
International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.3, December 2017

6

A Novel String Matching Algorithm and Comparison with

KMP Algorithm

Garima Pandey
Student (UG)

Comp. Sci. & Engg. Dept.
Women Institute of Technology,

UTU, Dehradun

Mamta Martolia
Assistant Professor

Comp. Sci. & Engg. Dept.
Women Institute of Technology,

UTU, Dehradun

Nitin Arora
Assistant Professor(SS)

School of Comp. Sci. & Engg.
UPES, Dehradun

ABSTRACT
In today’s world, we need fast algorithm with minimum errors

for solving the problems. Pattern matching method is a real

time problem. There exist different types of data in web

application problems, for example, text files, image files,

audio files and video files searching. For searching different

types of data search engine is required and every search

algorithm are used by every search engine for handling

different types of data. This paper provides a modified version

of KMP algorithm for text matching. This algorithm is

implemented in C language and has been checked with

arbitrary input arrangement of length

 10,100,1000,5000,10000. The results reflect that the

performance of modified KMP algorithms is better than that

of KMP algorithm.

Keywords
String Matching; KMP; Algorithms; Data Structures.

1. INTRODUCTION
A string searching algorithm works on alignment of the

arrangement with the start of the text and retains on shifting

the pattern advancing until a match or the finish of the text is

touched [1]. All String matching algorithms are used for

annoying to find one or some or all existences of a pattern

string in a given text string. String matching algorithms can be

used in many areas. Some of the application of string

matching algorithms are, they can support to increase the

awareness of a text-editor software, Other Claims in IT

includes web based search systems, to filters the spam, in

natural language processing, computation biology, to Feature

detection in digital image processing, and many more. There

is different algorithm to provide results that allow to crack the

pattern matching problem. These are:

1.1 Naive String Matching Algorithm
Naïve String Matching algorithms are easy to discover, often

easy to prove correct. Despite their inefficiency, naïve

algorithms are often the stepping stone to more efficient,

perhaps even asymptotically optimal algorithms.

1.2 KMP String Matching Algorithm

 Knuth, Morris and Pratt invented the procedure that uses

preprocessing of the pattern to obtain a better result.

1.3 Boyer-Moore String Matching

Algorithm
Other algorithm that uses preprocessing of the pattern was

invented by Boyer and Moore [2], it is thus well appropriate

for applications in which the arrangement is plentiful smaller

than that of text. The main feature of this procedure is to

match on the right end of the arrangement rather than the left

end.

1.4 Rabin Karp Algorithm
Hashing is used in this algorithm to discover any one of a set

of arrangement strings in a given text string [5-6]

2. BACKGROUND
There are many methods available that permit to solve the

sequence matching problem. Naive algorithm, the easiest one,

which attempts to match the arrangement to each string of the

same size in the text. From the 1970s, several others

algorithms, additional refined and additional operational, have

been invented [3-4].In 1975, Knuth, Pratt and Morris invented

the first algorithm that preprocesses the pattern arrangement

to obtain improved performance. In 1977, another algorithm

that preprocesses the pattern arrangement was developed:

Boyer-Moore Algorithm [2], its main feature is that it tries to

establish the correspondence of the substring with the

sequence in the converse direction. In 1987, Rabin and Karp

suggest an algorithm that is centered on a totally dissimilar

technique: Rabin-Karp Algorithm [5-6], which calculates a

hash function for the pattern and then look for a match by

using the same hash function for each possible substring of

the same size length in the text.

3. STRING MATCHING ALGORITHMS

3.1 Naïve-String-Matching Algorithm

The naive method simply check all the likely arrangements of

pattern 𝑝 1 … . 𝑚 relative to text 1 … . . 𝑛 . Unambiguously, it

tried shift 𝑠 = 0,1,2 … . , 𝑛 − 𝑚, sequentially and for each

shift, 𝑆. Compare 𝑇 𝑆 + 1 ……𝑆 + 𝑚 to 𝑃 1 … . . 𝑚 . If 𝑃

take place with shift 𝑆 in 𝑇, then we say 𝑆 a valid shift; else,

we say 𝑆 an invalid shift. Complexity of Naïve-String-Match

is 𝑂 (𝑛 − 𝑚 + 1 𝑚)WORST CASE COMPLEXITY)

𝑵𝒂𝒊𝒗𝒆_𝑺𝒕𝒓𝒊𝒏𝒈_𝑴𝒂𝒕𝒄𝒉𝒊𝒏𝒈(𝑻, 𝑷)

1. 𝑛 = 𝑙𝑒𝑛𝑔𝑡𝑕 𝑇
2. 𝑚 = 𝑙𝑒𝑛𝑔𝑡𝑕 𝑃
3. 𝑓𝑜𝑟 𝑆 = 0 𝑡𝑜 𝑛 − 𝑚

4. 𝑑𝑜 𝑖𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 − 𝐴𝑇(𝑇, 𝑃, 𝑆)

