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ABSTRACT 

In this paper we introduce and study permutation graphs of 

permutation groups. Basic, structural and specific properties 

of these graphs are investigated and characterized. Further, we 

obtain formulae for enumerating total number of shortest and 

longest cycles of permutation graphs. 

      General Terms 

 Algebraic Graph Theory, Group theory and Combinatorics. 

      Keywords 
Permutation groups, Even and odd permutation graphs, 

Triangles, Hamilton cycles, Disjoint Hamilton cycles. 

 

1. INTRODUCTION 
The study of group theoretic graphs using the properties of 

graphs and groups has become incredible research topic in the 

recent years, and exiting to many fascinating results and 

questions. Graphs are called algebraic graphs if their 

constructions are based on modern algebraic structures and 

number theoretic functions, and graphs are called number 

theoretic graphs if their constructions are based on the number 

theoretic functions. Several mathematicians studied algebraic 

graphs on various algebraic structures, namely, semi-group, 

group, ring, field, vector space. By using and applying these 

inter disciplinary studies to obtain basic, structural and 

specific properties of many algebraic graphs. 

   Dejter and Giudici [1], Berrizabeitia and Giudici [2] and 

others have studied the cycle structure of graphs associated 

with certain number theoretic functions. Maheswari and 

Madhavi [3, 4] studied the Hamilton cycles and triangles of 

the algebraic graphs associated with Euler totient function

( )n 1,n  an integer and quadratic residues modulo a prime

.p
 
Chalapathi, Madhavi and Venkataramana [5] studied the 

enumeration of triangles in the algebraic graph associated with 

divisor function ( )d n , 1n  , an integer. Recently the authors 

Chalapathi and Kiran kumar [6] studied the structural 

properties of even free graphs of the group 2nZ , which are 

group theoretic graphs under the correspondence of 

Combinatrics.  

The name permutation graphs were first introduced in 1967 by 

Chartrand and Harary [7]. These graphs are group theoretic 

graphs, which are denoted by G  whose vertex set is 

{1,2,3,..., }n , and xy  is an edge of G if and only if x y and 

1 1( ) ( )x y    or x y and
1 1( ) ( )x y   . Here a 

permutation graph is a simple undirected associated with a 

permutation in permutation group nS . But we made a 

different definition of permutation graphs from the above, 

which are defined specifically on even and odd permutations 

of nS . These are combinatorially interesting and it provides 

enumerating techniques for enumerating total number of 

cycles in these graphs. we have introduced even and odd 

permutation graphs associated with a permutation group nS for 

each 3.n  These graphs are inter related between two special 

branches of mathematics, namely, Group theory and 

Combinatorics. Algebraically, these graphs are notated by 

( , )n nG S A and ( , )n nG S B which are disconnected and 

connected, and also complement graphs to each other 

respectively. Also we determine the basic, structural and some 

specific properties of these graphs. Further, we establish 

formulae for enumerating the total number of even and odd 

cycles of permutation graphs.  

2.  BASIC PRELIMINARIES AND 

NOTATIONS 
In this paper basic definitions and concepts of graph theory 

are briefly presented.  A graph G consist of a nonempty set 

( )V G of vertices and a set ( )E G of elements called edges 

together with a relation of a incidence which associates with 

each member a   pair of vertices, called its ends. A graph with 

no loops and no multiple edges is called a simple graph whose 

order and size are ( )V G and ( )E G respectively.  

For any vertex x in a graph G , deg( )x be the number of 

edges with the vertex x as an end point. A graph in which all 

vertices have the same degree is called a regular graph. A 

graph X is called connected if there is a path between any 

two distinct vertices in G . A graph G is complete if every 

two distinct vertices in G are adjacent. A complete graph with 

n vertices is denoted by .nK Also, a simple connected graph 

is Eulerian if and only if degree of its each vertex is even. 

