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ABSTRACT 

Feedback data loss can severely degrade the overall system 

performance and as well as it can affect the control and 

computation of the Cyber-physical Systems (CPS). CPS hold 

enormous potential for a wide range of emerging and time 

critical applications including different traffic patterns. 

Therefore, incomplete feedback makes a great challenge in 

any uncertain condition to maintain the real-time control of 

the CPS. In this paper, we proposed a data recovery called 

Efficient Spatial Data Recovery with an error refinement 

(ESDR/ER) procedure for CPS to minimize the error 

estimation and maximize the accuracy of the scheme. In this 

scheme, we present an algorithm with Pearson Correlation 

Coefficient (PCC) to efficiently solve the missing data for 

both deterministic and stochastic traffic patterns. We also 

present an error refinement procedure to refine the error thus 

to maintain high accuracy. Numerical results reveal that the 

proposed ESDR/ER outperforms both WP and STI algorithms 

regardless of the increment percentage of missing data in 

terms of the root mean square error, mean absolute error and 

integral of absolute error. 
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1. INTRODUCTION 
Cyber-physical systems (CPS) are a new generation of 

communication, control and computation that have received a 

great deal of attention recently [1]. CPS enable the virtual 

world to interact with the physical world in order to monitor 

and control the intended parameter in the real-time basis. In 

CPS, technologies such as communication, control, 

computation, cognition and sensing converge to create new 

technologies for smarter society. The area of CPS represents 

the intersection of several systems trends, such as real-time 

embedded system, distributed systems, control system and 

networked wireless system. 

To facilitate communications between cyber and the physical 

world, wireless sensor and actuator network (WSAN) is an 

essential ingredient of CPS. This is because the traditional 

wireless sensor network (WSN) is limited in its ability to 

monitor the physical world [2]. However, CPS achieves this 

requirement by facilitating the system to sense, interact and 

change the physical world in real-time by using feedback 

control loop. In typical CPS application, sensor nodes collect 

information from the physical world as a source of CPS 

inputs. Upon receiving the information of inputs, a controller 

makes a corresponding decision based on the inputs by 

computing and actuators perform the action in the physical 

world through the closed-loop feedback. 

Since, CPS exploit the physical information collected by 

WSANs; it also faces the wireless contention problem which 

makes a challenging issue to control in real-time. Wireless 

channels have many adverse properties like path loss, fading, 

adjacent channel interference, node/link failure, etc. Besides 

these, wireless signal can be easily affected by noise, physical 

obstacles, node movement, environmental change and so on 

[3-4]. Because of this unpredictable and dynamic nature, the 

sensing data loss is a common phenomenon, which makes 

hamper in controlling decision. Since, the applicability of CPS 

is found in numerous time-critical applications including 

smart house to the smart grid, data loss makes the system 

unstable. Emerging applications of CPS include medical 

devices and systems, aerospace systems, transportation 

vehicles and intelligent highways, defense systems, robotic 

systems, process control, factory automation, building and 

environmental control, smart spaces, intelligent home and so 

on [5]. In all of these applications, CPS has to monitor and 

control the state of the physical phenomenon in real-time. In 

particular, for time-critical applications, feedback data must 

have to arrive on time, to make a decision. In many cases, re-

transmission cannot provide an appropriate solution because 

of the unpredictable network behavior, which can cause high 

delay. 

To maintain uninterrupted control, we need a data recovery 

scheme that can handle insufficient feedback control 

information. In our paper [6], we proposed a highly Efficient 

Spatial Data Recovery (ESDR) scheme that deals with CPS. 

In this paper, we enhance our proposed ESDR scheme for 

both deterministic and stochastic traffic patterns and also 

propose a refinement procedure to refine the estimated error. 

To do this, we design a framework structure for the control 

view of the CPS with our data recovery scheme. The designed 

framework incorporates the proposed ESDR scheme, which is 

based on the spatial correlation of neighboring sensors by 

using the Pearson correlation coefficient (PCC). Since sensor 

data is highly correlated with space and time, we utilize the 

spatial relationship to recover the lost data. After each 

estimation, we calculate the mean error and make refinement 

on that mean error. The refined mean error is adjusted from 

the estimated value.  

