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ABSTRACT 
The blind image separation has been widely investigated 

nowadays. As a result, many algorithms of feature extraction 

have been developed for direct application of such image 

structures. One example of this, the separation of mixed 

fingerprints found in a crime scene, in which a mixture of two or 

more fingerprints may be gathered, for identification, they must 

be separated. In this paper, we propose a new technique for 

multiple mixed images separation based on modified Weibull 

distribution. We use an efficient method based on genetic 

algorithm and maximum likelihood for estimating the 

parameters of such score functions. Also the accuracy of this 

proposed distribution is measured, and we compare the 

algorithmic performance using the efficient approach with some 

other previous distributions. The numerical results show that the 

proposed distribution is flexible and has efficient results.  

General Terms  
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Keywords 
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1. INTRODUCTION 
Recently the blind source separation (BSS) had more attention 

because it is considered as an advanced image/signal processing 

technique that has many applications such as: image, speech 

sound, biomedicine, and communication [1–4]. BSS aims to 

recover source (images/signals) from a mixture with little prior 

information. Many BSS algorithms have been employed from 

various viewpoints, including mutual information minimization 

[5], maximum likelihood [6], principle component analysis 

(PCA) [7], non-Gaussianity [8], tensors [9], and neural networks 

[10-12]. Regarding to BSS, the separation and optimization 

methods are the most important roles. Separation step is used as 

the separability measurement, and optimization step is used to 

get the optimum solution for the objective function which we get 

from separation mechanism. In the independent component 

analysis (ICA) framework, the challenging problem is to 

accurately estimate the statistical model of the sources. Practical 

BSS scenarios use difficult source distributions and even 

situations where many sources with variant probability density 

functions (pdf) mixed together. In recent literature, many 

parametric density models have been made available towards 

this direction. Examples of such models, the generalized 

Gaussian density (GGD) [13], the generalized gamma density 

(GGD) [15], the generalized alfa-beta distribution (AB-

divergences) [16], the Pearson family of distributions [17], and 

even the so-called extended generalized lambda distribution 

(EGLD) [18] which is an extended parameterizations of the 

aforementioned generalized lambda distribution (GLD) and 

generalized beta distribution (GBD) models [19], and even 

combinations and generalizations such as super and generalized 

Gaussian mixture model (GMM) [14].  In this paper, we propose 

the Modified Weibull distribution (MWD) which is a 

modification -or we can say a generalization - of Weibull 

distribution. We have evaluated the accuracy of our proposed 

MWD and compare the algorithmic performance using many 

different previous distributions. The numerical results, shows 

that the MWD gives good results comparing with many different 

cases. The rest of this paper is organized as follows: In section 2, 

we present the BSS model and the independent component 

analysis (ICA) technique. In section 3, we will discuss the 

MWD (propose distribution). In section 4, we will use 

maximum likelihood to estimate the parameters of MWD based 

on genetic algorithm. In section 5, we will present the numerical 

results. Finally, we will present the experimental results and the 

computational efficient performance of our proposed technique.  

 

2. BLIND SOURCE SEPARATION 
Imagine a room where a musical band is playing,  or some 

people are speaking with each other [20]. For simplifying 

suppose we have just two people are speaking with each other, 

and there are two microphones hold in different locations. We 

will get two recorded time signals, which we could denote by 

x1(t) and x2(t), with x1 and x2 the amplitudes, and t the time 

index. We find that each of the recorded signals is a weighted 

sum of the speech signals emitted by the two speakers, which we 

denote by 𝑠1(𝑡)  and 𝑠2(𝑡). We could express this as a linear 

equation: 

𝑥1 𝑡 =  𝑎11𝑠1  + 𝑎12𝑠2                                                   1   
𝑥2 𝑡 =  𝑎21𝑠1  + 𝑎22𝑠2                                                  2   