A permutation of n  labeled set S is a function :f S S

that is both one-one and onto, here the function composition 

  is a binary operation on the collection of all permutations 

of a set S . The group of all permutations of S is the 

permutation group on n  labels and is denoted by nS . Note 

that nS  has !n elements and nS  is non-ableain group for 

3n  . Throughout the text, we consider f g fg  and 

g f gf  . A permutation nf S is a cycle of length k , if 

there exist elements 1 2 3, , ,..., ka a a a S such that

1 2 2 3 1( ) , ( ) ,..., ( )kf a a f a a f a a   and ( )f x x for all other 

elements x S . It is denoted by 1 2 3( , , ,..., )kf a a a a .The 
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simplest permutation is a cycle of length 2, which are called 

transpositions. We define a permutation in nS
 
is said to be 

even if it can be expressed as an even number of 

transpositions. The collection of these even permutations 

forms a group, which is called an Alternating group on n 

labels, and it is denoted by nA . Here nA   is non-ablelian group 

for each 4n  and
!

2
n

n
A  . However, a permutation in nS is 

said to be odd if it can be expressed as an odd number of 

transpositions. The set of odd permutations in nS is not a 

group, and it is denoted by .nB
 

The set nB  is non-empty 

subset of nS , and
!

2
n

n
B  . Further n nA B   for each 1n  . 

For further graph theoretic notations and terminology reader 

refer Harary [8] and for group theory we fallow Judson [9].  

3.  EVEN PERMUTATION GRAPHS  
This section introduces even permutation graph of 

permutation group, and studied its properties.  

Definition. 3.1   Let 3n  be a positive integer, and let nA be 

the set of even permutations in nS .Then the graph ( , )G V E

is called an even permutation graph  whose vertex set is 

nV S and edge set E consisting of an unordered pair ( , )f g

is an edge such that either fg or gf  is an even permutation, 

and it is denoted by ( , )n nG S A . 

Example. 3.2 The Figure 3.2 shows the even permutation 

graph 4 4( , ).G S A
 

 

Fig.3.3. The even permutation graph 4 4( , ).G S A
 

The above example illustrates that the even permutation graph

( , )n nG S A is disconnected for each 3n  . These disconnected 

graphs contain exactly two complete components. This gives 

the following fundamental theorem for even permutation 

graphs. 

       Fundamental Theorem. 3.4 

For each 𝑛 ≥ 3, the even permutation graph ( , )n nG S A  

contains exactly two complete components. 

Proof.  Let ,f g be any two vertices in the graph ( , ).n nG S A

Then arise the following three cases on , nf g S . 

Case (i).  When either nf A  and ng B  or nf B and

ng A . Since the product of even and odd or odd and even 

permutations must be odd. So, there is no edge between f and 

g in ( , )n nG S A
 
This shows that ( , )n nG S A is disconnected. 

Case (ii).  If , nf g A , then either fg or gf is again in nA . So 

there exists an edge between the vertices f and g in

( , )n nG S A . If 1 2 3 !

2

, , ,..., nf f f f are in nA , then there exists an 

edge between any two vertices of these vertices, and hence the 

set of vertices 1 2 3 !

2

, , ,..., nf f f f form a complete sub-graph, 

which is a component of ( , )n nG S A . 

Case (iii).  If , nf g B , then either fg or gf is in nA .So, in 

this case also, there exists an edge between the vertices f and

g  in ( , )n nG S A .Suppose the vertices 1 2 3 !

2

, , ,..., ng g g g are in 

nB ,then there exists an edge between any two of these 

vertices and hence the set of vertices 1 2 3 !

2

, , ,..., ng g g g form a 

complete graph, which is another component of ( , )n nG S A . 

From Case (i), Case (ii) and Case (iii), we obtain ( , )n nG S A

disconnected, and hence it contains exactly two complete 

components. 

Remark. 3.5 The two components of ( , )n nG S A denoted by 

( , )n nG A A and ( , )n nG B A which are both complete. The 

fundamental theorem of the graph ( , )n nG S A immediate 

provides the following consequences, but their proofs are 

obviously trivial from the basic principles of combinatorial 

number theory [10].  

       1.  For each 3n  ,  
!

( , ) ( , )
2

n n n n

n
G A A G B A  . 

       2.  For each 3n  , the size of each component is 
! 2

2

n 
 
     

             

edges.  

       3.  Each component of even permutation graph is not 

bipartite. 

 

Theorem. 3.6  For each 3n  , we have ( , )n nG A A

( , )n nG B A . 