One of our contributions is that the enhance ESDR/ER 

scheme ensures timely data recovery for both deterministic 

and stochastic traffic because of minimum computation. This 

algorithm always gives the result within threshold because of 

the error refinement.  Second, our proposed ESDR/ER scheme 

is used to examine the smart home environment with CPS 

approach in order to maintain desired room temperature at 

different locations. Thus, the feedback measured room 

temperature is very important to keep the desired room 

temperature steadily at all the times. Another advantage is 

that, the proposed scheme ensures scalability. Since it uses 

only one-hop neighbors, thus the scheme can be applied in 

both small and large network.  

The rest of the paper is organized as follows. Section II 

summarizes some state-of-the-art research works that are 
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related to this paper. In Section III, the proposed ESDR/ER is 

presented. We describe the experimental scenario and the 

evaluation parameters in Section IV. Simulation results and 

discussions are presented in Section V. Section VI concludes 

with the conclusion and future works. 

2. RELATED WORK 
Data recovery and evaluation of estimation is a part of most 

research and there exist several methods to handle this. 

Although there exist several methods, the recovery of data 

loss for CPS still poses an open problem because of its unique 

requirement. The whole recovery process for CPS must be 

held in real-time and invisible to the outside world. 

Missing data is a well-studied subject in statistics. Little and 

Rubin provide an introduction to statistical missing data 

imputation techniques, such as least squares estimates, 

Bartlett's ANCOVA and likelihood-based approaches in [7]. 

Maximum likelihood (ML), multiple imputations (MI) and 

expectation maximization (EM) are widely used method for 

missing data imputation. ML[8] calculates the likelihood 

function for given set of data, which is a hypothetical 

probability that uses past event with the known outcome. 

Then, by using iterative steps, ML makes the likelihood 

function maximum. EM [9] also uses an iterative step to 

maximize the likelihood function but here, the model depends 

on unobserved or latent variables. Based on mean and 

covariance matrix of multivariate normal distribution, 

expectation (E) step initializes the expected values for latent 

variables. Maximization (M) step plugs the expected values 

into the log-likelihood function and maximizes the log-

likelihood function by repeating the E and M steps. However 

initialization step directly impact the performance of EM 

based imputation. On the other hand, in MI [10], missing data 

are filled by m different times to generate m complete data 

sets. Generated m data sets are analyzed by standard 

procedure and then combined for inference. But these well 

known techniques for missing data imputation are not suitable 

for WSNs, due to their high space and/or time complexities. 

Imputation methods based on machine learning are 

sophisticated procedures that use a predictive model to 

estimate values. These approaches model the missing data 

estimation based on information available in the data set. If 

the observed data contain useful information then, imputation 

procedure maintains high precision [11]. At each iteration, the 

error is calculated and adjusted to the following step.  Multi-

layer perceptron (MLP), self-organizing map (SOM), k-

nearest neighbors (k-NN) are examples of imputation 

techniques based on learning. MLP is multi-layer 

computational unit, which is connected by a feed-forward 

way. It estimates the missing data by training an MLP to learn 

incomplete data by using complete data [12]. On the other 

hand, in SOM, a set of nodes is organized in a 2D grid, where 

each node has a specific position and weight. Iterative training 

steps initialize the weight, and then it is used to estimate 

missing data [13]. Both of these methods require all data to 

trained and estimate the missing value. But in k-NN [14], to 

impute missing data, only k nearest neighbor's data is 

considered. These techniques are used in WSN to impute data 

but for real-time CPS, these are not suitable. 

Compressed sensing (CS) [15] is widely used scheme for 

signal processing to acquire and reconstruct a signal, based on 

underdetermined linear systems. This takes advantage of the 

signal's sparseness or compressibility in some domain, 

allowing the entire signal to be determined from relatively 

few measurements. The main difference between the missing 

data recovery problem and the conventional CS is that in the 

conventional CS, the sampling scheme can be determined by 

the users, and usually random linear projections are preferred, 

while in the missing data recovery problem the sampling 

matrix cannot be controlled by the user since it is determined 

by the missing events, e.g., locations of missing nodes in the 

network which is completely uncertain [16]. 

Guo, et al. [17] design an algorithm considering spatial-

temporal correlations of sensor nodes, which is more suitable 

with WSNs due to nature of WSNs. Their algorithm first 

checks if a neighbor sensor node is within the missing sensor's 

sensing range. Then the observation from the neighbor is used 

for filling in the missing values. This generates a spatially 

correlated replacement. If there are multiple neighbors within 

the sensor's range and they do not have the same readings, the 

majority reading is chosen. But in real life, there is no 

guarantee that all the sensors within one-hop neighbor are 

spatially and temporally correlated. 