The aij  are constant coefficients that give the mixing weights 

and they depend on the distances between the microphones and 

the speakers. They are assumed unknown, since we cannot know 

their values aij without knowing all the properties of the physical 

mixing system. The source signals 𝑠𝑖  are unknown as well, since 

the major problem is that we cannot record them directly. What 

we want is to find the original signals from the mixtures, this is 

called the blind source separation problem. Blind means that we 

know very little information about the original sources. We can 

assume that the mixing coefficients aij  are different enough to 

make the matrix which they form to be invertible. Thus, there 

exists a matrix W with coefficients 𝑤𝑖𝑗 , such that: 

𝑠1 𝑡 =  𝑤11𝑥1  + 𝑤12𝑥2                                                  3   
𝑠2 𝑡 =  𝑤21𝑥1  + 𝑤22𝑥2                                                  4   

Such a matrix W can be found as the inverse of the matrix that 

consists of the mixing coefficients aij , one approach for solving 

this problem  [20] would be to use some information on the 

statistical properties of the signals  𝑠𝑖  to estimate the 

parameters aij . Actually, it turns out that it will be enough to 
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assume that 𝑠1(𝑡) and 𝑠2(𝑡), at each time instant t, are 

statistically independent.  

 

3. INDEPENDENT COMPONENT 

ANALYSIS 
Independent component analysis (ICA) is a method for finding 

underlying factors or components from multivariate (multi-

dimensional) statistical data. What distinguishes ICA from other 

methods is that it looks for components that are both statistically 

independent, and non-Gaussian [25].  Now, assume that we 

observe n linear mixtures 𝑥1 …𝑥𝑛  of n independent components 

[20] 

xj  =  aj1s1 + aj2s2 + ⋯+ ajn sn , for all j                           5   

The time index t has been dropped; in the ICA model [20], [25], 

it is assumed that each mixture 𝒙 and each independent 

component is a random variable, instead of a proper time signal. 

The observed values 𝑥𝑖(𝑡), e.g., the microphone signals, are then 

a sample of this random variable. As a preprocess to simplify the 

calculation, we can assume that both the mixture variables and 

the independent components have zero mean: If not, then the 

observed variables xi can always be centered by subtracting the 

sample mean, this makes the model zero-mean. It would be 

convenient to use a vector-matrix notation instead of the sums 

like in the previous equation. Let’s denote by x the random 

vector whose elements are the mixtures 𝑥1 …𝑥𝑛 , and by s the 

random vector with element 𝑠1 …𝑠𝑛 , and by A the matrix with 

elements aij . The above mixing model can be written as 

𝐱 =  𝐀𝐬                                                                                     6   
Also the model can be written as 

𝐱 =  𝐚𝐢si                                                                             7 
n
i=1     

The statistical model in Eq. 6 is called independent component 

analysis model, or ICA model. 

The ICA model is a generative model, this means, it describes 

how the observed data are generated by a process of mixing the 

components 𝑠𝑖 . 

Starting point for ICA is very simple, assume that the 

components si are statistically independent. Also, they must 

have non-Gaussian distributions. 

Why Gaussian variables are forbidden? 
Assume that the mixing matrix is orthogonal and the si are 

Gaussian [25]. Then x1 and x2 are Gaussian, uncorrelated, and of 

unit variance, their joint density is given by 

p x1, x2 =
1

2π
exp  −

x1
2+x2

2

2
                                         (8)  

The distribution of this function is completely symmetric. 

Therefore, it does not contain any information on the directions 

of the columns of the mixing matrix A. This is why A cannot be 

estimated. 

Measures of nongaussianity 
To use non-gaussianity in ICA estimation [22], we must have a 

quantitative measure of non-gaussianity of a random variable, 

say y. Simply, let us assume that y is centered (zero-mean) and 

has variance equal to one, in fact, one of the preprocessing in 

ICA algorithm is to make this simplification possible. There are 

many measures of non-gaussianity, the classical measure of non-

gaussianity is kurtosis or the fourth-order cumulate, and another 

very important measure of non-gaussianity is Negentropy which 

based on the information theoretic quantity of (differential) 

entropy. Also, Minimization of Mutual Information, the most 

popular approach for estimating the ICA model is maximum 

likelihood estimation. 

