an extension that defines complex

change operations. [18] chose the set of basic operations in

such a way that the required commitment is minimal, while

the set is still rich enough to capture enough knowledge about

the change to derive new information.

According to [2], application of an elementary change to an

ontology can induce inconsistencies in other parts of the

ontology. The author distinguishes structural and semantic

inconsistency. Structural inconsistency arises when the

ontology model constraints are invalidated (e.g. undefined

entities at the ontology or instance level are used). Whereas

semantic inconsistency arises when the meaning of an

ontology entity is changed due to the changes performed in

the ontology.

[14] have been defined there are two ways of propagating

changes from the changed ontology to all ontologies that

include it, called push-based approach and pull-based

approach. Push-based approach: Changes from the changed

ontology are propagated to dependent ontologies as they

happen. Pull based approach: Changes from the changed

ontology are propagated to dependent ontologies only at their

explicit request. The pull-based approach is better suited for

less stringent consistency requirements.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.25, March 2018

32

According to [2], another name for change notification in

change implementation phase is notification of the

consequences of a change. The ontology engineer should

however have possibilities to make such choices or even to

abort the entire ontology evolution process when she realizes

that it would have undesired consequences for other parts of

the ontology, for dependent ontologies, for distributed

instances or for existing applications. Consequently, she

should be able to comprehend a list of all the changes and

approve or cancel them. When the changes are approved, they

are performed by successively resolving changes from the list.

If changes are cancelled, the ontology should remain

complete. In order to give an ontology-engineer a chance to

cancel a change after it has been completely analyzed, it is

necessary to separate the analysis of the user’s request for the

change from the final execution of this request within the

ontology evolution system. Therefore, the main task of the

change implementation phase in [2] is the application of

changes. During this phase all changes (i.e. required and

derived changes) are applied to a consistent ontology and

result into a new consistent state of this ontology. The last

task of the change implementation phase is to keep track

about the performed changes. Communication about changes

need a common understanding of a change model and of a log

model. The evolution log tracks the history of applied

ontology changes as an order sequence of information

(defined through the evolution ontology) about particular

change.

In [16], there are four techniques in change validation: formal

verification, testing, debugging and quality assurance. Formal

verification relies on formalisms such as state machines and

temporal logics to derive useful properties of the system under

study. Well known techniques for formal verification are

model checking and theorem proving. While formal

verification can be very useful, it is a technique requiring

considerable expertise, and it does not always scale very well

in practice. Therefore, other more pragmatic approaches are

needed as well. Testing is one of these approaches. For a well-

chosen representative subset of the system under

consideration, tests are written to verify whether the system

behaves as expected. Debugging is the task of localizing and

repairing errors (that may have been found during formal

verification or testing). The final activity is quality assurance,

activity to ensure that the developed system satisfies all

desired qualities.

Application of ontology evolution has involved various tools.

Some tools that have been used in ontology evolution process

are Protégé [25] & [26], OilEd [27], KAON [28], Diligent

[29], DOGMA-MESS [30], Evolva [31] & [32] Ontology

Evolution Visualization [33] and OntoAMAS [34]. A further

explanation of utilization comparison of those tools will be

discussed in the next paper.

5. CONCLUSION
There are various variations of the ontology evolution stages

that have resulted from many research of late. We have shown

a variety of approaches that concern the evolution process,

methods and tools. Concerning future work, we plan to study

the comparison of utilization of tools used in ontology

evolution process.

6. REFERENCES
[1] A. M. Khattak, R. Batool, Z. Pervez, A. M. Khan, and S.

Lee, “Ontology evolution and challenges,” J. Inf. Sci.

Eng., vol. 29, no. 5, pp. 851–871, 2013.

[2] L. Stojanovic, “Methods and tools for ontology

evolution,” Univ. Karlsruhe, no. August, 2004.

[3] B. T. Gruber, “What is an Ontology ?,” pp. 1–11, 1993.

[4] B. Chandrasekaran, J. R. Josephson, and V. R.

Benjamins, “What Are Ontologies , and Why Do We

Need Them ?,” 1999.

[5] S. Editors, P. Bernus, and M. J. Shaw, International

Handbooks on Information Systems. 2007.

[6] S. Bloehdorn, P. Haase, Y. Sure, and J. Voelker,

“Ontology Evolution,” Semant. Web Technol. Trends

Res. Ontol. Syst., pp. 51–70, 2006.

[7] P. Plessers, O. De Troyer, and S. Casteleyn,

“Understanding ontology evolution: A change detection

approach,” Web Semant., vol. 5, no. 1, pp. 39–49, 2007.

[8] P. Haase and L. Stojanovic, “Consistent evolution of owl

ontologies,” Semant. Web Res. Appl., pp. 182–197, 2005.

