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ABSTRACT 

Digital multipliers are among the maximum essential 

arithmetic purposeful devices. The average performance of 

these systems relies upon at the throughput of the multiplier. 

In the meantime, the negative bias temperature instability 

impact occurs while a pMOS transistor is underneath negative 

bias (Vgs   = −Vdd), increasing the threshold voltage of the 

pMOS transistor, and reducing multiplier pace. A similar 

phenomenon, positive bias temperature instability, happens 

when an nMOS transistor is underneath positive bias. Each 

effect degrade transistor pace and in the long term, the device 

may also fail due to timing violations. Therefore, it is essential 

to design dependable high-overall performance multipliers. In 

this paper, suggest an aging-aware multiplier model with a 

novel adaptive hold logic (AHL) circuit. The multiplier is able 

to provide higher throughput through the variable latency and 

may modify the AHL circuit to mitigate overall performance 

degradation this is because of the aging effect. Furthermore, 

the proposed structure can be applied to a Pre-Encoded 

NR4SD Multiplier. 

Keywords 

Adaptive hold logic (AHL), Positive bias temperature 

instability (PBTI), Negative bias temperature instability 

(NBTI), Reliable multiplier 

1. INTRODUCTION 
Digital multipliers   are   amongst   the   maximum   essential 

arithmetic purposeful units in many applications, together 

with the discrete cosine transforms, Fourier transform, and 

digital filtering. The throughput of those applications depends 

on multipliers, and if the multipliers are too gradual, the 

performance of complete circuits will be reduced. Moreover, 

negative bias temperature instability (NBTI) happens while a 

pMOS transistor is beneath negative bias ( Vgs = −Vdd ). On 

this situation, the interaction between inversion layer holes 

and hydrogen-passivated Si atoms breaks the Si–H bond 

generated at some stage in the oxidation process, producing H 

or H2 molecules. When those molecules diffuse away, 

interface traps are left. The accrued interface traps between 

silicon and the gate oxide interface result in improved 

threshold voltage (Vth), decreasing the circuit switching 

speed. When the biased voltage is eliminated, the opposite 

response occurs, reducing the NBTI impact. However, the 

reverse response does not get rid of all the interface traps 

generated for the duration of the strain segment, and Vth is 

extended inside the long term. Therefore, it is important to 

design a dependable high-performance multiplier. The 

corresponding effect on an nMOS transistor is positive bias 

temperature instability (PBTI), which happens whilst an 

nMOS transistor is beneath positive bias. As compared with 

the NBTI impact, the PBTI impact is much smaller on 

oxide/polygate transistors, and consequently is normally left 

out. However, for high-k/metal-gate nMOS transistors with 

big rate trapping, the PBTI effect cannot be neglected.  In 

reality, it has been shown that the PBTI impact is extra 

enormous than the NBTI impact on 32-nm high-k/metal-gate 

processes [1] – [4].  

A traditional method to mitigate the aging effect is overdesign 

[5], [6], including such matters as guard-banding and gate 

oversizing; however, this approach can be very pessimistic 

and area and power inefficient. To keep away from this 

problem, many NBTI-aware methodologies were proposed. 

An NBTI-aware generation mapping technique changed into 

proposed in [7] to guarantee the overall performance of the 

circuit during its lifetime. 

 In [8], an NBTI-aware sleep transistor became designed to 

lessen the ageing results on pMOS sleep-transistors, and the 

lifetime balance of the power-gated circuits under 

consideration changed into improved. Wu and Marculescu [9] 

proposed a joint logic restructuring and pin reordering 

approach, that's based totally on detecting functional 

symmetries and transistor stacking effects. Additionally, they 

proposed an NBTI optimization technique that taken into 

consideration path sensitization [12]. In [10] and [11], 

dynamic voltage scaling and body-basing techniques were 

proposed to reduce power or extend circuit life. Those 

techniques, however, require circuit change or do not offer 

optimization of unique circuits. 

Traditional circuits use important path delay as the overall 

circuit clock cycle with the intention to perform effectively. 

But, the probability that the critical paths are activated is low. 

In most cases, the path delay is shorter than the critical route. 

For these noncritical paths, the use of the crucial path delay as 

the general cycle length will bring about good sized timing 

waste. Therefore, the variable-latency design becomes 

proposed to reduce the timing waste of traditional circuits. 