In the existing literature, there are other two ways to 

investigate the spatial correlation for missing data recovery, 

which is inverse distance weighted averaging (IDWA) [18] 

and Kriging [19].  Assuming the spatial correlation in adjacent 

sensors is uniform, IDWA tries to estimate the values of 

missing data in the form of some linear combination of 

neighboring sensor's data. IDWA will work well if the values 

of missing sensors are expected to be similar to values of the 

neighboring sensors. However, this assumption affects the 

estimation accuracy in many practical situations, where a 

physical phenomenon varies rather than uniformly increasing 

or decreasing in magnitude. The averaging process in IDWA 

has the tendency to smoothen the data, which is not suitable 

for the situation when data change fast in the area of interest. 

And, none of these data recovery method include error 

refinement.  

Kriging is another way to estimate the missing samples using 

the combination of available measurements. It defines a semi-

variogram by calculating the spatial correlation between 

sensors. From the semi-variogram, the weight for the linear 

combination is determined. As a result, these weights vary 

spatially and depend on the correlation [19].  However, the 

spatial interpolation may not be right if the semi-variogram 

varies a lot in the temporal dimension [16]. And, there is no 

estimation error correction mechanism followed by this data 

recovery algorithm.    

In [20], the authors evaluate the performance of the different 

estimation refinement techniques including RMSE, average 

Euclidean error, geometric average error, mean and variance 

of RMSE. RMSE is dominated by its large individual terms. 

This amounts to a more serve penalty on large errors than on 

the small errors. However, RMSE is a measure for 

performance evaluation and, in particular, it is intended to 

serve as a metric for average error in magnitude (at least 

interpreted this way by many). As far as the average error in 

magnitude is concerned, for many problems it might be 

reasonable to expect that any large error should be possibly 

balanced by a sufficiently small error. In this research, we 

utilize this advantage of the mean error to refine our 

estimation error.   

Besides these, many researchers combine genetic algorithm 

(GA) with the artificial neural network (ANN) [21], GA with 

Bayes algorithm [11] and many more to estimate the missing 

value. 
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Xia, et al. [22] first propose a solution for CPS over WSANs 

to cope with packet loss. They illustrate three prediction 

algorithms and show a comparison between them. The first 

algorithm based on the assumption that the state of the 

physical system does not change during the last sampling 

period. So, the previous sample is used to replace the missing 

value. The second algorithm computes a moving average of 

the previous m samples to restore the lost data. Thus it treats 

every previous measurement equally. In third algorithm 

weighted average of all previous samples is taken to replace 

the missing one. Simulation result shows that third algorithm 

works well compared with others. 

Choi, et al. [23] exploit an exponentially weighted moving 

average (EWMA) based value estimation algorithm to reduce 

the impact of packet. When some packets are randomly 

dropped in the wireless network environment, the EWMA 

algorithm filters an abrupt increase or decrease by 

exponentially smoothing commands or data based on the past 

value profile. 

3. EFFICIENT SPATIAL DATA 

RECOVERY SCHEME 
In this section, we enhance our proposed efficient spatial data 

recovery (ESDR) scheme for deterministic and stochastic 

traffic pattern of CPS. To reduce the error in estimation, we 

propose an error refinement procedure, which makes the 

estimation more accurate. Before doing this, we classify the 

pattern and types of CPS data traffic. We classify three traffic 

patterns for CPS applications: deterministic, stochastic and 

time-critical. The deterministic traffic pattern always 

maintains a stable state. On the other hand, any traffic pattern, 

which involves random change and indeterminacy, is defined 

as a stochastic traffic pattern. We concentrate these two traffic 

patterns in this paper. And, these traffic patterns can be 

transmitted by four different traffic types [24]: fixed, periodic, 

bursty and arbitrary rate. In this research, we design 

ESDR/ER scheme to mitigate the problem of periodic traffic 

type.  Figure 1 shows the control view of CPS with our 

proposed ESDR scheme. 

To deploy our proposed ESDR/ER scheme, we propose a 

flowchart with the ESDR/ER scheme for CPS as depicted in 

Fig. 2. The following assumptions have been considered. 

First, the historical dataset for one-hop neighbor is available 

up to window size to perform the ESDR/ER scheme. Second, 

the error offset e0 of the measured data and estimated data is 

initially computed and known. Third the maximum number of 

consecutive missing data C is fixed at the initialization stage. 

The parameter C is also used for terminating the entire system 

to indicate the estimated data cannot be produced anymore 

because of the long consecutive missing data.  

