
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.30, March 2018

5

An Arduino Family Controller and its Interactions via an

Intelligent Interface

M. Papoutsidakis
Dept. of Automation Eng.

Piraeus University of
Applied Sciences,
Athens, Greece

A. Chatzopoulos
Dept. of Automation Eng.

Piraeus University of
Applied Sciences,
Athens, Greece

C. Drosos
Dept. of Automation Eng.

Piraeus University of
Applied Sciences
Athens, Greece

K. Kalovrextis
Dept. of Computer

Science,
University of Thessaly,

Lamia, Greece

ABSTRACT

Arduino is an open source computer hardware and software

company, project community and its users, who designs and

manufactures microcontroller kits for the construction of

digital devices and interactive objects that can be explored

and controlled objects in the physical world.

The project is based on microcontroller board designs,

manufactured by various vendors, using various

microcontrollers. Tables have serial communication

interfaces, including USB on some models, for personal

computer loader programs. To program microcontrollers,

Project Arduino provides a development-based integrated

development environment (IDE) that includes support for

programming languages C and C ++.

Keywords
Arduino, programming, app inventor, smart, home, sensors

1. INTRODUCTION
The first Arduino was introduced in 2005, aiming to offer a

cheap and easy way for beginners and professionals to create

devices that interact with their environment using sensors and

actuators. Common examples of such products designed for

beginners include simple robots, thermostats, and motion

detectors.

Arduino boards are commercially available in pre-assembled

form, or as "your own" kits. The hardware design

specifications are openly available, allowing the Arduino

boards to be manufactured by everyone. The Adafruit

industries are estimated to have produced more than 300,000

Arduinos commercially in mid-2011, and in 2013 700,000

official boards were in the hands of users.

Arduino programs can be written in any programming

language, with a compiler generating binary machine code.

Atmel provides a development environment for its

microcontrollers, AVR Studio and the newest Atmel Studio.

The Arduino project provides the complete Arduino

development environment (IDE), which is a cross-platform

application written in Java. It comes from the IDE for the

programming language processing project and for the cabling

project. It is designed to introduce programming to artists and

beginners who are not familiar with software development. It

includes a code editor with features such as syntax

highlighting, bracket matching, and auto recess, and provides

a simple one-click mechanism for drawing and loading

programs on an Arduino board. A program written with the

IDE for Arduino is called "Sketch".

IDE Arduino supports programming languages C and C ++

using specific code organization rules. IDE Arduino provides

a software library called "Wiring" from the wiring diagram,

which provides many common input and output procedures. A

typical Arduino C / C ++ sketch consists of two functions that

are compiled and linked to a main () program in an executable

circular execution program:

setup (): a function that runs once at the start of the program

and can prepare the settings.

loop (): a repeat operation until the board goes out.

After compiling and connecting to the GNU toolkit, also

included in the IDE distribution, IDE Arduino uses the

avrdude program to convert executable code into a

hexadecimal encoded text file placed on the Arduino board

from a loader program to firmware of the board.

2. METHODOLOGY
As Arduino’s webpage describes, Arduino is an "open source"

electronic platform based on flexible and easy-to-use

hardware and software designed for anyone with little

programming experience, elementary electronic knowledge

and interested in creating interactive objects or environments .

In essence, it is an electronic circuit based on ATmega

microcontroller from Atmel, and all of its designs, as well as

the software it needs for its operation, are distributed freely

and free of charge so that it can be manufactured by everyone

(from where the curious - for hardware - "open source"). Once

built, it can behave like a tiny computer, since the user can

connect multiple I / O modules on it and program the

microcontroller to receive data from the input units, process

them and send appropriate commands to the output units.

Indeed, one could claim - and it would be a fairly successful

parallel - that the Arduino functionally resembles the NXT

Brick of the Lego Mindstorms NXT. Robotics is one of many

applications in which Arduino excels.

Arduino, of course, is neither the single nor the best possible

way to create any interactive electronic device. But its main

advantage is the huge community that supports it and has

created, maintained and expanded a similar sized online

knowledge base. Thus, although an experienced electronist

may prefer a different platform or components depending on

the application he has in mind, Arduino, with extensive

documentation, manages to win all those whose knowledge of

electronics is limited to what little they have learned at school.