The variable latency design divides the circuit into   two parts:  

1) shorter paths and 2) longer paths.  Shorter paths can 

execute effectively in one cycle, while longer paths need two 

cycles to execute. Whilst shorter paths are activated often, the 

common latency of variable-latency designs is higher than 

that of traditional designs. As an instance, numerous variable-

latency adders were proposed using the hypothesis approach 

with blunders detection and healing [13] – [15]. A short path 

activation function set of rules become proposed in [16] to 

enhance the accuracy of the hold logic and to optimize the 

performance of the variable-latency circuit.  A training 

scheduling set of rules changed into proposed in [17] to 

schedule the operations on non-uniform latency practical 
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devices and enhance the overall performance of Very long 

instruction word processors. In [18], variable latency 

pipelined multiplier architecture with a booth algorithm 

became proposed. In [19], process-variant tolerant structure 

for mathematics units was proposed, where the impact of 

process variation is considered to growth the circuit yield. 

Similarly, the crucial paths are divided into two shorter paths 

that could be unequal and the clock cycle is about to the delay 

of the longer one. Those research designs have been capable 

of lessen the timing waste of conventional circuits to improve 

performance, but they did not take into account the aging 

effect and couldn't adjust themselves for the duration of the 

runtime. A variable-latency adder layout that considers the 

aging effect turned into proposed in [20] and [21]. However, 

no variable-latency multiplier design that considers the aging 

effect and can alter dynamically has been accomplished. 

1.1.   Paper Contribution 
In this paper, advise an aging aware reliable multiplier design 

with novel adaptive hold logic (AHL) circuit. The multiplier 

is based at the variable-latency method and might alter the 

AHL circuit to gain reliable operation below the have an 

impact on of NBTI and PBTI results. To be precise, the 

contributions of this paper are summarized as follows: 

1)  Novel variable-latency multiplier structure with an AHL 

circuit. The AHL circuit can determine whether or not the 

enter styles require one or two cycles and can regulate the 

judging criteria to make certain that there is minimum 

according performance degradation after considerable aging 

occurs; 

2)  Complete analysis and contrast of the multiplier’s overall 

performance under different skip numbers to reveal the 

effectiveness of our proposed structure; 

3) An aging-aware reliable multiplier method that is 

appropriate for huge multipliers. Despite the fact that the test 

is accomplished in 4-, 8-, 16- and 32-bit multipliers, our 

proposed architecture can be effortlessly prolonged to big 

designs; 

4) The experimental outcomes display that our proposed 

structure with the 16×16 and 32×32 Non-Redundant radix-4 

Signed Digit (NR4SD) multipliers can acquire exceptional 

overall performance development in comparison with the     

16×16 and 32×32 Non-Redundant radix-four Signed-Digit 

(NR4SD) multipliers. 

The paper is prepared as follows. Segment 2 introduces the 

overture of the Non-Redundant radix-four Signed Digit 

(NR4SD) multiplier and NBTI/PBTI models. Segment 3 

details the aging-aware reliable multiplier primarily based at 

the Non-Redundant radix-four Signed-Digit (NR4SD) 

multiplier. The experimental results and comparisons are 

supplied in Segment 4. Segment 5 concludes this paper. 

2. OVERTURE 

2.1. Modified Booth Algorithm 
Modified Booth (MB) could be a redundant radix-4 coding 

technique [22], [23]. Considering the multiplication of the 2’s 

complement numbers A, B, all consisting of n=2k bits, B is 

painted in MB type as:  

B = < bn-1 . . . b0 >2’s= -b2k-12
2k-1+ 





22

0

k

i

bi2
i 

     = <bk-1
MB…b0

MB>MB=




1

0

k

j

bj
MB22j                                              (1)                        

Digits bj
MB ∈ {- 2,-1, 0, +1, +2}, 0 ≤ j ≤ k-1, are formed as 

follows: 

bj
MB = -2b2j+1+b2j+b2j-1                                                      (2)                                                 

In which b-1 = 0. Every MB digit is represented by using the 

bits s, one and two (table 1). The bit s suggests if the digit is 

negative (s=1) or positive (s=0). One indicates if the absolute 

fee of a digit equals 1 (one=1) or now not (one=0). Two 

suggests if absolutely the fee of a digit equals 2 (two=1) or 

now not (two=0). The use of these bits, to calculate the MB 

digits bj
MB as follows: 

bj
MB= (-1)sj.(onej + 2twoj).                                                  (3) 