 

Preprocessing for ICA 
It is usually very useful to do some preprocessing before 

applying an ICA algorithm on the data [25]: 

Centering x, that means making x a zero-mean variable by 

subtracting its mean, and this preprocessing is the most basic 

and necessary preprocessing, this is just for simplifying the ICA 

algorithm and does not mean that the mean could not be 

estimated. After estimating A -the mixing matrix- with centered 

data, the estimation can be completed by adding the mean vector 

of s back to the centered estimates of s [25]. 

Whitening, after centering and before the application of the 

ICA algorithm, we transform the observed vector x linearly to 

obtain a new vector 𝐱  which is white, i.e. its components are 

uncorrelated and their variances equal unity [20], [25].  

The FastICA Algorithm 
We introduced different measures of nongaussianity [21] i.e. 

objective functions for ICA estimation. In practice, also we need 

an algorithm for maximizing the contrast function, one of the 

most efficient algorithms of the ICA is the FastICA Algorithm, 

and this is what we will use in our new proposed method.  

Fig.1 FastICA flow chart 

4. PROPOSED ALGORITHM 
Let S(t)  =  [s1(t), s2  (t), . . . , sN (t)]T(t =  1, 2, . . . , l) denotes an 

independent source image vector that comes from N image 

sources, then we can get the observed mixtures X(t)  =
 [x1(t), x2 (t), . . . , xK(t)]T(N =  K)   under the circumstances of 

instantaneous linear mixture. This leads us to the BSS model                               

X(t) = AS(t),                                                                    9   

wher 𝐀 is a N ×  N e mixing matrix. The target of the BSS 

algorithm is to recover the sources from mixtures x(t) by using   

U(t) = 𝐖X(t)                                                                           10   

where 𝐖 is a N ×  N separation matrix and  

U(t)  =  [u1(t), u2 (t), . . . , uN (t)]T   is the estimate of N sources. 

Usually sources are assumed to be zero-mean and unit-variance 

signals enclouding at most one having a Gaussian distribution. 

To solve the problem of source estimation, the un-mixing matrix 
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W  must be determined. Generally, the majority of BSS 

approaches perform ICA, by essentially optimizing the negative 

log-likelihood (objective) function with respect to the un-mixing 

matrix W such that  

L u, W =  E log pul  ul  − log det W  

N

l=1

,                 11  

Where E[. ] represents the expectation operator and pu1 u1  is 

the model for the marginal pdf of ul, for all l = 1,2,… , N. In 

effect, when correctly hypothesizing upon the distribution of the 

sources, the maximum likelihood (ML) principle leads to 

estimating functions, which in fact are the score functions of the 

sources [25]  

φ
l
 ul = −

d

du l
log pul  ul                                              12   

In principle, the separation criterion in (11) can be 

optimized by any suitable ICA algorithm where contrasts are 

utilized (see; e.g., [2]). The FastICA [3], based on 

Wk+1 = Wk + D(E φ u uT −  diag(E[φ
l
 ul ul]))Wk  ,    13  

where, as defined in [4], 

D = diag  
1

E[φ
l
 ul ul] − E[φ

l
′ ul ]

  ,                               14  

where φ t = [φ
1
 u1 , φ

2
 u2 , … , φ

n
(un)]T , valid for all 

l = 1, 2, … , n.  In the following section, we propose MWD for 

image modeling. 