Just because it is mainly aimed at electronics novices and

because, despite the very detailed instructions that exist, not

all have the knowledge and the means to build an electronic

board, ready-made, pre-fabricated Arduino boards can be

purchased for about € 25. With a little extra money, most

suppliers have the Arduino Starter Kit, which, in addition to

Arduino itself, contains several other components and tools

we may need for the first applications (such as the necessary

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.30, March 2018

6

USB cable to connect to the computer , rasters, cables, LEDs,

switches, potentiometers, resistors, diodes, transistors, etc.).

1. What does the Arduino board consist of?

Microcontrollers

Arduino is based on ATmega328, an 8-bit RISC

microcontroller, which clocks at 16MHz. The ATmega328

has built-in memory of three types:

• 2Kb of SRAM memory, which is the useful memory that

programs can use to store variables, tables, etc. during

runtime. As with a computer, this memory loses its data when

the Arduino power supply stops or resets.

• 1Kb of EEPROM that can be used to "raw" write / read data

(without datatype) per byte of the programs during the

runtime. Unlike SRAM, the EEPROM does not lose its

contents with power loss or reset, so it is the analog of the

hard drive.

• 32Kb Flash memory, of which 2Kb are used by the Arduino

firmware already installed by the manufacturer. This

firmware, which is called bootloader in Arduino terminology,

is necessary to install its own programs on the microcontroller

via the USB port, without the need for an external hardware

programmer. The remaining 30Kb of Flash memory is used to

store exactly these programs once they are compiled into the

computer. Flash memory, like the EEPROM, does not lose its

contents with power loss or reset. Also, while Flash is not

normally intended for runtime usage through programs, due to

the small total memory available to them (2Kb SRAM + 1Kb

EEPROM), a library is designed to allow the use of as much

space as possible (30Kb less program size in compiled form).

Inputs - Outputs

First of all, Arduino has a serial interface. The ATmega

microcontroller supports serial communication, which

Arduino advances through a Serial-over-USB controller to

connect to the computer via USB. This connection is used to

transfer the programs designed by the computer to Arduino,

but also for Arduino's two-way communication with the

computer through the program while it is running.

In addition, at the top of Arduino there are 14 female pins,

numbered from 0 to 13, which can act as digital inputs and

outputs. They operate at 5V and each can supply or receive up

to 40mA.

As a digital output, one of these pins can be programmed in

HIGH or LOW mode, so Arduino will know whether or not

power should be fed to that pin. In this way we can for

example turn on and off an LED that we have connected to

that pin. If we set one of these pin as a digital input through

the program again, we can read its status (HIGH or LOW)

with the appropriate command depending on whether or not

the external device connected to this pin drives current to pin

(this way, for example, we can "read" the state of a switch).

At the bottom of the Arduino, marked ANALOG IN, we will

find another series of 6 pins, numbered from 0 to 5. Each of

these functions as an analogue input using the ADC (Analog

to Digital Converter) that is embedded to the microcontroller.

For example, we can supply one of these with a voltage that

we can range with a potentiometer from 0V to a Vref

reference voltage which, if we do not make a change, is preset

at 5V. Then, through the program, we can read the pin value

as an integer 10-bit resolution, from 0 (when the pin voltage is

0V) to 1023 (when the pin voltage is 5V). The reference

voltage can be set by a command at 1.1V or at any desired

voltage (between 2 and 5V) by externally feeding this pin to

the AREF pin on the opposite side of the board. So if we feed

the AREF pin with 3.3V and then try to read some analog

input pin to which we apply a voltage of 1.65V, Arduino will

return the value 512.

Finally, each of these 6 pin, with proper command through the

program, can be converted into a digital input / output pin

such as the 14 on the opposite side and described previously.

In this case the pins are renamed from 0 ~ 5 to 14 ~ 19

respectively.

Power and Led

The Arduino can be powered from the computer via the USB

connection or from an external power supply via a 2.1mm

socket (positive pole to the center) and located on the lower-

left corner of the Arduino.

To avoid problems, the external power supply should be from

7 to 12V and may come from a common commercial

transformer, from batteries or any other DC source. Next to

the analog input pin, there is another 6-pin array with the

POWER label.

On the Arduino board there is a micro-switch and 4 tiny LED

surface mounts. The operation of the switch (labeled RESET)

and the one LED marked POWER is rather obvious.