 Equations (4) form the MB encoding signals. 

sj = b2j+1; onej = b2j-1 ⊕ b2j; 

twoj = (b2j+1 ⊕  b2j) ^ ~(onej): 

Table 1. Modified Booth Encoding 

    b2j+1       b2j      b2j-1 bj
MB sj onej Twoj 

0           0           0 0 0 0 0 

0           0           1 +1 0 1 0 

0           1           0 +1 0 1 0 

0           1           1 +2 0 0 1 

1           0           0 -2 1 0 1 

1           0           1 -1 1 1 0 

1           1           0 -1 1 1 0 

1           1           1 0 1 0 0 
 

 

2.2. Non-Redundant Radix-4 Signed Digit 

Algorithm 
In this section have a tendency to gift the Non-Redundant 

radix-4 Signed-Digit (NR4SD) encoding technique. As in MB 

shape, the range of partial products is reduced to half of. 

While encoding the 2’s complement quantity B, digits bj
NR - 

take considered one of 4 values:∈ {-2, -1, 0, +1} or bj
NR+ take 

one of four values: ∈ {-1, 0, +1, +2} at the NR4SD- or 

NR4SD+ algorithmic program, severally. Only 4 specific 

values are used and no longer five as in MB set of rules, 

which results in 0 ≤ j ≤ k-2. As need to cowl the dynamic 

range of the 2’s complement form, the maximum huge digit is 

MB encoded (i.e.,bk-1
MB∈{-2,-1, 0, +1, +2).The NR4SD- and 

NR4SD+ encoding algorithms are illustrated in detail in Fig. 1 

and 2, respectively. 

 
(a) 

https://www.google.co.in/search?biw=1366&bih=659&q=define+overture&forcedict=overture&sa=X&ved=0ahUKEwiIwvOCk7rSAhWErJQKHd-zC1kQ_SoIHjAA
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(b) 

Fig 1: Block Diagram of the NR4SD- Encoding Scheme 

at 

The (a) Digit and (b) Word Level. 

 

 
(a) 

 
(b) 

Fig 2: Block Diagram of the NR4SD+ Encoding Scheme at 

the Word Level. 

 

2.2.1 NR4SD
-
 Algorithm 

Step 1: contemplate the initial values j = 0 and c0=0. 

Step 2: Calculate the convey c2j+1 and the sum n+
2j of a half of 

Adder (HA) with inputs b2j and c2j (Fig. 1a). 

c2j+1 = b2j ^ c2j; n
+

2j = b2j ⊕  c2j                                          (4) 

Step3: Calculate the positively signed carry c2j+2 (+) and 

therefore the negatively signed sum n-
2j+1 (-) of a Half Adder* 

(HA*) with inputs b2j+1 (+) and c2j+1 (+) (Fig.1a). The outputs 

c2j+2 and n-
2j+1 of the HA* relate to its inputs as follows: 

2c2j+2 - n
-
2j+1 = b2j+1 + c2j+1: 

The following Boolean equations summarize the HA* 

operation: 

c2j+2 = b2j+1 ^ c-
2j+1, n

-
2j+1 = b2j+1 ⊕ c2j+1. 

Step 4: Calculate the value of the bj
NR - digit. 

bj
NR- = -2n-

2j+1 + n+
2j.                                                          (5) 

Equation (5) shows results from the n-
2j+1 is negatively signed 

and n+
2j is positively signed. 

Step 5: j: = j + 1. 

Step 6: If (j < k-1), then forward to Step 2. If (j = k-1), encode 

that the most significant value based on the MB technique and 

considering the three consecutive bits to be b2k-1, b2k-2 and    

c2k-2 (Fig. 1b). If (j = k), stop. 

Table 2 shows how the NR4SD- digits are formed. Equations 

(6) show how the NR4SD- encoding signals one+
j, one-

j and 

two-
j of Table 2 are generated. 

one+
j = ~ (n-

2j+1) ^ n+
2j, one-

j = n-
2j+1 ^ n+

2j, 

two-
j = n-

2j+1 ^ n+
2j                                                               (6)         

The minimum and maximum limits of the dynamic range in 

the NR4SD- form are -2n-1 - 2n-3 - 2n-5 -…. - 2 < -2n-1 and 2n-1 + 

2n-4 + 2n-6 +…… + 1 >2n-1-1. The NR4SD- form has larger 

dynamic range than the 2’s complement form. 