5. MODIFIED WEIBULL DISTRIBUTION  
Following [22] MWD is a new generalization of the two 

parameters Weibull distribution. The pdf of MWD is defined as:  

𝑓 𝑥 =   ∝  +βγ𝑥𝛾−1 × exp  −∝ 𝑥 − 𝛽𝑥𝛾   ,             15  

where x>0 cumulative distribution function of MWD is given 

by: 

𝐹 𝑥 = 1 − exp  −∝ 𝑥 − 𝛽𝑥𝛾   , 𝑥 ≥ 0 ,                      16  
where γ > 0, α, β ≥ 0 such that α +β > 0. It is clear that the 

MWD is very flexible. This is so since there are many other 

distributions that can be considered as special cases of MWD, 

by selecting the appropriate values of the parameters. These 

special cases include four distributions as shown in Table (I). In 

Figures (2-4) there are the distributions generated from MWD 

by changing the parameters. 

 
Fig 2.  The MWD with fixed α=1. 

 

 
Fig3. The MWD with fixed γ =2. 

 
Fig.4. The MWD with fixed β=1. 

 

6. PARAMETER ESTIMATION 
To estimate the parameters of MWD, the maximum likelihood is 

used.  Let Let 𝐗𝟏, 𝐗𝟐… , 𝐗𝐧 be a sample of size N from an 

MWD. Then the log-likelihood function (𝓛) is given by: 

ℓ =  𝑓𝑖 𝑥 
𝑛
𝑖=1 =     ∝  +βγ𝑥𝑖

𝛾−1 × exp  −∝ 𝑥𝑖 −
𝑛
𝑖=1

𝛽𝑥𝑖
𝛾                                                                                                 (17)     

Hence, the log likelihood function ℒ = ln ℓ becomes  

ℒ = log ℓ = log     ∝  +βγ𝑥𝑖
𝛾−1 

𝑛

𝑖=1

× exp  −𝑥𝑖 − 𝛽𝑥𝑖
𝛾                                18  

ℒ = log ℓ =   log   ∝  +βγ𝑥𝑖
𝛾−1 × exp  −∝ 𝑥𝑖 −

𝑛
𝑖=1

𝛽𝑥𝑖
𝛾                                                                                                 19    
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ℒ = log ℓ =   log   ∝  +βγ𝑥𝑖
𝛾−1   

𝑛

𝑖=1

+   log exp  −∝ 𝑥𝑖 − 𝛽𝑥𝑖
𝛾     

𝑛

𝑖=1

     (20) 

ℒ = log ℓ =   log ∝  +βγ𝑥𝑖
𝛾−1  𝑛

𝑖=1 +   −∝ 𝑥𝑖 −
𝑛
𝑖=1

𝛽𝑥𝑖
𝛾                                                                                              21    

Therefore, maximum likelihood estimation of α, β and γ are 

derived from the derivatives of ℒ.They should satisfy the 

following equations:        
𝜕ℒ

𝜕𝛼
= 0  ,

∂ℒ

∂β
= 0 ,   

∂ℒ

∂γ
= 0 

𝜕ℒ

𝜕𝛼
 =  

1

∝ +βγ𝑥𝑖
𝛾−1

𝑛

𝑖=1

− n𝑥𝑖                                                   22  

𝜕ℒ

𝜕𝛽
 =  

γ𝑥𝑖
𝛾−1

∝ +βγ𝑥𝑖
𝛾−1

𝑛

𝑖=1

− 𝑥𝑖
𝛾

𝑛

𝑖=1

                                           23  

𝜕ℒ

𝜕𝛾
=   

β𝑥𝑖
𝛾+1 + 𝛽γ𝑥𝑖

𝛾  log 𝑥𝑖
∝  +βγ𝑥𝑖

𝛾−1

𝑛

𝑖=1

 − 𝛽𝑥𝑖
𝛾  log 𝑥𝑖

𝑛

𝑖=1

           24  

To estimate the value of parameters, the system of equations 

(22-24) must be solved. However, it is difficult to solve this 

system so, the genetic algorithm (GA) [23-24] will be used as an 

alternative numerical method to estimate the parameters. The 

GA optimization technique lies in the fact that it can minimize 

the negative of the log-likelihood objective function in (11), 

essentially without depending on any derivative information. 

