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ABSTRACT 

Tremendous advancements over the past several decades 

revolutionized the networking research and technological 

industry, however, it is still dominated and remains hardware 

based. Such legacy networks are inflexible, hard and costly to 

scale and manage. Software defined networking (SDN) is a 

new approach to networking which enable comprehensive 

network programmability. SDN architecture bifurcates the 

data and control plane thereby simplifies network 

management. In this new architecture, the control plane 

consists of networking intelligence and the policy making 

ability is moved to a centralized entity called as controller. 

Commonly, SDN uses OpenFlow as the communication 

interface between the data and control planes. This separation 

while providing great opportunities for scalability, also 

introduces new vulnerabilities. We identify certain scenarios 

for vulnerabilities in the OpenFlow semantics that can subject 

the controller to distributed denial of service (DDoS) attack 

which is unique to SDN due to the new architecture where the 

control plane is separated from the data plane. We also 

explore some reactive mechanisms that can detect and help to 

devise techniques to prevent impending DDoS attack on an 

SDN controller. 
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1. INTRODUCTION 
Our world view of traditional computer network is based on 

the network composed of routers, switches, and computing 

devices, interconnected by diverse and often times complex 

protocols. The management of such network is error prone, 

hard to scale, difficult to manage routing tables, and is not 

able to catch the pace with today’s growing demand from 

Internet where in the era of Cloud Computing, the scalability 

is a defining factor in the face of vast changes that the 

network goes through in any split millisecond. Another aspect 

is the cost of scalability, which albeit timid, and even if 

desired to achieve with premium hardware, the cost will often 

time be prohibitively high. As a result, programmable 

networks concept has emerged as the solution to the problems 

of legacy network architecture. SDN [1, 2, 3, 5] is dynamic, 

manageable, cost-effective and adaptable, by allowing 

programmability, making it ideal for dynamic networking 

world. This is achieved by bifurcating the network so that we 

decouple functionality of traffic forwarding decisions, control 

plane, from the functionality of forwarding the traffic to the 

destinations, data plane, and hence provide the needed 

flexibility. In these new network architectures, the network 

intelligence is transferred to logically centralized 

programmable entity called controller and the rest of the 

network devices are doing the basic job of packet forwarding. 

This environment opens new era of possibilities and cost 

savings but also is prone to security risks and vulnerabilities 

that can be exploited for attacks. As such new challenges need 

to be identifies and filled by robust research and technical 

efforts. In this paper we identify one such area of concern due 

to the separation of the data and control planes. We show that 

utilizing some characteristics of the SDN, we can devise 

attacks that outpaces network provisioning efforts to cope 

with increase for traffic demand and processing and hence 

results in denial of service. 

The rest of this paper is organized as follows: Section 2 

describes SDN architecture. Section 3 describes OpenFlow [6, 

7, 8, 10]. Section 4 describes vulnerability in SDN that can 

lead to DDoS attack on controller [4, 9, 11]. Lastly, some 

simulation results are given in Section 5. 

2. SDN Architecture 
We represent the basic Software-Defined Networking (SDN) 

architecture in Figure 1. From top down, we have applications 

that uses the two layers of control plane and data plane for 

communications. Note that the switches in SDN don’t 

construct the forwarding table automatically, but instead relies 

on controller to construct a flow table [1, 9]. Control plane of 

the SDN architecture consists of centralized controller which 

is the most important new feature provided by SDN. This 

facilitates easier network management and configuration 

information is stored in simple place instead of distributing it 

to individual network devices. Additionally, the controller has 

a centralized view of the network which makes it capable to 

calculate optimal routes across the network, construct flow 

tables and insert them into each of the switches without 

relying on distributed routing algorithms. Lastly, the 

application layer in SDN allows applications to request 

specific network behavior from the controller. 

As SDN is taking share and several protocols are being 

studies, OpenFlow is emerging as one of the most used 

protocols in SDN is OpenFlow. OpenFlow is defined as open 

standard and as such not tied to any single controller making 

it suitable for heterogeneous networks. It is preferred protocol 

that is being utilized between the controller and SDN 

switches. It transmits messages from controller to the switch 

to facilitate the flow tables’ constructions/updates. In addition, 

it transmits messages from the SDN switch back to controller 

so that switches can inform the controller about the various 

events in the network such as new host or switch additions 

and other similar functions. 

3. OPENFLOW 
The OpenFlow protocol that is defined in [9] is an efficient 

means of communication between the controller and SDN 

switches. OpenFlow protocol supports three types of 

messages: controller-to-switch, asynchronous and symmetric 
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messages. Controller-to-switch messages are initiated by the 

controller while asynchronous messages are messages sent by 

the switch without being requested by the controller- these 

denote packets arrival, switch state changes, error states, etc. 

Lastly, symmetric messages are the messages sent without 

solicitation, in either direction. In this new architecture, every 

SDN switch consists of a flow table which in turn stores a set 

of flow entries. Whenever a new packet is processed by the 

switch, it is compared against the flow table to find a 

matching entry. 

 

Fig. 1: SDN architecture 

Once a matching entry is located, actions specified for that 

entry are performed on the packet e.g. forward a packet out a 

specified port. If no matching entry is found, the packet is 

forwarded to controller which can decide the action to be 

taken on the packet. We depict different components of a flow 

table entry in Figure 2. Each flow table entry consists of rule 

or header field to match against the incoming packet. Please 

note that every flow entry is associated with zero or more 

actions that dictate how the switch handles matching packets. 