2.2.2 NR4SD
+
 Algorithm 

Step 1: contemplate the initial values j = 0 and c0=0. 

Step 2: Calculate the carry positively signed value c2j+1 (+) 

and the negatively signed value sum n-
2j (-) of a HA* with 

inputs b2j (+) and c2j (+) (Fig. 2a). The carry c2j+1 and the sum 

n-
2j of the HA* relate to its inputs as follows: 

2c2j+1 - n
-
2j = b2j + c2j  , 

The outputs of the HA* are can calculate at gate level in the 

following equations as: 

c2j+1 = b2j ˅ c2j , n
-
2j = b2j ⊕  c2j  , 

Step 3: Calculate the carry c2j+2 and the sum n+
2j+1 of a HA 

with inputs b2j+1 and c2j+1 

c2j+2 = b2j+1 ^ c2j+1 , n
+

2j+1 = b2j+1 ˅ c2j+1 , 

Step 4: Calculate the value of the bj
NR+ digit. 

bj
NR+ = 2n+

2j+1 - n
-
2j                                                             (7) 

Equation (7) results from the n+
2j+1 is positively signed and n-

2j 

is negatively signed. 

Step 5: j := j + 1. 

Step 6: If (j < k-1), go to Step 2. If (j = k-1), encode the most 

significant value according to MB technique and considering 

the three consecutive bits to be b2k-1, b2k-2 and c2k-2 (Fig. 2b). 

If (j = k), stop. 

Table 3 shows how the NR4SD+ digits are formed. Equations 

(8) show how the NR4SD+ encoding signals one+
j, one-

j and 

two+
j of Table 4 are generated. 

one+
j = n+

2j+1 ^ n-
2j; 

one-
j = n+

2j+1 ^ n-
2j; 

two+
j = n+

2j+1 ^ n-
2j:                                                             (8) 

The minimum and maximum values of the dynamic range in 

the NR4SD+ form are -2n-1 - 2n-4 - 2n-6 -……. -1 < -2n-1 and   

2n-1+2n-3+2n-5+…. +2 > 2n-1-1. 

 

Table 2. Numerical Examples of the Encoding Techniques 

2’s 

Complement        

10000000 10011010 01011001 01111111 

Integer -128 -102 +89 +127 

NR4SD− 2̄000 1̄12̄¯̄11 ̄2 22̄2̄1 2001̄1 

NR4SD+ 2̄000 2̄122 1121 2001̄1 
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As determined in the NR4SD- encoding technique, the 

NR4SD+ type has large dynamic variety than the two’s 

complement form. Thinking about the eight-bit 2’s 

complement variety N, Table 2 shows the restriction values    

-28 = -128, 28 - 1 =127, and two ordinary values of N, and 

presents the MB, NR4SD- and NR4SD+ digits that end result 

when making use of the corresponding encoding strategies to 

every cost of N taken into consideration. A bar above the 

negatively signed digits in order to distinguish them from the 

positively signed ones. 

2.3. Pre-Encoded NR4SD Multipliers Design 
The device design for the pre-encoded NR4SD multipliers is 

bestowed in Fig. 6. Two bits at the moment are stored in 

ROM: n-
2j+1, n+

2j (Table 3) for the NR4SD- or n+
2j+1, n-

2j 

(Table 4) for the NR4SD+ kind. On this manner, can reduce 

the storage requirement to n+1 bits consistent with coefficient 

even as the corresponding memory required for the            

pre-encoded MB scheme is 3n/2 bits per coefficient. 

Consequently, the quantity of saved bits is identical to that of 

the conventional MB design, besides for the maximum 

widespread digit that wishes a further bit as its far MB 

encoded. Compared to the pre-encoded MB multiplier, in 

which the MB encoding blocks are ignored, the pre-encoded 

NR4SD multipliers need additional hardware to generate the 

values of (6) and (8) for the NR4SD- and NR4SD+ form, 

respectively. The NR4SD encoding blocks of Fig. 4 put into 

effect the circuitry of Fig. 5.  

