
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.27, March 2018

9

Internet of Things (IoT) Protocols: A Brief Exploration of

MQTT and CoAP

Danish Bilal Ansari
Department of Computer Science

and Information Technology
Virtual University of Pakistan

Atteeq-Ur-Rehman
Department of Computer Science

and Information Technology
Virtual University of Pakistan

Rizwan Ali Mughal
Department of Computer Sciences

Comsats Institute of Information
Technology

ABSTRACT

The concept of the Internet of Things emerged a long time

ago, having enormous development in sensing devices and

every-day-objects connected to the internet. With current

internet infrastructure, wireless communication plays a vital

role in IoT devices allowing them to transmit messages.

Therefore, the vitality of these messages lies in authentication.

Numerous key management techniques have also been

introduced to provide a secured transmission over the internet.

In the context of IoT, many protocols have been devised for

authenticated and secured transmission, including XMPP,

AMQP, and LWM2M. Addition to above, MQTT and CoAP

are also extensively used protocols in most M2M

communication. This survey paper is an exploration of these

protocols and also exemplify the comparison between them.

Keywords

Internet of Things, IOT, MQTT, COAP, Messaging Format of

MQTT and CoAP, Security in MQTT and CoAP

1. INTRODUCTION
The term Internet of Things (IoT) was coined in 1999 by

Kevin Ashton through Auto-ID Center at MIT and market-

related publications [1]. He presented the idea of tagging

everyday objects with identifiers. Although this can be done

by QR or Barcodes etc. but with the revolution in technology,

the term IoT becomes more enriched with sensors and

actuators allowing interaction with internal or external states.

Physical devices like cars, watches, air-conditioners, and

clothes etc. will gather data and share it with other devices so

that appropriate measurements can be taken.

With the huge growth in IoT, Gartner [2] predicts that by

2017 8.4 billion IoT devices will be in use, with a 31 percent

increase from 2016, and by 2020 it will reach 20.4 billion,

while the spending on these services will reach about $2

trillion by 2017.

IoT devices range from large to small scale where most

devices are network-depended while restricted in terms of

power consumption and resources. So, development of such

devices must be cost-effective and proficient to share data.

Connectivity in IoT data comprises of wide range of protocols

when developing IoT applications. These applications attain

huge amount of data from various devices. Application nature

is heavily dependent on the selection of Protocol Different

protocols including AMQP, XMPP, and LWM2M exists for

home automation, vehicle-to-vehicle communication, and

wearable devices, with two expertized protocols for Machine-

to-Machine (M2M) communication includes Message Queue

Telemetry Transport (MQTT) and Constrained Application

Protocol (CoAP).

The paper is arranged as follows. Section 2 describes the

architecture of MQTT and CoAP. Section 3 focuses on the

message format of MQTT and CoAP. Section 4 addresses

security in MQTT and CoAP, and finally, Section 5 concludes

the paper.

2. ARCHITECTURE OF MQTT AND

COAP
As described earlier, various other protocols exist while

MQTT and CoAP are extensively used in M2M

communication. These protocols are described as follows:

2.1 Message Queue Telemetry Transport

(MQTT)
Message Queue Telemetry Transport (MQTT) was developed

by IBM in 1999 [3], which is a publish/subscribe protocol. It

runs over TCP/IP. The client acting as publisher/subscriber

connects to a server which is a message broker for receiving

notifications. MQTT is used for remote locations where

limited network bandwidth is required [4]. The architecture of

MQTT is shown in Figure 1.

Fig 1: MQTT Architecture

Different clients can subscribe to a central broker for

accumulating topics created by the devices in MQTT which

employs a message exchange model. This message exchange

model is resource proficient and does not follow a specific

data structure. A client receives a message from the broker,

which it subscribed to, about a topic when a message is posted

by the device. The purpose of the broker is to confirm

message delivery by simplifying management and facilitating

IoT devices connected through the network. MQTT is well

suited for machine-to-machine communication following a

lightweight messaging protocol [5]. It also provides security

even if the connection breaks off for the transmitted messages

by resolving glitches with untrustworthy connections.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.27, March 2018

10

2.2 Constrained Application Protocol

(CoAP)
Constrained Application Protocol (CoAP) was introduced for

lightweight RESTful interfacing by IETF Constrained

RESTful Environment working group known as CORE [7].