Proof: Define a map  from the component ( , )n nG A A to the 

component ( , )n nG B A by the relation ( )f g  , for every

nf A . We observe that  is one-to-one and onto, because 
 

has an inverse function 
1 

defined by 
1( )g f  , for each 

ng B . It can be checked that  preserves adjacency, in the 

following sense: Let , ,f f   , ng g S . Then, clearly, assume 

that , nf f A and , ng g B . Therefore, nf f A if and 

only if ng g A . It is evident that for each edge  ,f f  in 

( , )n nG A A there exist an edge  ,g g in ( , )n nG B A under the 
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bijective map  . That is, the map  preserves the adjacency. 

Hence ( , )n nG A A ( , )n nG B A , for each 3n  . 

Example. 3.7 The following figure shows that the 

components 3 3( , )G A A and 3 3( , )G B A of 3 3( , )G S A are 

isomorphic since there is a graph isomorphism 

3 3 3 3: ( , ) ( , )G A A G B A  such that 1 1( )f g   ,  2 2( )f g 

and 3 3( )f g  . 

 

Figure 3.8.  The components 3 3( , )G A A  and 3 3( , )G B A are 

isomorphic. 

4. ODD PERMUTATION GRAPHS  
In the above section, we constructed disconnected graphs 

( , )n nG S A  for each 3n  , and studied their properties. Due to 

this reason, we construct the complement of the graphs

( , )n nG S A , and study its basic and structural properties. In 

this manner, the vertex set of complement graph is same as 𝑆𝑛  

and whose edges are the pairs of non-adjacent vertices of

( , )n nG S A . The notation and construction of these 

complement graphs are immediate fallows. 

Definition. 4.1 For each 3n  , the graph ( , )n nG S B is called 

an odd permutation graph whose vertex set is nS  and for each

, nf g S , the edge set is treated as

{( , ) : either or }nE f g fg gf B  . 

Example. 4.2 The Figure [4.3] show that the odd permutation 

graph of the permutation group 4S . 

 

Fig.4.3. The odd permutation graph 4 4( , )G S B . 

The odd permutation graph shows that the following basic 

properties. 

1. The total number of vertices and edges of ( , )n nG S B are 

!n and 

2
!

2

n 
 
 

respectively. 

2. The degree of each vertex of ( , )n nG S B is
!

2

n
. In particular,

 

( , )n nG S B  is 
!

2

n
 -regular.

 
 

3. The graph ( , )n nG S B is connected and regular but not 

complete. 

 
 Theorem.4.4 The graph ( , )n nG S B is Eulerian if 3n  . 

Proof: Since 
!

2

n
is odd if and only if 3n  . For this reason, 

we consider 3n  . In this case 
!

2

n
must be even for each 

3n  . This shows that the degree of each vertex in ( , )n nG S B

is even, and hence ( , )n nG S B is Eulerian. 

Definition. 4.5 A simple graph is self-complementary if it is 

isomorphic to its complement. Every self-complementary 

graph is connected but converse need not be true. 

Theorem. 4.6 The graph ( , )n nG S B is not self-

complementary. 

Proof. If possible assume that ( , )n nG S B is self-

complementary, then ! 0, 1(mod4)n  .
 

This implies that

4 ( ! 0), 4 ( ! 1),n n  which is a contradiction to the fact that 

4 ⫮ 3! and 4 ⫮ (𝑛! − 1) for each 3.n   So, our assumption is 

wrong and hence ( , )n nG S B is not self-complementary graph. 

A connected graph in which every vertex has degree 2 is 

called cycle. It is denoted by nC where n is the number of 

vertices. If n  is even then nC is called an even cycle, and if n  

is odd then nC  is called an odd cycle. In nC , the number of 

edges coincides with the number of vertices, and it is called 

the length of the cycle. In particular, the cycle 3C  is called a 

triangle, which is a shortest cycle. In simple undirected 

graphs, if there are cycles then they must have length at least 

three. 

5. ENUMERATION OF TRIANGLES IN

( , )n nG S B  

In this section we enumerate the total number of triangles in 

the odd permutation graph, and hence deduce that the total 

number of odd cycles. The following theorem illustrates the 

enumeration of triangles in ( , )n nG S B . 