5. 𝑡𝑕𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑆

𝑺𝒖𝒃𝒔𝒕𝒓𝒊𝒏𝒈 − 𝑨𝑻 𝑻, 𝑷, 𝑺

1. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑙𝑒𝑛𝑔𝑡𝑕 𝑃
2. 𝑑𝑜 𝑖𝑓 𝑇 𝑆 + 1 ! = 𝑃 𝑖
3. 𝑡𝑕𝑒𝑛 𝑟𝑒𝑡𝑢𝑟𝑛 𝑓𝑎𝑙𝑠𝑒

4. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑟𝑢𝑒

3.2 KMP String Matching Algorithm

KMP string matching algorithm is similar to the naive string

matching algorithm at high level. It reflects shifts in order

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.3, December 2017

7

from 1 to n-m, and concludes if the arrangement matches at

that shift. The modification is that the KMP string matching

algorithm uses facts assembled from fractional matches of the

pattern and text to avoid over shifts that are certain not to

effect in a match.

𝐊𝐌𝐏 − 𝐌𝐀𝐓𝐂𝐇𝐄𝐑(𝐓, 𝐏)

1 N −> length[T]
2 M −> length[P]
3 Pi −> COMPUTE − PREFIX − FUNCTION(P)
4 Q −> 0
5 for (i = 1 to n)
6 do while (q > 0 and P[q + 1] = T[i])
7 do q = pi[q]
8 if (P[q + 1] = T[i])
9 then q = q + 1
10 if (q = = m)
11 then print “Pattern occurs with shift” i − m

𝐂𝐎𝐌𝐏𝐔𝐓𝐄 − 𝐏𝐑𝐄𝐅𝐈𝐗 − 𝐅𝐔𝐍𝐂𝐓𝐈𝐎𝐍 (𝐏)

1 m −> length[P]
2 set Pi[1] = 0
3 k = 0
4 for (q = 2 to m)
5 do while (k > 0 and P[k + 1]! = P[q])
6 do k = pi[k]
7 if (P[k + 1] = P[q])
8 then k = k + 1
9 pi[q] = k
10 return pi

Time complexity: O(n + k)

Here O(n) and O(k) are the complexities of the two portions

of the algorithm

3.3 Boyer-Moore Algorithm for String

Matching

The procedure preprocesses the given string being examined

for (the pattern), but not the string being examined in (the

text). It gives better results in less time when the alphabet is

reasonably sized and the pattern is reasonably lengthy.

The main characteristics of this procedure are to match on the

end of the pattern rather than the starting, and to avoid along

the text in jumps of numerous letters rather than examining all

single letter available in the text.

3.3.1 Preprocessing Stage
For the given P, Compute L’(i) and l’(i) for each position

I of P, and calculate R(x) for each letter x belongs to sigma.

3.3.2 Search Stage

The search stage is as follows:
𝟏. K: = n;
𝟐. While k <= m do
𝟑. Begin
𝟒. i: = n;
𝟓. h: = k;
6.while i > 0 and P(i) = T(h)do
𝟕. begin
𝟖. i: = i − 1;
𝟗. h: = h − 1;
𝟏𝟎. end;
𝟏𝟏. if i = 0 then
𝟏𝟐. begin
13.report an occurrence of P in Tending at position k.
𝟏𝟒. k: = k + n − l’(2);

𝟏𝟓. end
𝟏𝟔. else
𝟏𝟕. shift P increase k by the maximum amount
determined by the extended bad character rule
and the good suffix rule.
𝟏𝟖. End;

3.4 Rabin Karp String Matching Algorith

𝐑𝐚𝐛𝐢𝐧 𝐊𝐚𝐫𝐩 𝐒𝐭𝐫𝐢𝐧𝐠 𝐌𝐚𝐭𝐜𝐡𝐢𝐧𝐠

1 m = length[P]
2 h = d^m − 1 mod q
3 p = 0
4 to = 0
5 for i = 1 to m
6 do p(dp + P[i])mod q
7 do p(dto + P[i])mod q
8 for s = 0 to n − m
9 do if p == ts
10 then if P[1 … m] = T[s + 1 …… s + m]
11 then “Pattern occur with shift” s
12 if s < n − m
13 then ts + 1(d(ts − T[s + 1]h) + T[s + m +

1])mod q

The time complexity of the Rabin Karp procedure is O(n +
m) in best case and average case, but the worst-case time

complexity of Rabin Karp procedure is O(nm)

4. NEW MODIFIED KMP ALGORITHM
KMPsearch(P, T)
1. m −> Pattern
2. n −> Text
3. int c[]
4. j = 0
5. COMPUTELPSARRAY(PAT, M, C)
6. i = 0
7. while(i < n)
8. if(pat[j] == txt[i])
9. j + +
10. i + +
11. if(j == m)
12. printf(“found pattern at index %d”, i − j)
13. j = c[j − 1]
14. else if(i < n&& pat[j]! = txt[i])
15. if(j! = 0)
16. j = c[j − 1];
17. else
18. i = i + 1;