Partial product is now given by the relation: 

P =A.B =COR+




1

1

PP
k

j

J2
2J                                                                       (9) 

COR = 




1

0

k

j

Cin,j2
2J + 2n(1 +





1

0

k

j

22j+1)                             (10) 

Every partial product of the pre-encoded NR4SD- and 

NR4SD+ multipliers is carried out primarily based on Fig. 3b 

and 3c, respectively, except for the PPk-1 that corresponds to 

the vastest digit. As this digit is in MB form, can use the PPG 

of Fig.3a making use of the sj bit. The partial products, well 

weighted, and the correction time period (COR) of (10) are 

fed right into a CSA tree. The input carry cinj of (10) is 

calculated as cinj = two-
j ^ one-

j and cinj = one-
j for the 

NR4SD- and NR4SD+ pre-encoded multipliers, respectively, 

primarily based on Tables 2 and 3. The carry save output of 

the CSA tree is eventually summed the usage of a quick CLA 

adder. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig 3: Generation of the ith Bit pj,i  of PPj for 

a) Pre-Encoded MB Multipliers, b) NR4SD−, 

c) NR4SD+Pre-Encoded Multipliers, and 

d ) NR4SD−, e) NR4SD+Pre-Encoded 

Multipliers after reconstruction. 

 
Fig 4: System Architecture of the NR4SD Multipliers. 

 

 
(a) 

 
(b) 

Fig 5: Extra Circuit Needed in the NR4SD 

Multipliers to Complete the (a) NR4SD
−

and (b) 

NR4SD+ Encoding. 

Table 3. NR4SD
−

  Encoding 
 

2’s 

complement 
NR4SD−  

form 

Di

git 
NR4SD-

Encoding 

b2j+1  

b2j 

c2j c2j+2 n-
2j+1   n

+
 2j bj

N

R- 

one+
 j one

-
 j 

two-
 

j 

0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 1 +1 1 0 0 

0 1 0 0 0 1 +1 1 0 0 

0 1 1 1 1 0 -2 0 0 1 

1 0 0 1 1 0 -2 0 0 1 

1 0 1 1 1 1 -1 0 1 0 

1 1 0 1 1 1 -1 0 1 0 

1 1 1 1 0 0 0 0 0 0 

                                           Table 4. NR4SD
+

  Encoding 

2’s complement NR4SD+  

form 

Digit NR4SD+  

Encoding 

b2j+1    b2j c2j c2j+2 n+
2j+1    n

-
 

2j 

bj
NR+ one+

 

j 

one-
 j Two+

 j 

0 0 0 0 0 0 0 0 0 0 

0 0 1 0 1 1 +1 1 0 0 

0 1 0 0 1 1 +1 1 0 0 

0 1 1 0 1 0 +2 0 0 1 

1 0 0 0 1 0 +2 0 0 1 

1 0 1 1 0 1 -1 0 1 0 

1 1 0 1 0 1 -1 0 1 0 

1 1 1 1 0 0 0 0 0 0 

 

3.  PROPOSED AGING-AWARE 

MULTIPLIER 
Here recommend an aging-aware reliable multiplier layout 

with a novel adaptive hold logic (AHL) circuit. The multiplier 

is based totally at the variable-latency approach and may 
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regulate the AHL circuit to reap reliable operation underneath 

the have an impact on of NBTI and PBTI effects.  

To be unique, the contributions of this undertaking are 

summarized as follows: 

1) Novel variable-latency multiplier architecture with an AHL 

circuit. The AHL circuit can determine whether the input 

styles require one or two cycles and might modify the judging 

criteria to ensure that there's minimum performance 

degradation after great getting aging happens;  

2) Comprehensive evaluation and comparison of the 

multiplier’s performance underneath one-of-a-kind cycle 

intervals to reveal the effectiveness of our proposed structure; 

3) An aging-aware dependable multiplier design method this 

is appropriate for huge multipliers. Despite the fact that the 

experiment is completed in 16- and 32-bit multipliers, our 

proposed structure can be effortlessly extended to large 

designs; 

3.1. Proposed Architecture 
Fig.6 indicates our proposed aging-aware multiplier 

architecture, which incorporates two m-bit inputs (m is a 

positive number), one 2m-bit output, one NR4SD- or NR4SD+ 

multiplier, 2m 1-bit Razor flip-flops [22], and an AHL circuit. 