REST architecture is used as a communication between HTTP

client and server because of its lightweightness and is easier to

consume [6], but for lightweight IoT applications, it could

result in excessive power utilization and overhead. CoAP is

best suited for low-energy consumption sensors to utilize

RESTful services within their power limitations.

CoAP is a protocol that allows communication with wider

internet using similar protocols for constrained IoT devices,

which are termed as “nodes”. It is best suited for devices that

are on same or different constrained network. CoAP can be

considered as a substitute to HTTP as it is built over UDP

rather than TCP which is a common practice in HTTP. CoAP

uses the Efficient XML Interchanges (EXI) format which is

space effective as compared with XML/HTML [8] which is a

binary format. The architecture of CoAP is shown in Figure 2.

Fig 2: CoAP Architecture

CoAP comprises of two layers named as messaging and

request/response. For redundancy and consistency of any

message, the messaging layer is responsible while

connectivity and communication handling is request/response

layer job. CoAP also facilitates multicast messaging as well

as support asynchronous exchange of messages. These layers

are interpreted as follows:

2.2.1 Message Layer
Four type of messages are supported by CoAP as follows [9]:

 Confirmable (CON)

 Non-Confirmable (NON)

 Acknowledgment (ACK)

 Reset (RST)

2.2.1.1 Reliable Message
The reliable messaging mode is considered when a message is

marked as confirmable. A confirmable message is sent out by

a default timeout and exponential back-off, until the recipient

reply with the acknowledgment message [9]. The received

acknowledgment message contains the same id. The reset

message will replace acknowledgment if a reply is

unsuccessful by the recipient. The reliable messaging mode is

represented in Figure 3.

Fig 3: Reliable Message

2.2.1.2 Unreliable Message
Any message not involving as reliable will be considered as a

non-confirmable message. These messages also contain a

message id for redundancy identification. However, they are

not an acknowledgment. They also send reset message when

the recipient is unable to respond a non-confirmable message.

The unreliable messaging mode is represented in Figure 4.

Fig 4: Unreliable Message

2.2.2 Request/Response Layer
Messages in request/response layer can be described as

follows:

 Piggy-Backed

 Separate

 Non-Confirmable

2.2.2.1 Piggy-Backed Message
When any response is sent immediately by the server after

receiving a confirmable or non-confirmable message, then the

piggyback mechanism of CoAP is employed. Generally, the

message is termed as an acknowledge message. A successful

and failure message resulting in acknowledgment response is

shown in Figure 5.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.27, March 2018

11

Fig 5: Successful and Failure Piggyback Messages

2.2.2.2 Separate
In the separate method of a message, the server sends an

empty message rather than an acknowledgment. The purpose

is to stop the client from resending the message. This message

generally takes some time for delivery. The server will send a

confirmable message when it is ready. A message with a

separate response is shown in Figure 6.

Fig 6: Message with separate response

2.2.2.3 Non-Confirmable
When a non-confirmable message is sent, the response could

be non-confirmable. However, the server could also send a

confirmable message. Non-confirmable request/response

message is shown in Figure 7.

Fig 7: Non-confirmable request/response message

3. MESSAGE FORMAT OF MQTT AND

COAP
Messaging format with MQTT and CoAP can be described as

follows:

3.1 MQTT Message
For a connection to establish, both client and broker should

have TCP/IP stack. The connection, with MQTT CONNECT,

is initiated by a broker after receiving a command message

from the client and will answer with CONNACK. If a spam

message is requested or takes too much time, the connection

will be closed. The MQTT CONNECT Message is shown in

Figure 8 [10].