Theorem. 5.1 For each 3n  , the total number of triangles in 

the graph ( , )n nG S B is zero. 

Proof. Let , ,f g h be any three vertices of the graph 

( , )n nG S B .Then the unordered pairs ( , )f g , ( , )g h  and ( , )h f  

are edges in ( , )n nG S B
 
if ,fg ghand hf are in nB  for each

3n  . We show that the total number of triangles in 

( , )n nG S B is zero. If possible assume that there exists a 

triangle 3 ( , , , )C f g h f in ( , ),n nG S B then the pairs 
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( , ), ( , )f g g h and ( , )h f  are edges of ( , ),n nG S B  that is, 

,fg gh  and hf are in nB . Now arise the following two cases. 

Case (i). Suppose ,f g and h are all either even or odd 

permutations then clearly ,fg gh , and hf are not in nB . 

Case (ii).  If any two of ,f g and h are either even or odd 

permutations then at least one of the product ,fg gh  and hf

is not in nB . 

From Case (i) and Case (ii), our assumption is not true. This 

shows that the total number of triangles in odd permutation 

graph ( , )n nG S B is zero. 

Corollary. 5.2 For each 3n  , the total number of odd cycles 

in ( , )n nG S B
 
is zero. 

Proof. Follows from Theorem 5.1. 

We observe that, if k  is odd then ( , )n nG S B does not contain 

an odd cycle. It gives ( , )n nG S B is a bipartite graph, because 

there is a special relation between bipartite graphs and their 

cycles, and it states that a graph is bipartite if and only if it has 

no odd cycles [11]. So, the bipartite graphs are characterized 

by the absence of cycles of odd length. 

Theorem. 5.3 For each 3n  , the odd permutation graph 

( , )n nG S B is complete bipartite. 

Proof. Let 𝑉 be the vertex set of odd permutation graph

( , )n nG S B . Then nV S .This vertex set can be partitioned 

into two disjoint sets 1V and 2V  of V such that 

1 { :nV f S f   is even}  and 2 { :nV f S f   is odd} . 

Here 1V and 2V  are called parts of the graph ( , )n nG S B in 

which every vertex from part 1V is adjacent to every vertex 

from part 2V . Hence ( , )n nG S B is a complete bipartite graph. 

Definition. 5.4   A simple undirected graph is called a triangle 

free graph if it contains no triangles. 

From Theorem 5.1, the odd permutation graph ( , )n nG S B is a 

triangle free graph. 

6.  ENUMERATION OF EVEN CYCLES 

IN ( , )n nG S B  

In this section, we describe the formula for enumerating the 

total number of even cycles in 𝐺 𝑆𝑛 , 𝐵𝑛  for each 3n  . For 

this we immediate state the multiplication and addition 

principles in the Combinatorics.  

Theorem. 6.1 [10] Suppose a procedure can be broken into 

m successive stages, with 1r different out comes in the first 

stage, 2r different outcomes in the second stage, …, and  mr

different out comes in the 
thm stage. If the number of 

outcomes at each stage is independent of the choices in 

previous stages, then the total procedure has 1 2... mr r r

different composite out comes.  

Theorem. 6.2 [10] If there are 1r different objects in the first 

set,  2r different objects in the second set,…, mr different in 

the thm set, and if the different sets are disjoint, then the 

number of ways to select an object from one of the m sets is 

1 2 .... mr r r   . 

Theorem. 6.3 Let 𝑘 be an even positive integer such that 

3 !k n  , 3n  . Then the total number of k  cycles in 

( , )n nG S B is 

2
! 2

.
2

n

k

 
 
 

 

Proof.  Let 3n  be a positive integer and let k  be an even 

positive integer such that 3 !k n  . Then the k  cycles in 

the graph ( , )n nG S B is either 1 1 2 2( , , , ,f g f g 1..., , )kg f or 

1 1 2 2( , , ,g f g f 1,..., , )kf g . Either of these two cycles shows 

that between any two odd permutations there exists an even 

permutation and vice versa. Since 4k  is an even integer. It 

shows that 
2

k
 is either even or odd integer. So that the k 

cycle in the graph ( , )n nG S B contains 
2

k
even and 

2

k
 odd 

permutations. Thus the number of arrangements of 

1 2

2

, ,..., kf f f  odd permutations are arranged between different 

fixed 1 2

2

, ,..., kg g g even permutations from a collection of 
!

