
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.31, April 2018

21

Vulnerabilities in SDN Due to Separation of Data and

Control Planes

S. Faizullah
Dept. of Computer Science

Islamic University of Madinah

S. AlMutairi
IT Deanship

University of Tabuk

ABSTRACT

Tremendous advancements over the past several decades

revolutionized the networking research and technological

industry, however, it is still dominated and remains hardware

based. Such legacy networks are inflexible, hard and costly to

scale and manage. Software defined networking (SDN) is a

new approach to networking which enable comprehensive

network programmability. SDN architecture bifurcates the

data and control plane thereby simplifies network

management. In this new architecture, the control plane

consists of networking intelligence and the policy making

ability is moved to a centralized entity called as controller.

Commonly, SDN uses OpenFlow as the communication

interface between the data and control planes. This separation

while providing great opportunities for scalability, also

introduces new vulnerabilities. We identify certain scenarios

for vulnerabilities in the OpenFlow semantics that can subject

the controller to distributed denial of service (DDoS) attack

which is unique to SDN due to the new architecture where the

control plane is separated from the data plane. We also

explore some reactive mechanisms that can detect and help to

devise techniques to prevent impending DDoS attack on an

SDN controller.

General Terms

Computer Networks; Software Defined Networking; SDN;

SDN Vulnerabilities

Keywords

Software Defined Networking; SDN; SDN Vulnerabilities;

DDoS; Cloud Computing; OpenFlow.

1. INTRODUCTION
Our world view of traditional computer network is based on

the network composed of routers, switches, and computing

devices, interconnected by diverse and often times complex

protocols. The management of such network is error prone,

hard to scale, difficult to manage routing tables, and is not

able to catch the pace with today’s growing demand from

Internet where in the era of Cloud Computing, the scalability

is a defining factor in the face of vast changes that the

network goes through in any split millisecond. Another aspect

is the cost of scalability, which albeit timid, and even if

desired to achieve with premium hardware, the cost will often

time be prohibitively high. As a result, programmable

networks concept has emerged as the solution to the problems

of legacy network architecture. SDN [1, 2, 3, 5] is dynamic,

manageable, cost-effective and adaptable, by allowing

programmability, making it ideal for dynamic networking

world. This is achieved by bifurcating the network so that we

decouple functionality of traffic forwarding decisions, control

plane, from the functionality of forwarding the traffic to the

destinations, data plane, and hence provide the needed

flexibility. In these new network architectures, the network

intelligence is transferred to logically centralized

programmable entity called controller and the rest of the

network devices are doing the basic job of packet forwarding.

This environment opens new era of possibilities and cost

savings but also is prone to security risks and vulnerabilities

that can be exploited for attacks. As such new challenges need

to be identifies and filled by robust research and technical

efforts. In this paper we identify one such area of concern due

to the separation of the data and control planes. We show that

utilizing some characteristics of the SDN, we can devise

attacks that outpaces network provisioning efforts to cope

with increase for traffic demand and processing and hence

results in denial of service.

The rest of this paper is organized as follows: Section 2

describes SDN architecture. Section 3 describes OpenFlow [6,

7, 8, 10]. Section 4 describes vulnerability in SDN that can

lead to DDoS attack on controller [4, 9, 11]. Lastly, some

simulation results are given in Section 5.

2. SDN Architecture
We represent the basic Software-Defined Networking (SDN)

architecture in Figure 1. From top down, we have applications

that uses the two layers of control plane and data plane for

communications. Note that the switches in SDN don’t

construct the forwarding table automatically, but instead relies

on controller to construct a flow table [1, 9]. Control plane of

the SDN architecture consists of centralized controller which

is the most important new feature provided by SDN. This

facilitates easier network management and configuration

information is stored in simple place instead of distributing it

to individual network devices. Additionally, the controller has

a centralized view of the network which makes it capable to

calculate optimal routes across the network, construct flow

tables and insert them into each of the switches without

relying on distributed routing algorithms. Lastly, the

application layer in SDN allows applications to request

specific network behavior from the controller.

As SDN is taking share and several protocols are being

studies, OpenFlow is emerging as one of the most used

protocols in SDN is OpenFlow. OpenFlow is defined as open

standard and as such not tied to any single controller making

it suitable for heterogeneous networks. It is preferred protocol

that is being utilized between the controller and SDN

switches. It transmits messages from controller to the switch

to facilitate the flow tables’ constructions/updates. In addition,

it transmits messages from the SDN switch back to controller

so that switches can inform the controller about the various

events in the network such as new host or switch additions

and other similar functions.

3. OPENFLOW
The OpenFlow protocol that is defined in [9] is an efficient

means of communication between the controller and SDN

switches. OpenFlow protocol supports three types of

messages: controller-to-switch, asynchronous and symmetric

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.31, April 2018

22

messages. Controller-to-switch messages are initiated by the

controller while asynchronous messages are messages sent by

the switch without being requested by the controller- these

denote packets arrival, switch state changes, error states, etc.

Lastly, symmetric messages are the messages sent without

solicitation, in either direction. In this new architecture, every

SDN switch consists of a flow table which in turn stores a set

of flow entries. Whenever a new packet is processed by the

switch, it is compared against the flow table to find a

matching entry.