If no actions are specified for an entry, then such a packet 

must be dropped. Flow entry also contains counters that are 

maintained per -table, per-flow, per-port and per-queue. 

4. DDoS ATTACK ON SDN 

CONTROLLER AND RESULTS  
OpenFlow semantics dictates that an incoming packet is 

handled according to a matching flow entry looked up in the 

flow table, if such a matching exists. On the other hand, if 

there is no matching flow entry found, then that packet must 

be forwarded to the controller for further processing. This is a 

major vulnerability even if the controller is physically 

distributed among many computing devices and hence this 

vulnerability can be exploited by attackers who can out do the 

computing power of the controller by increasing the attack. 

The attackers can send out a very large number of packets at 

once, or in distributed bursts, where no matching entries exist 

in the flow table which will force the controller to intervene. 

Once forced to intervene by forcing massive number of 

packets, it can be overwhelmed- keeping it busy to serve the 

attackers packets while resulting in denial of the service to 

other users. The architecture as it is can encourage distributed 

denial-of-service attacks on the SDN controller. 

5. SIMULATION RESULTS 
Below are several scenarios in which the switches will be 

forced under which the switch is forced to forward the packet 

to the controller. In a real DDoS attack, the attacker sends 

such packets in enormously large numbers at once hence a 

potential DDoS attack on the controller. Some scenarios are as 

follows: 

1) Bursts of packages: attackers send 

continuous bursts of packages faking real packets 

but with spoofed or 

2) to unknown destinations which will 

trigger table-misses resulting in traffic to controller. 

3) New host addition: as a host is added to 

network, no flow entry is added to flow table until 

first packet is sent to the host which per this 

architecture makes the initial packets forwarded to 

the controller. 

4) Per the architecture as a host is removed 

from the network flow entry then this host is also 

removed from the flow table. As no new flow entry 

will be added in flow table for this host  unless a 

packet is sent to the host after it has been added 

again which as noted above will direct the first 

packet sent to the host after it is inserted again to the 

network will be forwarded to controller. 

Fig. 2: Flow table entry 

5) As packets are sent to a non-existing 

hosts, these will be forwarded to the controller since 

obviously no flow entries exists for such hosts. This 

can be easily exploited. 

6) In SDN architecture each switch flow 

expiry mechanism is run by that switch 

independently of the controller. There is an 

idle_timeout and an associated hard_timeout for 

each flow entry. In case an hard_timeout field is 

non-zero, the switch must note the flow entry's 

arrival time, as it may need to remove the entry later 

and such entries cause the flow entry to be removed 

after the given number of seconds, regardless of 

how many packets it matches. Additionally, in case 

the idle_timeout field is non-zero, the switch must 

note the arrival time of the last packet associated 

with the flow, as it may remove the entry later as a 

non-zero idle_timeout field causes the flow entry to 

be removed when it has matched no packets in the 

given number of seconds. Hence, the switches must 

implement flow expiry mechanisms and remove 

flow entries from the flow table when one of their 

timeouts is exceeded. This creates vulnerability as 
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these values are few seconds which enable attackers 

to utilize t devise their DDoS attacks. 

6. SIMULATION RESULTS 
We have done some preliminary implementations of the 

controller in the lab where, utilizing the cloud computing 

environment. We have implemented the combinations of the 

above scenarios in the environments where we also 

dynamically increase the computing power of the control 

underlying hardware, taking advantage of the elasticity of the 

cloud computing paradigm, mimicking a provider’s 

management functions (scalability) to add more power as it 

see loads and taking it for increase in utilization . To conduct 

the simulation studies, we will be using randomly generated 

networks of varying complexities and sizes. This ensures that 

the simulation results are independent of the characteristics of 

any particular network topology. We noticed that we can 

overwhelm the controller with these scenarios.  

The results presented in his paper are based on averages for 

10-20 iterations of same network setup (topology, traffic, 

groups, etc.) with varying degree of the four different 

scenarios representing DDoS, see Table 1. The results were 

logged in intervals where the end points kept increase sending 

packets in each interval. As the attack increases, more CPUs 

are provisioned and we could increase the traffic with the 

above scenarios that overwhelmed and surpassed the increase 

the computing power being continually added- attack can 

exceed the throughput in any given time with increase in the 

velocity of the flooding with fake packets. This is shown in 

the last row of the Table 1. This can also happen in the real 

world, where the additional CPU power that the controller can 

acquire can be overwhelmed by the increase in attack utilizing 

similar vulnerabilities that are depicted by several scenarios in 

Section IV, hence the attack can exceed the throughput and 

result in denial of service to legitimate users. In near future, 

we will be conducting more experimentations and also utilize 

a CPU/GPU based lab as well as a GPU based lab to increase 

the controller’s computing power even more.  

Table 1: Simulation Parameters/Settings and Results 

Simulation Parameters Settings 

# Network Nodes 100 

Environment - CPUs 8-120 

Attack Scenarios 
#1/#2, #1/#2/#3, #2/#3/#4/#5, #1-

#5 

Packet Servicing Time 0.09s-500s (normal-denial) 

 
We would like to conduct the attack scenarios and add other 

scenarios to see the impact on network operations. The results 

are, however, very clear that we do have potential for 

vulnerabilities with this centralized approach to controller 

even if physically it is distributed and beefed up.  
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