Fig 8: MQTT CONNECT

The client id is a unique identifier which is used for

connecting to the broker by a client. The broker uses it to

uniquely identify the client and its state. The clean session

helps broker in establishing the connection in persistent and or

non-persistent mode. In persistent mode, all subscription and

messages will be gathered by the broker.

Authorization and Authentication of a client are managed by

username and password. Will message is used in the

verification of MQTT connection messages. It helps in the

notification of other clients when a client disconnects. Keep

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.27, March 2018

12

alive helps in identifying the status of both, broker and client.

After a time interval, a PING Request is send by the client and

broker respond back with a PING Response.

As stated earlier, the broker responds back with a CONNACK

Message. This contains session present flag and a connection

acknowledge flag. The MQTT CONNACK Message is shown

in Figure 9 [10].

Fig 9: MQTT CONNACK

The session present flag helps in identifying if the client has a

persistent session or not from earlier connections. The other

flag is known as connect acknowledge flag or return code,

which indicates whether a connection is successful or not.

Table 1 represents the return codes from MQTT CONNACK:

Table 1. Return codes from MQTT CONNACK

Return Code Response

0 Connection is accepted

1
Connection is refused, because of

unacceptable version

2
Connection is refused, because of

identifier rejected

3
Connection is refused, because of

unavailability of server

4
Connection is refused, because of the

wrong username or password

5
Connection is refused, because of the no

authorization

Message format in MQTT is case sensitive. Naming sensors

and actuators should follow a categorized and consistent

order. For instance, if light, O2, and air sensors are in the

basement of an office, the correct way of naming would be:

myOffice/basement/sensor/light

myOffice/basement/sensor/O2

myOffice/basement/sensor/air

In addition to above, wildcards can also be used.

3.2 CoAP Message
CoAP is transmitted over UDP by default. It follows a

RESTful architecture which makes it lightweight to run on

constrained devices. It uses a simple binary format for

messaging, which is a 4-byte header along with payload

option [11]. The message format for CoAP consisting of 4-

byte is shown in Table 2.

Table 2. CoAP consisting of 4-bytes header

Version

(V)

Type

(T)

Token Length

(TKL)

Code Message

ID

Token (If any)

Options (If any)

Payload (If any)

The CoAP follows an architecture similar to HTTP

client/server. A client usually sends a request to the server

containing a method code e.g. GET, PUT, POST or DELETE.

After receiving a request, the server responds back with a

payload and a response code. Table 2 shows that the CoAP

messages contain a binary header base with a 4-byte. A CoAP

message contains following fields:

3.2.1 Vector (V):
This is a 2-bit unsigned integer indicating the version number

for CoAP. Generally, it is set to one.

3.2.2 Type (T)
This is also a 2-bit unsigned integer which indicates the type

of message. These are confirmable, non-confirmable,

acknowledged and reset.

3.2.3 Token Length (TKL)
This indicates the length of the token. For this, 4-bit unsigned

integers are used. 0-8 bits are used for indicating token length

while 9-15 are reserved.

3.2.4 Code
The code is used for specifying the request or response code.

It is an 8-bit unsigned integer. 1-31 bits are used for request

while 64-191 bits are used for the response code. Generally,

the code field for request could be GET, PUT, POST or

DELETE, while the response is just a response code.

3.2.5 Message ID
To identify the redundancy of any message and the matching

response, the Message ID is used. This is a 16-bit unsigned

integer.

3.2.6 Token
Token length field utilizes 0-8 bytes. All requests and

responses can be associated with a Token value.

3.2.7 Options
Options are affixed at end of a message, which can also be

followed by another option and so on. The option can also

contain a payload.

3.2.8 Payload
The payload is generally attached at the end of the UDP

datagram, which is depended on the datagram size. If the

length is zero, then it indicates the non-existence of payload.