Fourth, the mean error always is computed and available for 

refinement.   

In the flowchart, the ESDR/ER scheme will compute the 

estimated data when there is an input measured data from the 

sensors. If there is no missing data, then the measured data is 

used as a feedback data. At the same time the difference 

between the measured and estimated data is computed and if 

the difference is greater than error offset, ESDR/ER scheme is 

refined to reduce the error. When there is a missing data, the  

 

 

 

 

Fig 1: Proposed data recovery scheme for control view of 

CPS. 
consecutive missing data is evaluated and the estimated data 

is used as a feedback data. 

If the sampling interval I of the measured data is less than 2 

min and the traffic pattern is deterministic, then sensor's 

previous measurement is used as a replacement. But for the 

stochastic traffic pattern, since it measured data changes 

randomly, we always incorporate spatial correlation to 

estimate the missing data.  As far as we are concerned, most 

of the spatial correlation for data recovery scheme is focusing 

on the data correlation that based on the difference between 

the nearest neighbors. In our ESDR/ER scheme, we consider 

the most spatial correlation among the neighboring sensors 

based on the Pearson correlation coefficient (PCC) [25]. In 

PCC, if an environment is highly correlated in space, then the 

spatial information can be used to estimate missing data and 

the estimation function can achieve a high accuracy. PCC is a 

common measure of the linear correlation between two 

random variables i and j. It reflects the degree of association 

between two variables. Therefore, the coefficient correlation 

degree of PCC ρ in between two random variables i and j in 

specified window size (W) can be computed as follows  
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Table I shows the association degree of the ρ. The range from 

-1.0 to 1.0 shows that the ρ has a degree of correlation. The 

negative value of ρ indicates the negative linear relationship, 

whereas the positive value of ρ indicates the positive linear 

relationship. 

TABLE 1. CORRELATION DEGREE OF PEARSON 

CORRELATION COEFFICIENT 

No Correlation 
0.1 >ρ > -0.1 and 

1.0 >ρ and ρ < -1.0 

Correlation 

Degree 

Small 
0.1 ≤ ρ < 0.3 and  

-0.1 ≥ ρ> -0.3 

Medium 
0.3 ≤ ρ ≤ 0.5 and  

-0.3 ≥ ρ ≥ -0.5 

Large 
0.5 <ρ ≤ 1.0 and 

-0.5 >ρ ≥ -1.0 
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Fig 2: Proposed flowchart with ESDR scheme for CPS 

Figure 3 shows the ESDR/ER algorithm, which is used to 

produce an estimated data from time to time. In this 

algorithm, we assume that the threshold value of estimation 

counter cth is used to optimize the estimation function of the 

algorithm. Once the ESDR/ER algorithm cannot use the PCC, 

we recommend that the estimated data be produced based on 

the nearest neighbor data. When the number of estimation 

counter for the corresponding of the sensor ck is above the 

threshold value, the new corresponding of sensor will be 

computed again. To maintain high accuracy in estimation, we 

select the value of ρ is in between 0.5 to 1.0. 

Algorithm: Efficient Spatial Data Recovery (ESDR) 

1: if ck=0 then 

2:  for each input sensor di do 

3:  for all sensors dj within one-hop neighbour of di do 

4:  Compute ρij with the specified window size, W 

5:  if 0.5 < |ρij|≤ 1.0 then 

6:  k ← argmax{|ρij|}; ck←1 

7:  end if 

8:  end for 

9:  end for 

10: else if ck>cth then 

11:  ck← 0 

12: Else 

13  if I<2min and traffic pattern=deterministic 

14  de(t) ← di(t) = di(t‒1) 

15  Else 

16:  Compute ρik with the specified window size, W 

17:  if 0.5 < |ρik|≤ 1.0 then 

18:  de(t) ← di(t) = dk(t) + [di(t‒1) ‒dk(t‒1)] 

19:  Else 

20:  k ← argmin{distanceij} 

21:  de(t) ← di(t) = dk(t) + [di(t‒1) ‒dk(t‒1)] 

22:  ck← ck + 1 

23:  end if 

25  end if 

26: end if 

 

Algorithm: Error Refinement 

 if  dm-de < e0 

  for each estimated error_i do 

  E_mean=Average (error_i) 
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  If error_j< E-mean  do 

  Refinemed_error_mean=Average(error_j)  

  Data_after_refinement=de-Refined_error_mean 

           end_for 

        end_if 

 end_if 

Fig  3: Pseudo code for ESDR/ER algorithm. 