7. NUMERICAL RESULTS  
Numerical experiments show that the GA method converges to 

an acceptably accurate solution with substantially fewer function 

evaluations. We have generated random number from MWD 

with parameters α, β and γ. By performing GA, we obtained the 

best estimation of parameters as in table (II). 

 

Table 1:  Parameter estimation by using GA 

 𝛼 𝛽 𝛾 𝛼  𝛽  𝛾  Err 

X1 3 4 2 2.97 4.11 1.86 0.02 

X2 5.2 6.8 2.5 5.27 6.80 2.42 0.06 

X3 1.9 8.2 5.7 1.98 8.12 563 0.006 

 

We resolve to FastICA algorithm for blind image separation. 

This algorithm depends on the estimated parameters and an un-

mixing matrix W which estimated by FastICA algorithm. By 

substituting (22) into (19) for the source estimates ul,l =
 1, 2, . . . , n, it becomes clear that the proposed score function 

inherits a generalized parametric structure, which can be 

attributed to the highly flexible MWD parent model. So, a 

simple calculus yields the flexible BSS score function 

𝜑_𝑙 (𝑢_𝑙 ) = −𝑑/(𝑑𝑢_𝑙 )  log⁡[( ∝  +βγ𝑥^(𝛾 − 1) ) ×
exp⁡{ −∝ 𝑥 − 𝛽𝑥^𝛾  } ]                  (25) 

In principle φ
l
 ul|θ  is capable of modeling a large number of 

signals as well as various other types of challenging heavy- and 

light-tailed distributions. Experiments were done to investigate 

the performance of our method through three applications (two 

in source separation and one in image denoising) when 

impulsive noise is presented. In all experiments, the 

performance of our method is compared with generalized 

gamma [26], tanh, skew, pow3 [25], and Gauss [15]. Our 

performance is measured by the peak-signal-to- noise ratio 

(PSNR), defined as: 

𝑷𝑺𝑵𝑹 = 𝟐𝟎 𝐥𝐨𝐠𝟏𝟎  
𝟐𝟓𝟓

𝑴𝑺𝑬
                                                          𝟐𝟔  
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In this example, we illustrate the performance of our algorithm   

to denoise medical images taken from [27]. Where Figure (4- 

10) show the original images, noised images, and denoised 

images by different algorithms. After applying algorithms of   

skew, Gauss, tanh, generalized gamma, pow3 and, our algorithm 

MWD, the results are illustrated in Figure (8- 13), also Table 

(IV) illustrates the performance of these algorithms. From table 

(IV) and Figure (4-10), the MWD is higher performance than 

other algorithms. 
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Fig. 5. Medical image denoising using Gauss filter: A, D are 

the source images, B, E are the noised images, C, F are the 

denoised images. 

 

 
Fig. 6. Medical image denoising using Skew filter: G, J are 

the source images, H, K are the noised images, I, L are the 

denoised images. 

 
Fig7. Medical image denoising using Pow3 filter: M, P are 

the source images, N, Q are the noised images, O, R are the 

denoised images. 

 
Fig. 8. Medical image denoising using Tanh filter: A, D are 

the source images, B, E are the noised images, C, F are the 

denoised images. 

 
Fig. 9. Medical image denoising using generalized gamma 

filter: G, J are the source images, H, K are the noised 

images, I, L are the denoised images. 

 
Fig. 10. Medical image denoising using MWD filter: M, P 

are the source images, N, Q are the noised images, O, R are 

the denoised images 
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8. CONCLUSION 
In this paper, we introduced a new technique for image denoise 

and blind image separation based on exponentiated transmuted 

Weibull distribution. Our proposed technique outperforms 

existing solutions in terms of separation quality and 

computational cost. Using the GA to estimate the parameters of 

MWD gives small error. Also, the results of MWD are better 

than other algorithms. 
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