[9] F. Zablith et al., “Ontology evolution: a process-centric

survey,” Knowl. Eng. Rev., vol. 30, no. 1, pp. 45–75,

2013.

[10] D. Slezak, Ontology Evolution : A Survey and Future

Challenges. 2009.

[11] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic,

“User-driven ontology evolution management,” Knowl.

Eng. Knowl. Manag. Ontol. Semant. Web, pp. 133–140,

2002.

[12] R. Djedidi and M. A. Aufare, “Ontology Evolution: State

of the Art and Future Directions,” 2010.

[13] N. F. Noy and D. L. McGuinness, “Ontology

Development 101: A Guide to Creating Your First

Ontology,” Stanford Knowl. Syst. Lab., p. 25, 2001.

[14] A. Maedche, B. Motik, and L. Stojanovic, “Managing

multiple and distributed ontologies on the Semantic

Web,” VLDB J., vol. 12, pp. 286–302, 2003.

[15] S. Y. Haase Peter, “State of the Art on Ontology

evolution,” Semant. Web Technol., pp. 51–70, 2004.

[16] R. Djedidi, M. A. Aufare, P. De Leenheer, and T. Mens,

“Ontology Evolution: State of the Art and Future

Directions,” Ontol. Theory Manag. Des. Tools Model.,

vol. 2, no. 1, pp. 1–47, 2008.

[17] P. Raul, F. Zablith, P. Haase, and O. Corcho, “Ontology

Evolution.pdf.” 2012.

[18] M. Klein and N. F. Noy, “A Component-Based

Framework for Ontology Evolution,” Proc. 7th Int. Conf.

Princ. Knowl. Represent. Reason., pp. 135–144, 2003.

[19] M. Klein, Change Management for Distributed

Ontologies. 2004.

[20] O. D. Atanas Kiryakov, “Tracking Changes in RDF(S)

Repositories,” Artif. Intell., no. July, 2002.

[21] B. Nuseibeh, S. Easterbrook, and A. Russo, “Leveraging

inconsistency in software development,” Computer

(Long. Beach. Calif)., vol. 33, no. 4, pp. 24–29, 2000.

[22] A. K. Sari and W. Rahayu, “Ontology-based Change

Propagation in Shareable Health Information

Appications.pdf.” 2015.

[23] A. K. Sari, W. Rahayu, and M. Bhatt, “An approach for

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.25, March 2018

33

sub-ontology evolution in a distributed health care

enterprise,” Inf. Syst., vol. 38, no. 5, pp. 727–744, 2013.

[24] F. Zablith, M. D’Aquin, M. Sabou, and E. Motta, “Using

ontological contexts to assess the relevance of statements

in ontology evolution,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 6317 LNAI, pp. 226–240, 2010.

[25] N. Guarino and C. Welty, Knowledge Engineering and

Knowledge Management Methods, Models, and Tools.

2000.

[26] N. F. Noy, A. Chugh, W. Liu, and M. a Musen, “A

Framework for Ontology Evolution in Collaborative

Environments,” ISWC’06 Proc. 5th Int. Conf. Semant.

Web, pp. 544–558, 2006.

[27] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens,

“OilEd : a Reason-able Ontology Editor for the Semantic

Web,” Proc. KI2001, Jt. Ger. Conf. Artif. Intell., pp.

396–408, 2001.

[28] T. Gabel, Y. Sure, and J. Voelker, “KAON – Ontology

Management Infrastructure,” SEKT informal Deliv.,

2004.

[29] D. Vrandecic, S. Pinto, C. Tempich, and Y. Sure, “The

DILIGENT knowledge processes,” J. Knowl. Manag.,

vol. 9, no. 5, pp. 85–96, 2005.

[30] P. De Leenheer and C. Debruyne, “DOGMA-MESS: A

Tool for Fact-Oriented Collaborative Ontology

Evolution.,” OTM Work., pp. 797–806, 2008.

[31] F. Zablith, M. Sabou, M. Aquin, and E. Motta,

“Ontology Evolution with Evolva Underlying Approach :

The Evolva Framework,” Evolution (N. Y)., pp. 908–912,

2009.

[32] F. Zablith, “LNCS 5554 - Evolva: A Comprehensive

Approach to Ontology Evolution,” pp. 944–948, 2009.

[33] P. Lambrix, Z. Dragisic, V. Ivanova, and C. Anslow,

“Visualization for ontology evolution,” CEUR Workshop

Proc., vol. 1704, pp. 54–67, 2016.

[34] S. Benomrane, Z. Sellami, and M. Ben Ayed, “An

ontologist feedback driven ontology evolution with an

adaptive multi-agent system,” Adv. Eng. Informatics, vol.

30, no. 3, pp. 337–353, 2016.

IJCATM : www.ijcaonline.org