Inside the proposed architecture, the NR4SD multipliers may 

be tested by the range of zero’s in either the multiplicand or 

multiplicator to expect whether the operation requires one 

cycle or two cycles to finish. While enter patterns are random, 

the number of zero’s and one’s inside the multiplicator and 

multiplicand follows a normal distribution. Consequently, the 

use of the quantity of zero’s or one’s as the judging criteria 

results in similar results. Subsequently, the two aging-aware 

multipliers may be applied the use of comparable structure, 

and the distinction between the 2 multipliers lies within the 

enter signals of the AHL. Razor flip-flops can be used to 

locate whether or not timing violations arise before the next 

input pattern arrives. 

 

Fig 6: Proposed architecture (md means multiplicand; 

 mr  means multiplicator) 

Fig. 7 suggests the information of Razor flip-flops. A 1-bit 

Razor flip-flop includes a main flip-flop, shadow latch, XOR 

gate, and mux. The main flip-flop catches the execution end 

result for the combination circuit using a ordinary clock 

signal, and the shadow latch catches the execution result the 

usage of a delayed clock signal, that is slower than the regular 

clock signal. If the latched little bit of the shadow latch isn't 

the same as that of the main flip-flop, this indicates the course 

delay of the current operation exceeds the cycle period, and 

the main flip-flop catches an incorrect result. If errors arise, 

the Razor flip-flop will set the error signal to at least one to 

notify the system to re-execute the operation and notify the 

AHL circuit that an error has befell. Here use Razor flip-flops 

to locate whether an operation this is considered to be a one 

cycle sample can surely end in a cycle. If now not, the 

operation is re-executed with 2 cycles. Despite the fact that 

the re-execution may seem steeply-priced, the overall price is 

low because the re-execution frequency is low. Extra info for 

the Razor flip-flop may be discovered in [23]. 

 
Fig 7: Razor flip flops. 

The AHL circuit is the key aspect in the ageing-aware 

variable-latency multiplier. Fig.8 shows the details of the 

AHL circuit. The AHL circuit incorporates an aging indicator, 

judging blocks, one mux, and one D turn-flop. The aging 

indicator suggests whether or not the circuit has suffered 

tremendous overall performance degradation because of the 

aging effect. The aging indicator is carried out in a easy 

counter that counts the number of errors over a certain amount 

of operations and is reset to zero at the give up of those 

operations. If the cycle period is too low, the NR4SD 

multiplier isn't able to finish those operations effectively, 

causing timing violations. These timing violations could be 

stuck by the Razor turn-flops, which generate error alerts. If 

errors happen regularly and exceed a predefined threshold, it 

way the circuit has suffered significant timing degradation due 

to the aging impact, and the aging indicator will output sign 1; 

in any other case, it's going to output 0 to indicate the aging 

impact remains no longer extensive, and no moves are 

wished. 

 

Fig 8: Diagram of AHL (md means multiplicand;             

mr  means multiplicator) 

The primary judging block inside the AHL circuit will output 

1 if the number of zero’s in the multiplicand (multiplicator) is 

bigger than n, and the second judging block in the AHL 

circuit will output 1 if the quantity of zero’s inside the 

multiplicand (multiplicator) is greater than n+1. They’re each 

hired to decide whether or not an enter sample requires one or 

two cycles, but most effective one among them can be chosen 

at a time. In the beginning, the ageing impact isn't significant, 

and the aging indicator produces 0, so the first judging block 
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is used. After a time, frame while the aging effect will become 

significant, the second one judging block is chosen. compared 

with the primary judging block, the second one judging block 

allows a smaller number of patterns to turn out to be one-

cycle styles because it calls for more zero’s within the 

multiplicand (multiplicator) The info of the operation of the 

AHL circuit are as follows: while an input pattern arrives, 

both judging blocks will determine whether or not the sample 

requires for one cycle or two cycles to complete and pass both 

outcomes to the multiplexer.  