4. SECURITY IN MQTT AND COAP
As security is considered a compromise between securable

and highly usable application, it is of more importance among

IoT. From application to network and protocols, security is an

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.27, March 2018

13

essential factor for protecting IoT applications. Security in

terms of MQTT and CoAP protocols are as follows:

4.1 Security in MQTT
MQTT security can be implemented on various layers.

Different layers help in the prevention of numerous attacks.

There is not any consolidated mechanism for having a secured

MQTT architecture, rather than developing on already

available standards. Security on the various level in MQTT

can be implemented as follows:

4.1.1 Network Layer
VPN or secured network can be a source of security in

Network layer among client and broker. It is helpful in

offering a secure and reliable connection. VPN’s are helpful

in securing such gateway applications where devices

communicating with gateways are on one end while VPN

with broker resides on another end.

4.1.2 Transport Layer
Encryption is used in encoding data in such way that it is only

accessible to authorized users and unauthorized users cannot

view it [12]. Encryption can also be taken into account for

securing the transport layer. The transport encryption can be

managed by implementing TLS (Transport Layer

Security)/DTLS (Datagram Transport Layer Security). For

TCP, TLS is used, while DTLS is used for UDP [13]. As TLS

is securable in transport layer, it is not feasible among

resource-limited devices, mainly because of the packet

overhead.

4.1.3 Application Layer
Authentication is essential towards implementing security in

both layers, Transport, and Application. The TLS helps in

authenticating both client and server using a certificate in the

transport layer. On the other hand, authentication can be

administered by providing username and password at the

application layer.

A unique identifier is assigned to every client for

authenticating to the broker. The unique identifier is used for

connecting to the broker in MQTT CONNECT. This identifier

generally contains 65535 characters, where 23 characters are

cancelled out. It is considered a good practice to include the

MAC address or a serial number of the device for the user id,

or the user id should be at least 36 characters long. The

authentication assessment is performed by the MQTT broker

after providing username and password.

Authorization is yet another possibility of securing application

layer, in which access rights are assigned to a specific

resource. In MQTT, Access Control List (ACL) is used for

authorization and is implemented on broker side [13]. The

ACL allows access rights and permitted operations to be

granted to a specific process. All username and passwords

belonging to a user and it’s published or subscribed topics are

stored at ACL in MQTT.

Another authorization technique used in the perspective of

MQTT security is Role Based Access Control (RBAC). In this

technique, access rights against a certain resource depend on

the role assigned to a user. Maintaining users with the

permission become easier by assigning roles. Web services

and various plugins can be used for enhancing authorization

aspects.

4.2 Security in CoAP
Datagram Transport Layer Security (DTLS) is one

mechanism used by CoAP on top of UDP instead of TCP to

manage changes encountered in HTTP. So, Single-to-

Multipoint communications can be managed by this method in

CoAP. In constrained environments, DTLS can be used along

with minimum configurations for secure CoAP messages.

Authentication, confidentiality, key management, and data

integrity are some crucial factors managed by DTLS [14]. It

also helps in the various cryptographic techniques. DTLS is

considerably the most secure protocol for channel security

because of its facilitation in providing authentication,

protecting application data and key exchange with key

management and algorithms [15]. Along with DTLS, four

modes of security are used by CoAP in numerous

applications. In terms of authentication and key management,

these modes differ from each other as described follows:

4.2.1 NoSec
In this mode of CoAP, no security is provided, and hence all

messages transferred are deprived of security.

4.2.2 PreSharedKey
Those sensing devices already programmed with

cryptographic keys can be secured using this mode. These

cryptographic keys in such devices help in communication

with other devices. Such devices, not sustaining public key

cryptography generally use this mode. In multiple devices, a

single key is utilized with one key for each destination.

4.2.3 RawPublicKey
On public keys, the sensing devices that requires

authentication generally adopt this security mode. However,

these devices do not follow a public key structure. The public

key helps in the identification of devices. This identity can be

used in interacting with nodes of public keys. This security

mode is considered essential in the implementation of CoAP.