2

n

permutations in nS is equal to 
! 2

2

n

k

 
 
 

and thus each of these 

arrangement form a ( )
2 2

k k
k    cycle in the ( , )n nG S B . 

From Theorem [6.1], the total number of  k  cycles in the 

graph ( , )n nG S B is 

2
! 2 ! 2 ! 2

.
2 2 2

n n n

k k k

    
    

      
Example. 6.4 The following table illustrates the graphs 

 
3 3( , )G S B and 4 4( , ),G S B and their corresponding k  cycles. 
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Definition. 6.5 Let G be a simple undirected graph, then the 

girth of G is the length of a shortest cycle in𝐺, and it is 

denoted by ( ).gir G  

Theorem. 6.6 The girth of an odd permutation graph 

( , )n nG S B is 4. 

Proof. We know that the graph ( , )n nG S B is triangle free 

graph, therefore,  

                   ( , ) 3n ngir G S B   ( , ) 4n ngir G S B  .  

Further, the graph  ( , )n nG S B has a cycle of the form 

 4 , , , ,i i j j iC f g f g f  of  

length 4,  which is smallest. Hence  ( , ) 4n ngir G S B  . This 

completes the proof. 

The diameter of a simple graph G , denoted by ( )diam G , is 

given by  ( ) max ( , ): , ( )diam G d x y x y V G  , where 

( , )d x y is the length of the shortest path from x to y . 

 

 

Theorem.6.7 The diameter of odd permutation graph is  2. 

 Proof: Consider the odd permutation graph ( , )n nG S B , 3n 

having the vertices of the form 1 2 !

2

, , ..., ,nf f f 1 2 !

2

, , ..., ng g g . 

Since the vertex if is not adjacent to jf and similarly the 

vertex ig is not adjacent to jg for every 
!

1 ,
2

n
i j  . It is 

clear that there exist an edge between if and 
i

g or if and jg  

because ,i if g i j nf g B , so,  , 1i id f g  ,  , 1i jd f g  ,

 , 1i jd f f  and  , 1i jd g g  ,but in the graph ( , )n nG S B ,

3n  , there always exist either a path i i jf g f  or 

i i jg f g  for each 
!

1 ,
2

n
i j  , which gives  , 2i jd f f 

and  , 2i jd g g  , for every i j . It follows that 

 ( , ) 2n ndiam G S B  . 

7.  ENUMERATION OF HAMILTON 

CYCLES IN ( , )n nG S B  

In this section we study the Hamiltonian property of odd 

permutation graphs, and also establish a formula for 

enumerating total number of Hamilton cycles and their 

corresponding disjoint Hamilton cycles in the odd permutation 

graphs. 

A Hamilton cycle in a simple undirected graph G is a cycle 

containing every vertex of ,G and G is called a Hamilton 

graph if it contains a Hamilton cycle. The total number of 

Hamilton cycles of G denoted by ( )T H . Two Hamilton 

cycles 1H  and 2H  in G  are said to be edge disjoint if the 

edge sets 1( )E H and 2( )E H are disjoint. 

Theorem. 7.1 For each positive integer 3n  , the odd 

permutation graph ( , )n nG S B is Hamiltonian. 

Proof.  Suppose 3n   is a positive integer. Then, we construct 

the cycle 1 1 2 2 ! ! 1

2 2

( , , , ,..., , , )n nC f g f g f g f

 

in ( , ).n nG S B
 
Here 

the cycle C contains all the vertices of 𝐺  𝑆𝑛 ,  𝐵𝑛  exactly 

once, C  is a Hamilton cycle of ( , ).n nG S B  Hence ( , )n nG S B is 

Hamiltonian.

 Theorem. 7.2 For each positive integer 3n  , the total 

number of Hamilton cycles in ( , )n nG S B
 
is

!
( ) 2 !

2

n
T H

 
  

 
. 