The multiplexer selects considered one of both result based on 

the output of the getting older indicator. Then an OR 

operation is accomplished between the end result of the 

multiplexer, and the Q¯ signal is used to decide the input of 

the D flip-flop. When the pattern calls for one cycle, the 

output of the multiplexer is 1. The !(gating) sign turns into 1, 

and the input flip flops will latch new data within the next 

cycle. on the other hand, while the output of the multiplexer is 

0, which means that the input sample requires for 2 cycles to 

finish, the OR gate will output zero to the D flip-flop. 

Consequently, the !(gating) signal can be 0 to disable the 

clock signal of the input flip-flops inside the subsequent cycle. 

Be aware that best a cycle of the input flip-flop may be 

disabled because the D flip-flop will latch 1 in the subsequent 

cycle.  

The overall flow of our proposed architecture is as follows: 

when input patterns arrive, the NR4SD multiplier, and the 

AHL circuit execute simultaneously. In line with the number 

of zero’s within the multiplicand (multiplicator), the AHL 

circuit comes to a decision if the enter patterns require one or 

two cycles. If the input pattern requires two cycles to finish, 

the AHL will output 0 to disable the clock signal of the       

flip-flops. Otherwise, the AHL will output 1 for regular 

operations. When the NR4SD multiplier finishes the 

operation, the result may be passed to the Razor flip-flops. 

The Razor flip-flops test whether or not there may be the 

course put off timing violation. If timing violations occur, it 

approaches the cycle period isn't always lengthy enough for 

the current operation to finish and that the execution end 

result of the multiplier is incorrect. Accordingly, the Razor 

flip-flops will output a blunders to tell the device that the 

modern operation desires to here execute the use of cycles to 

make certain the operation is accurate. In this case, the extra 

re-execution cycles as a result of timing violation incurs a 

penalty to universal average latency.  

But, our proposed AHL circuit can accurately expect whether 

or not the input patterns require one or two cycles in most 

instances. Only a few input styles may additionally purpose 

timing variations when the AHL circuit judges incorrectly. In 

this situation, the more re-execution cycles did no longer 

produce good sized timing degradation.  

In précis, our proposed multiplier design has 3 key 

capabilities. First, its miles a variable-latency design that 

minimize the timing waste of the noncritical paths. 2nd, it is 

able to offer dependable operations even after the aging 

impact happens. The Razor flip-flops stumble on the timing 

violations and re-execute the operations using two cycles. 

Ultimately, our architecture can modify the share of 1-cycle 

patterns to reduce performance degradation due to the aging 

impact. While the circuit is aged, and many errors occur, the 

AHL circuit uses the second judging block to decide if an 

input is one cycle or 2 cycles. 

4. RESULTS 
A simulation end result for NR4SD multiplier is simulated in 

a Xilinx ISE 14.1. These tools will help to research its 

performance and calculate the power, delay and area 

.Snapshot is nothing but each and every moment of the 

application while running shown in Figs. 9 to 10. These 

snapshots gives the clear view of application developed. It 

will be most useful to the new peoples to understand for the 

future steps. 

In the below Table 5-6 4*4,8*8,16*16,32*32 NR4SD 

multipliers are compared for area of NR4SD Multiplier. By 

observing the Table-5-6 it shows the clear view regarding 

number of components required to develop particular NR4SD 

multiplier based on input range with and without AHL circuit. 

Table 5. Device Utilization (area) Summary of NR4SD 

Multiplier with AHL circuit 

Logic Utilization 32-bit 16-bit 8-bit 4-bit 

Number of Slice Flip 

Flops 

 

226 130 87 58 

Number of 4 input LUTs 4608 1,050 272 106 

Number of occupied 

Slices 

 

2,304 607 180 72 

Average Fan-out of Non-

Clock Nets 

 

3.97 3.41 3.15 2.86 

 

Table 6. Device Utilization (area) Summary of NR4SD 

Multiplier without AHL circuit 

Logic Utilization 32-bit 16-bit 8-bit 4-bit 

Number of 4 input 

LUTs 

 

2094 553 155 36 

Number of occupied 

Slices 

 

1246 315 84 19 

Number of bonded IOBs 128 64 32 16 

Average Fan-out of 

Non-Clock Nets 

 

4.44 4.04 3.60 3.26 

 

Here in Table-7 it shows the time delay consuming of NR4SD 

multiplier with and without AHL circuit. By observing this it 

shows the range of delay increasing due to increasing number 

of input ranges. Here the time consuming is in the ranges of 

Nano seconds.  