The two LEDs with the TX and RX markings are used as a

function indicator of the serial interface as they light up when

Arduino sends or receives data via USB. These LEDs are

controlled by the Serial-over-USB controller and therefore do

not work when serial communication is exclusively via the

digital pin 0 and 1.

Finally, there is the LED with the L mark. The basic test of

Arduino operation is to assign an LED to flash (we will see

this again when we make the first application). Its builders

thought of incorporating an LED on the board, which

connected to the digital pin 13. Thus, even if one has not

connected anything to the physical pin 13, assigning it the

HIGH value through the program, it will light up this built-in

LED.

2. Sensors

Sensors are sophisticated devices that are often used to detect

and respond to electrical or visual signals. A sensor converts

the physical parameter (for example: temperature, blood

pressure, humidity, speed, etc.) into a signal that can be

measured electrically. Let's explain the example of

temperature. Mercury in the glass thermometer dilates and

shrinks the liquid to convert the measured temperature that

can be read by an atom to the calibrated glass tube.

There are some features to consider when choosing a sensor.

These features are: accuracy, the environmental situation -

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.30, March 2018

7

usually has temperature / humidity limits, sensor limit range,

calibration - Essential to most of the measuring devices, as the

way in which something is being read changes over time,

resolution - Smaller increment is detected by the sensor, cost,

and repeatability - Reading, which varies, is repeatedly

measured in the same environment.

The sensors are classified according to main input quantity

(measurable), Switching Authority (Using Physical and

Chemical Effects), hardware and Technology, property and

application

The switching authority is the key criteria for an effective

approach. Typically, the material and technology criteria have

been selected by the engineering development team.

3. SOFTWARE INTERFACE
App Inventor for Android is a visual programming interface

originally provided by Google, and is now available and

supported by MIT. Google App Inventor was first released to

the public at the end of 2010, and after one year on December

31, 2011, Google finished the program's support and made it

open source. App Inventor was re-released to the public, now

called MIT App Inventor as a beta service (in March 2012),

from MIT Center for Mobile Learning after the project was

taken over by Google.

App Inventor is an on-line programming environment. In

particular, for application development with App Inventor, it

is necessary to use a web browser and a connected Android

phone or a phone emulator.

The App Inventor environment allows anyone who is familiar

with computer programming to create applications for an

Android operating system. It uses a graphical user interaction

environment similar to Scratch and StarLogo TNG, which

allows users to drag and drop tiles, creating applications that

can run on Android, the operating system of today's many

mobile devices.

The generated application is displayed step-by-step on the

connected phone or on the phone emulator, as parts are added

to it so that the application can be controlled as it is built.

Upon completion of the app, it is possible to package the

application so it can be installed on Android devices.

1. Programming of smart home in Arduino

The logic is the following, sensors get data they send to

Arduino, which in turn uploads them over Ethernet Shield to

an HTTP Server. The Android app then reads this data from

HTTP Server, and displays it.

For the construction of the Smart Home application, the

AppInventor platform was used, which in a simple and fast

way allows us to design with the application interface as well

as the code running from behind in a block diagram. In the

following section the most basic pieces of the code are

presented.

When entering "Lounge" the application searches the desired

MAC of the WiFi in the database. It then checks if the mobile

WiFi is connected to Arduino and greenens the corresponding

interface icon, but initializes the entire interface of the

application. When initiating the lounge, the slider buttons and

buttons are displayed and hides the interface of the RGB

board and HiFi, and if selected by the user, the unwanted texts

and buttons will be hidden and hidden.

To enable the light, the following procedures are performed:

Once the button is pressed the application checks if the WiFi

is connected to the board if YES then sends the text "1" to the

Arduino board and finally changes the color of the text to the

interface instantly in gray and immediately afterwards in

green. In order to turn off the light, the following procedures

are performed: Once the button is pressed the application

checks if the WiFi is connected to the board if YES then sends

the text "2" to the Arduino board and finally changes the color

of the text to the interface instantly in gray and immediately

afterwards in red.