Proof. From the Theorem [7.1], the cycle 

1 1 2 2 ! ! 1

2 2

( , , , ,..., , , )n nC f g f g f g f is a Hamilton cycle in 

( , ).n nG S B
 

The number of arrangements of 
!

2

n
 odd 

permutations in nS  are arranged between different fixed 
!

2

n
 

even permutations from a collection of !n permutations is 

!
!,

2

n 
 
 

 and vice versa, and hence each one of these 

arrangements is a cycle of length !n , which is Hamilton cycle 

Graphs k  cycles 

                  3 3( , )G S B  
4  cycles=

2
3

2

 
 
 

 

 

 

 

 

 

 

 

     4 4( , )G S B  

 

𝐺 

4  cycles=

2
12

2

 
 
 

 

6  cycles=

2
12

3

 
 
 

 

8  cycles=

2
12

4

 
 
 

 

10  cycles=

2
12

5

 
 
 

 

12 cycles=

2
12

6

 
 
 

 

14 cycles=

2
12

7

 
 
 

 

16  cycles=

2
12

8

 
 
 

 

18 cycles=

2
12

9

 
 
 

 

20  cycles=

2
12

10

 
 
 

 

22 cycles=

2
12

11

 
 
 

 

24 cycles=

2
12

12

 
 
 
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of the graph ( , ).n nG S B
 

From Theorem [6.2 ], the total 

number of Hamilton cycles in  ( , )n nG S B is  

! ! !
( ) ! ! 2 !.

2 2 2

n n n
T H

     
       
     

 

Example. 7.3 The graph 3 3( , )G S B contains 12 Hamilton 

cycles which are listed below.

 

 
1 1 2 2 3 3 1 1 1 2 3 3 2 1 1 2 2 3 3 1 1( , , , , , , ),( , , , , , , ),( , , , , , , ),f g f g f g f f g f g f g f f g f g f g f

1 3 2 2 3 1 1 1 3 2 1 3 2 1 1 2 2 1 3 3 1( , , , , , , ),( , , , , , , ),( , , , , , , ),f g f g f g f f g f g f g f f g f g f g f

1 1 2 2 3 3 1 1 2 2 3 3 1 1 1 3 2 2 3 1 1( , , , , , , ),( , , , , , , ),( , , , , , , ).g f g f g f g g f g f g f g g f g f g f g

1 3 2 2 3 1 1 1 3 2 1 3 2 1 1 2 2 1 3 3 1( , , , , , , ),( , , , , , , ),( , , , , , , )g f g f g f g g f g f g f g g f g f g f g

 
The Example [7.3] tells us that any two Hamilton cycles in the 

odd permutation graph are not edge disjoint. This immediate 

gives the following result. 

Theorem. 7.4 The odd permutation graph ( , )n nG S B does not 

contain disjoint Hamilton cycles. That is, the total number of 

disjoint Hamilton cycles in ( , )n nG S B is zero. 

Proof: Suppose 1 2 ( ), ,..., T HH H H be the total number of edge 

disjoint Hamilton cycles in the graph ( , )n nG S B . Then, 

1 2 ( )( ) ( ) ... ( )T HE H E H E H     .                       

 1 2 ( )( ) ( ) ... ( ) ( , )T H n nE H E H E H E G S B     .   

2
!

( ) !
2

n
T H n

 
   

 
, since ( ) !,iE H n 1 ( )i T H  . But by 

the   Theorem [7.2], we have

2
! !

2 ! !
2 2

n n
n

    
    

    
, which is 

not true for each 3n  . So our assumption is wrong, and 

hence the total number of disjoint Hamilton cycles in 

( , )n nG S B is zero. 

 

 

8. CONCLUSION 
In this paper, we have introduced new graph structures, called 

even and odd permutation graphs. An important outcome of 

this paper is that for all values of 3n  , these graphs are 

regular simple undirected graphs. Some other properties 

related to degree of vertices, enumeration of edges and cycles, 

and complete bipartite property has also been examined. It is 

our hope that this work would other foundation for further 

study of the theory of permutation graphs. 

 In our further study of permutation graphs, may be the 

following topics should be considered: (i) to find Clique 

number, (ii) to find Chromatic number, (iii) to obtained 

Domination parameters.  
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