𝐂𝐎𝐌𝐏𝐔𝐓𝐄𝐋𝐏𝐒𝐀𝐑𝐑𝐀𝐘 (𝐏𝐀𝐓, 𝐌, 𝐂)
1. m = p. length
2. 𝑙𝑒𝑡 𝑐[1 …𝑚] 𝑏𝑒 𝑎 𝑛𝑒𝑤 𝑎𝑟𝑟𝑎𝑦
3. 𝑗 = 0, 𝑖 = 𝑗 + 1, 𝑐[0] = 0

4. 𝑤𝑕𝑖𝑙𝑒(𝑖 < 𝑚 − 1)

{
while(p[i]! = p[j])
{
c[i] = 0;
i + +;
}
if(p[i] == p[j])
{
c[i] = j + 1;

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.3, December 2017

8

i + +;
j + +;
}
}

5. while(i == m − 1)
{
Int k;
while(p[i]! = p[j])
{
k = c[i − 1];
j = c[k];
}
if(p[i] == p[j])
{
j = j + 1;
c[i] = j;
}
}

6. return c;

5. COMPARISON AND RESULTS

Simple KMP

Pattern: abcdabca
Computelpsarray(pat, m, c)
1. intlen = 0
C[0] = 0, i = 1;
while(i < m) //m is the length of pattern
i. e. while(1 < 8) − − − true
{
If(pat[i] == pat[len]
i. e. if(pat[1] == pat[0])— false
else {
if(len! = 0)— false
else
{lps[i] = 0; i. e. lps[1] = 0;
I + +; i. e. i = 2
}
}
Continuing this till m = 8
While(i < m) //m is the length of pattern
i. e. while(7 < 8) − − − true
{
If(pat[i] == pat[len]
i. e. if(pat[7] == pat[0])— true
{
len + +;
i. e. len = 1
lps[i] = len;
lps[7] = 1;
i + +;
i = 8
}
}

𝐌𝐨𝐝𝐢𝐟𝐢𝐞𝐝 𝐊𝐌𝐏
Pattern: abcdabca
computelpsarray(pat, m, c)
1. j = 0, C[0] = 0, i = j + 1;
While(i < m − 1) //m is the length of pattern
i. e. while(1 < 7) − − − true
{while(pat[i]! = pat[j])
i. e. if(pat[1]! = pat[0])— true
c[i] = 0 and i + +;
i. e. i = 2, j = 0
}

Continuing this till m = 7
While(i == m − 1) //here m is length of the pattern
i. e. while(7 == 7) − − − true
{int k;
while(pat[i]! = pat[j])
i. e. if(pat[7]! = pat[3])— true
{
K = c[i − 1];// i. e. k = c[7 − 1], k = c[6], k = 3;
J = c[k]
J = c[3] = 0;
while(pat[7]! = pat[0])
if(pat[i] == pat[j])
i. e. if(pat[7] == pat[0])— true
{
J = j + 1;
i. e. j = 1;
c[i] = j;
i. e. c[7] = 1;
}

In the modified compute prefix function, we have used two

while loops rather than using the nested if else that is

decreasing the time complexity of the algorithm and making

our algorithm more efficient.

6. CONCLUSION
In digital atmosphere searching the exact contented in least

time is utmost essential. String matching algorithms play a

vivacious role for this. Many persons are functioning on

software and hardware levels to make arrangements searching

quicker. By approximate best algorithms in various algorithms

in various claims is determined. The recommended algorithms

i.e. the modified compute prefix function give the compact

complexity and also compact calculation time. The procedure

allotted to various requests may not be the best optimum

algorithm but better than the all-purpose algorithms. It has

been well-known that many applications use Boyer Moore,

KMP algorithm for their operational functionality and other

uses the basics of these algorithms for their functionalities as

the KMP algorithm has less time complexity and Boyer

Moore algorithm has preprocessing time complexity less.

7. REFERENCES
[1] Koloud Al-Khamaiseh and ShadiALShagarin, “A Survey

of String Matching Algorithms” in Int. Journal of

Engineering Research and Applications, IJERA, ISSN:

2248-9622, Vol. 4, Issue 7 (Version 2), July 2014,

pp.144-156

[2] Robert S. Boyer and J. Strother Moore. "A fast string

searching algorithm". Communications of the ACM,

Volume 20, Number 10, pages 762{772, October 1977.

[3] Syeda Shabnam Hasan, Fareal Ahmed and Rosina Surovi

Khan, “Approximate String Matching Algorithms: A

Brief Survey and Comparison” in International Journal of

Computer Applications, Volume 120 – No.8, June 2015.

[4] Iftikhar Hussain, SaminaKausar, Liaqat Hussain and

Muhammad Asif Khan, “Improved Approach for Exact

Pattern Matching” in International Journal of Computer

Science Issues, Vol. 10, Issue 3, No 1, May 2013.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, and Clifford Stein. Introduction to algorithms,

Third edition. The MIT Press, 2009.

[6] Robert Sedgewick and Kevin Wayne. Algorithms, Fourth

edition.Addison-Wesley,2011

IJCATM : www.ijcaonline.org