To enable a socket, the following procedures are performed:

Once the on button is pressed the application checks if the

WiFi is connected to the board if YES then sends the text "E"

to the Arduino board and finally changes the color of the text

to the interface instantly in gray and immediately afterwards

in green. In order to disable a socket, the following procedures

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.30, March 2018

8

are performed: Once the button is pressed the application

checks if the WiFi is connected to the board if YES then sends

the text "e" to the Arduino board and finally changes the color

of the text to the interface instantly in gray and immediately

afterwards in red.

The board we relied on is Arduino, for which we also needed

its Ethernet Shield.

If Arduino is to be placed away from the home router (and we

do not want to pull an ethernet cable) then we use an A / P

which we set in Client Mode.

On every device (or socket / switch) that we want to be able to

control from Android, we'll need to place a Relay, where

we've used it. Of course, make sure that the relay current

resistance you choose will exceed the needs of the device.

Other things we used: breadboard, jumper wires, LM35

temperature sensor, photocells, other sensors, resistors,

insulators, multimeters, screwdrivers, etc.

In the simplest form of the Project, where we simply control 4

Android devices, we will cost 23.37 (Arduino) + 35.60

(Ethernet Shield) + 37.72 (4x9.43) (relays) + 10 (other cables,

insulating tape, etc.) = 106.69 euro.

The whole process is divided into individual parts, on the one

hand, to make it easier to set up the final platform and on the

other hand to make it easier to manage. So the first step is to

take the necessary hardware actions to connect the controller

to the heat sensor and then to write the necessary code for heat

recording in the space where the sensor is installed. The

LM35 is a temperature sensor that has 3 pins, one V (in), one

V (out), and one Ground.

4. ACKNOWLEDGMENTS
All authors would like to express their gratitude to the Post-

Graduate Program of Studies “Automation of Productions and

services” of PUAS, for the financial support to undertake this

research project.

5. REFERENCES
[1] Brock, J. D., Bruce, R. F., & Reiser, S. L. (2009). Using

Arduino for introductory programming courses. Journal

of Computing Sciences in Colleges, 25(2), 129-130.

[2] Kato, Y. (2010). Splish: a visual programming

environment for Arduino to accelerate physical

computing experiences. In Creating Connecting and

Collaborating through Computing (C5), 2010 Eighth

International Conference on (pp. 3-10). IEEE.

[3] Evans, B. (2011). Beginning Arduino Programming.

Apress.

[4] Noble, J. (2009). Programming Interactivity: A

Designer's Guide to Processing, Arduino, and

Openframeworks. " O'Reilly Media, Inc.".

[5] Buechley, L., & Eisenberg, M. (2008). The LilyPad

Arduino: Toward wearable engineering for everyone.

Pervasive Computing, IEEE, 7(2), 12-15.

[6] Monk, S. (2012). Programming Arduino. United States

of America: McGraw-Hill Companies.

[7] Booth, T., & Stumpf, S. (2013). End-user experiences of

visual and textual programming environments for

Arduino. In End-User Development (pp. 25-39). Springer

Berlin Heidelberg.

[8] Buechley, L., Eisenberg, M., Catchen, J., & Crockett, A.

(2008). The LilyPad Arduino: using computational

textiles to investigate engagement, aesthetics, and

diversity in computer science education. In Proceedings

of the SIGCHI conference on Human factors in

computing systems (pp. 423-432). ACM.

[9] Wolber, D. (2011). App inventor and real-world

motivation. In Proceedings of the 42nd ACM technical

symposium on Computer science education (pp. 601-

606). ACM.

[10] Wolber, D., Abelson, H., Spertus, E., & Looney, L.

(2011). App Inventor. " O'Reilly Media, Inc.".

[11] Gray, J., Abelson, H., Wolber, D., & Friend, M. (2012,

March). Teaching CS principles with app inventor. In

Proceedings of the 50th Annual Southeast Regional

Conference (pp. 405-406). ACM.

[12] Morelli, R., De Lanerolle, T., Lake, P., Limardo, N.,

Tamotsu, E., & Uche, C. (2011). Can android app

inventor bring computational thinking to k-12. In Proc.

42nd ACM technical symposium on Computer science

education (SIGCSE'11) (pp. 1-6).

[13] Hsu, Y. C., Rice, K., & Dawley, L. (2012). Empowering

educators with Google's Android App Inventor: An

online workshop in mobile app design. British Journal of

Educational Technology, 43(1).

IJCATM : www.ijcaonline.org