4.2.4 Certificates
This security mode is also helpful for sensing devices

requiring authentication on public keys but also useful in

those that follow public key structure for validation. However,

this mode assures the accessibility of security structure.

5. CONCLUSION
This paper focuses on the two highly utilized application

protocols for IoT, MQTT, and CoAP. With many

advancements in IoT applications, devices become more

efficient in terms of sensors and actuators. With the

involvement of networking infrastructure, many protocols

schemes were devised. AMQP, XMPP, and LWM2M are

named few. Along with them, MQTT and CoAP protocols are

extensively used application protocol. First, we describe the

architecture of MQTT and CoAP in this paper, and also show

how the transmission of the message takes place. Then we

present the messaging format for these protocols along with

format examples. Messaging in MQTT follows a categorized

and consistent order, while in CoAP, the messages follow a

Restful architecture. This architecture is similar to HTTP

client/server. A client usually sends a request to the server

containing a method code e.g. GET, PUT, POST or DELETE.

The next section then addresses the security implementation

of various layers in IoT using MQTT and CoAP. In MQTT,

the security can be implemented at various layers including

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.27, March 2018

14

network, transport, and application. On the other hand, the

security in CoAP follows a DTLS mechanism used on top of

UDP. Four mdoes NoSec, PreSharedKey, RawPublicKey, and

Certificates are used for security in CoAP. We believe that

this survey paper provides the reader with the insight into IoT

protocols. It will also benefit the research community with its

intellectual contribution towards research and development.

6. REFERENCES
[1] https://en.wikipedia.org/wiki/Internet_of_things

[2] https://www.gartner.com/newsroom/id/3598917

[3] D. Locke, “MQ telemetry transport (MQTT) v3.1

protocol specification” IBM developer Works Technical

Library 2010,

http://www.ibm.com/developerworks/webservices/librar

y/wsmqtt/index.html.

[4] https://en.wikipedia.org/wiki/MQTT

[5] Chen, Whei-Jen and Gupta, Rahul and Lampkin, Valerie

and Robertson, Dale M. and Subrahmanyam, Nagesh,

“Responsive Mobile User Experience Using MQTT and

IBM MessageSight” IBM Corp., 2014

[6] Cristian Mateos, Andres Pablo Flores, Alejandra Cechich

and Alejandro Zunino, “RESTful Service Composition at

a Glance: a Survey”, 2015

[7] https://en.wikipedia.org/wiki/Constrained_Application_P

rotocol

[8] Pallavi Sethi and Smruti R. Sarangi, “Internet of Things:

Architectures, Protocols, and Applications”

[9] Z. Shelby, ARM, K. Hartke, C. Bormann, “The

Constrained Application Protocol (CoAP)”,

https://tools.ietf.org/html/rfc7252

[10] https://www.hivemq.com/blog/mqtt-essentials-part-3-

client-broker-connection-establishment

[11] Isam Ishaq, Jeroen Hoebeke, Ingrid Moerman and Piet

Demeester, “IETF Standardization in the Field of the

Internet of Things (IoT): A Survey”, 2013

[12] https://en.wikipedia.org/wiki/Encryption

[13] Sotirios Katsikeas, Konstantinos Fysarakis, Andreas

Miaoudakis, Amaury Van Bemten, Ioannis Askoxylakis,

Ioannis Papaefstathiou and Anargyros Plemenos,

“Lightweight & Secure Industrial IoT Communications

via the MQ Telemetry Transport Protocol”, 2017

[14] Thamer Alghamdi, A. Lasebae and Mahdi Aiash,

“Security Analysis of the Constrained Application

Protocol in the Internet of Things”, 2013

[15] Ajit A. Chavan, Mininath K. Nighot, “Secure CoAP

Using Enhanced DTLS for Internet of Things”, 2014.

IJCATM : www.ijcaonline.org