To refine the error in the estimated data, we proposed an error 

refinement procedure. In order to do this, we consider the 

error that is minimum in between the estimated and measured 

one and tested value to recover the measured data. We 

calculate the mean error and define the good error which is 

less than or equal to the mean error. After selecting the good 

error, the mean error is refined by computing the average of 

the selected good error. Then, to make the estimation more 

accurate, we subtract the refined error mean from the 

estimated data, which makes the data more accurate.     

4. SIMULATION SCENARIOS AND 

PARAMETERS  
In this section, we conduct the simulation studies to evaluate 

our proposed ESDR/ER scheme on deterministic and 

stochastic traffic pattern of CPS. We compare our proposed 

ESDR/ER scheme to the ESDR, WP algorithm [22] and the 

STI approach [17]. For deterministic traffic pattern, we 

conduct an experiment to measure the inside temperature of 

the master bedroom in the iHouse facility which is in situated 

Nomi city in Japan. The room is equipped with eight sensors 

at eight corners. The measurement is taken in every two 

minutes for twenty-four hours. All the sensors forward their 

data to reach the base station in single radio hop through the 

simplest spanning tree topology routing protocol. For 

stochastic traffic pattern, we create a simulation environment 

with five sensor and generate data series using autoregressive 

(AR) model in MATLAB simulator. We also add some 

random noise with each series to it make more realistic.   

Based on the collected information, we investigate the 

performance of our proposed scheme using a MATLAB. In 

this simulation, we assume that the single sensor produces a 

missing sensed data when it transmits its packet to the base 

station. We randomly delete the data according to the 

percentage of missing data from the original set and recover 

them using the aforementioned data recovery algorithms. We 

use the root mean square error (RMSE), mean absolute error 

(MAE) and integral of absolute error (IAE) to evaluate the 

performance of the said algorithms. 

The RMSE is a frequently used measure of the difference 

between values estimated by an algorithm and the values 

actually measured from the real environment. The RMSE of 

algorithm estimation with respect to the estimated value, de is 

defined as the square root of the mean squared error as written 

as 
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The MAE is another statistical measurement that used to 

measure how close the estimated values are to the measured 

values. The MAE is given by 
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The MAE measures the average magnitude of the errors in a 

data set, without considering their direction. It is also an 

average of the absolute error, e=de-dm. In other words, it 

measures the accuracy of the continuous variables. The MAE 

and the RMSE can be used together to analyze the variation in 

the errors of the dataset. The RMSE will always be larger or 

equal to the MAE. The greater difference between them, the 

greater the variance in the individual errors in the sample [26]. 

If the RMSE is equal to the MAE, then all the errors are the 

same magnitude. In [26], Wilmott, et al. indicate that the 

MAE is the most natural and unambiguous measure of 

average error magnitude. 

On the other hand, the IAE is a widely used performance 

metric in control community, which is recorded to measure 

the performance of the control application. The IAE is 

calculated as follows 

 
t

me dttdtdIAE
0

)()(  

where, t denotes total simulation time. In general, the larger 

the IAE values imply the worse the performance of the control 

algorithm. 

5. SIMULATION RESULTS AND 

DISCUSSIONS  
In this section, we present our simulation results and make 

some discussions on the performance of algorithms. The aim 

of this simulation is to examine the potential of the proposed 

algorithm with error refinement in coping with the data 

missing for the deterministic and stochastic traffic pattern of 

CPS. In our ESDR/ER scheme, we measure the PCC in 

between the sensors from time to time by specified the 

window size (W) and if the estimated error is above the error 

offset, the error is refined using error refinement procedure. 

For deterministic traffic pattern we set window size (W) as ten 

data samples. Since, stochastic traffic pattern changes 

randomly, thus to understand the correlation properly we 

recommend using lower window size, which is three data 

sample for this experiment. In our simulation, we investigate 

the impact of increasing percentage of missing data on the 

data recovery algorithm with and without error refinement 

performance. The percentage of missing data is varied from 

30% to 60% in steps of 10%. 

 

Fig 5: The comparison of RMSE and MAE for stochastic 

traffic pattern of all the data recovery algorithms as the 

percentage of missing data changes from 30% to 60%. 