Table 7. Time Delay consuming of NR4SD Multiplier 

Input range Delay with AHL 

circuit 

Delay without AHL 

circuit 

4-bit 8.068ns 12.063ns 

8-bit 13.379ns 22.326ns 

16-bit 26.755ns 43.790ns 

32-bit 40.537ns 77.345ns 

 

Table 8. Power analysis of NR4SD Multiplier 

Input range Power(W) without 

AHL circuit 

Power(W) with 

AHL circuit 

4-bit 0.271 0.209 

8-bit 0.343 0.219 

16-bit 0.508 0.233 

32-bit 0.883 0.306 
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Fig 9 shows the simulation result of NR4SD multiplier with 

AHL circuit. Here Figs9 (a) to (d) shows 4*4, 8*8, 16*16, 

32*32 bit NR4SD multiplier response and Figs 10 shows the 

simulation result of NR4SD multiplier without AHL circuit. 

Here Figs 10 (a) to (d) shows 4*4, 8*8, 16*16, 32*32 bit 

NR4SD multiplier response. In these figures shows the input 

and output responses. Table 8 shows the 4*4, 8*8, 16*16, 

32*32 NR4SD multipliers power analysis with and without 

AHL circuit. 

In the below Table 9-12 the 4*4 ,8*8,16*16,32*32 NR4SD 

multipliers are compared for Error count based on no.of  i/p 

and no.of Zero’s in multiplicand. Here applying the different 

number of inputs which are randomly generated and shows 

the number of   error counts based on number of zero’s 

present in the randomly generated input bits.  

Table 9. Error count based on no.of i/p and no.of Zero’s in 

multiplicand of NR4SD 4 bit multiplier 

No of i/p No of 0’s-2 No of 0’s-1 

13000 5237 2891 

11000 4429 2440 

9000 3625 2007 

5000 2000 1131 

 

Table 10. Error count based on no.of i/p and no.of Zero’s 

in multiplicand NR4SD 8 bit multiplier 

No.of i/p 0’s-5           0’s-3 0’s-7 

5000 2337 1333 3461 

9000 4185 2374 4436 

11000 5113 2896 5421 

13000 6047 3436 6406 

 

Table 11. Error count based on no.of i/p and no.of Zero’s 

in multiplicand NR4SD 16 bit multiplier 

No.of i/p 0’s-3 0’s-5 0’s-7 0’s-9 0’s-11 0’s-13 

5000 40 467 1432 2162 2416 2422 

9000 78 835 2569 3999 4379 4420 

11000 102 1030 3151 4761 5359 5420 

13000 119 1220 3723 5631 6339 6419 

 

Table 12. Error count based on no.of i/p and no.of Zero’s 

in multiplicand of NR4SD 32 bit multiplier 

No.of i/p 0’s-10 0’s-15 0’s-20 0’s-25 

5000 189 1490 2402 2382 

9000 334 2730 4322 4381 

11000 413 3339 5284 5381 

13000 494 3952 6246 6380 

 

5. CONCLUSIONS 
This paper proposed an aging-aware reliable multiplier design 

with the AHL. The multiplier is able to modify the AHL to 

mitigate overall performance degradation due to increased 

delay. Be aware that in addition to the BTI impact that 

increases transistor delay, interconnect additionally has its 

aging issue, that is referred to as electromigration. 

Electromigration happens whilst the current density is high 

enough to cause the drift of metal ions along the direction of 

electron flow. The metal atoms can be regularly displaced 

after a time period, and the geometry of the wires will change. 

If a wire becomes narrower, the resistance and delay of the 

wire will be expanded, and in the end, electromigration might 

also cause open circuits. This problem is also more severe in 

advanced manner technology because metal wires are 

narrower, and changes in the wire width will cause larger 

resistance differences. If the aging effects as a result of the 

BTI effect and electromigration are considered collectively, 

the delay and overall performance degradation will be more 

significant. Fortunately, our proposed variable latency 

multipliers can be used under the influence of both the BTI 

effect and electromigration. Similarly, our proposed variable 

latency multipliers have much less performance degradation 

because variable latency multipliers have much less timing 

waste, but conventional multipliers need to consider the 

degradation resulting from both the BTI effect and 

electromigration and use the worst case delay as the cycle 

period. 
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