Fig. 5 depicts the RMSE comparison among data recovery 

algorithms for stochastic traffic patterns. As the percentage of 

data missing increases, the proposed algorithm with 

refinement always shows better performance that is compared 
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to the ESDR algorithm and other existing two algorithms. At 

the 40% data missing, the ESDR/ER scheme performs slightly 

better than the ESDR algorithm. In this case RMSE of the 

ESDR/ER is 3 on the other hand RMSE of the ESDR WP and 

STI is 4,5 and 6.1 respectively. At the 60% data missing, the 

proposed ESDR/ER scheme reduces almost one-third of the 

RMSE than the WP and STI algorithm where the RMSE of 

ESDR/ER is 2 compared with that of STI, which gives the 8 

as a RMSE. The reason for this dramatic improvement is 

because the ESDR scheme does not incorporate refinement 

and the WP algorithm cannot cope with the long consecutive 

missing data. Through this simulation, we can observe that 

this problem also can be found at the STI algorithm. Both WP 

and STI algorithm use the combination of previous 

measurements only. Thus, they unable to cope with long 

consecutive missing and frequent changes in the environment 

of the conducted experiments. 

 

Fig 6: The accumulated IAE comparison for stochastic 

traffic pattern of all the data recovery algorithms as the 

percentage of missing data changes from 30% to 60%. 

The MAE comparison for stochastic data traffic among four 

data recovery algorithms is shown in Fig. 3. We can see that 

the proposed ESDR/ER scheme outperforms the ESDR, the 

WP algorithm and the STI algorithm. Besides that, the 

proposed ESDR/ER scheme can steadily maintain a small 

value of MAE regardless of the increment of missing data. 

This also means that the distance between the real measured 

data and estimated data of the proposed ESDR/ER scheme is 

always stable. Since, the error is refined in each step to keep 

the error below the error offset, the ESDR/ER scheme always 

shows better performance. As a result, after the error is 

refined, the proposed ESDR/ER scheme always outperforms 

ESDR scheme.  

In Fig. 6, the accumulated IAE comparison for stochastic data 

traffic of all the data recovery algorithms is plotted. The 

simulation results demonstrate that the proposed ESDR/ER 

scheme outperforms the ESDR scheme, WP algorithm and the 

STI algorithm. This is because of the error of the estimation 

function in the proposed ESDR/ER scheme is minimized by 

using the refinement approach.  

In Fig. 7 the RMSE, MAE and IAE comparison for 

deterministic traffic is shown. In this case, error, in between 

the estimated data and measured data always remains below 

the error offset (where error offset is 0.5). Moreover, the 

deterministic traffic pattern always maintains a stable 

condition and thus the estimated data from the most correlated 

sensor always gives the accurate result.   Since, the estimated 

data never crosses the error offset using ESDR algorithm, thus 

we do not need to refine the error using refinement procedure. 

 

Fig 7: The RMSE, MAE and IAE comparison for 

deterministic traffic pattern as the percentage of missing 

data changes from 30% to 60%. 

At 30% data loss the RMSE of the ESDR is almost half 

compare with that of the WP and STI algorithm. And at the 

60% data loss the RMSE of the proposed scheme is one-third 

of the WP and STI algorithm. For MAE, simulation results 

reveal that the proposed ESDR scheme is about two times 

smaller than the WP algorithm and the STI algorithm. The 

simulation result for IAE is also one-third of the WP and STI 

algorithm. Thus, as the percentage of missing data increases, 

the deterministic data traffic always shows the better 

performance compare with the other two data recovery 

algorithm in terms of RMSE, MAE and IAE.  

6. CONCLUSION 
In this paper, we have enhanced the ESDR/ER scheme for 

different data traffics of CPS and proposed a error refinement 

procedure to reduce the estimation error. In this research 

work, we also identified that the stochastic data is more 

difficult to estimate and thus, we need to incorporate error 

refinement to maintain accuracy. But for the deterministic 

data, the estimation maintains high accuracy without 

refinement. Our simulation results reveal that the proposed 

ESDR/ER scheme is very beneficial and outperforms the 

ESDR, the WP and the STI algorithms regardless of the 

increment of missing data because of incorporating ER 

scheme.  

This paper only concentrates on the ESDR/ER algorithm for 

deterministic and stochastic data and its evaluation on the 

real-life. Further research is required for the time-critical 

traffic pattern.  Moreover, in our future work we need to 

consider the other traffic type like fixed, bursty and arbitrary 

for CPS data transmission. Besides that, a future work will 

focus on examining the real-time recovery using the proposed 

ESDR/ER scheme. 
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