Fig. 1: SDN architecture

Once a matching entry is located, actions specified for that

entry are performed on the packet e.g. forward a packet out a

specified port. If no matching entry is found, the packet is

forwarded to controller which can decide the action to be

taken on the packet. We depict different components of a flow

table entry in Figure 2. Each flow table entry consists of rule

or header field to match against the incoming packet. Please

note that every flow entry is associated with zero or more

actions that dictate how the switch handles matching packets.

If no actions are specified for an entry, then such a packet

must be dropped. Flow entry also contains counters that are

maintained per -table, per-flow, per-port and per-queue.

4. DDoS ATTACK ON SDN

CONTROLLER AND RESULTS
OpenFlow semantics dictates that an incoming packet is

handled according to a matching flow entry looked up in the

flow table, if such a matching exists. On the other hand, if

there is no matching flow entry found, then that packet must

be forwarded to the controller for further processing. This is a

major vulnerability even if the controller is physically

distributed among many computing devices and hence this

vulnerability can be exploited by attackers who can out do the

computing power of the controller by increasing the attack.

The attackers can send out a very large number of packets at

once, or in distributed bursts, where no matching entries exist

in the flow table which will force the controller to intervene.

Once forced to intervene by forcing massive number of

packets, it can be overwhelmed- keeping it busy to serve the

attackers packets while resulting in denial of the service to

other users. The architecture as it is can encourage distributed

denial-of-service attacks on the SDN controller.

5. SIMULATION RESULTS
Below are several scenarios in which the switches will be

forced under which the switch is forced to forward the packet

to the controller. In a real DDoS attack, the attacker sends

such packets in enormously large numbers at once hence a

potential DDoS attack on the controller. Some scenarios are as

follows:

1) Bursts of packages: attackers send

continuous bursts of packages faking real packets

but with spoofed or

2) to unknown destinations which will

trigger table-misses resulting in traffic to controller.

3) New host addition: as a host is added to

network, no flow entry is added to flow table until

first packet is sent to the host which per this

architecture makes the initial packets forwarded to

the controller.

4) Per the architecture as a host is removed

from the network flow entry then this host is also

removed from the flow table. As no new flow entry

will be added in flow table for this host unless a

packet is sent to the host after it has been added

again which as noted above will direct the first

packet sent to the host after it is inserted again to the

network will be forwarded to controller.

Fig. 2: Flow table entry

5) As packets are sent to a non-existing

hosts, these will be forwarded to the controller since

obviously no flow entries exists for such hosts. This

can be easily exploited.

6) In SDN architecture each switch flow

expiry mechanism is run by that switch

independently of the controller. There is an

idle_timeout and an associated hard_timeout for

each flow entry. In case an hard_timeout field is

non-zero, the switch must note the flow entry's

arrival time, as it may need to remove the entry later

and such entries cause the flow entry to be removed

after the given number of seconds, regardless of

how many packets it matches. Additionally, in case

the idle_timeout field is non-zero, the switch must

note the arrival time of the last packet associated

with the flow, as it may remove the entry later as a

non-zero idle_timeout field causes the flow entry to

be removed when it has matched no packets in the

given number of seconds. Hence, the switches must

implement flow expiry mechanisms and remove

flow entries from the flow table when one of their

timeouts is exceeded. This creates vulnerability as

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.31, April 2018

23

these values are few seconds which enable attackers

to utilize t devise their DDoS attacks.

6. SIMULATION RESULTS
We have done some preliminary implementations of the

controller in the lab where, utilizing the cloud computing

environment. We have implemented the combinations of the

above scenarios in the environments where we also

dynamically increase the computing power of the control

underlying hardware, taking advantage of the elasticity of the

cloud computing paradigm, mimicking a provider’s

management functions (scalability) to add more power as it

see loads and taking it for increase in utilization . To conduct

the simulation studies, we will be using randomly generated

networks of varying complexities and sizes. This ensures that

the simulation results are independent of the characteristics of

any particular network topology. We noticed that we can

overwhelm the controller with these scenarios.

The results presented in his paper are based on averages for

10-20 iterations of same network setup (topology, traffic,

groups, etc.) with varying degree of the four different

scenarios representing DDoS, see Table 1. The results were

logged in intervals where the end points kept increase sending

packets in each interval. As the attack increases, more CPUs

are provisioned and we could increase the traffic with the

above scenarios that overwhelmed and surpassed the increase

the computing power being continually added- attack can

exceed the throughput in any given time with increase in the

velocity of the flooding with fake packets. This is shown in

the last row of the Table 1. This can also happen in the real

world, where the additional CPU power that the controller can

acquire can be overwhelmed by the increase in attack utilizing

similar vulnerabilities that are depicted by several scenarios in

Section IV, hence the attack can exceed the throughput and

result in denial of service to legitimate users. In near future,

we will be conducting more experimentations and also utilize

a CPU/GPU based lab as well as a GPU based lab to increase

the controller’s computing power even more.

Table 1: Simulation Parameters/Settings and Results

Simulation Parameters Settings

Network Nodes 100

Environment - CPUs 8-120

Attack Scenarios
#1/#2, #1/#2/#3, #2/#3/#4/#5, #1-

#5

Packet Servicing Time 0.09s-500s (normal-denial)

We would like to conduct the attack scenarios and add other

scenarios to see the impact on network operations. The results

are, however, very clear that we do have potential for

vulnerabilities with this centralized approach to controller

even if physically it is distributed and beefed up.

7. ACKNOWLEDGMENTS
This work was done while the author was a V. Research

Professor at Rutgers University Thanks to my Cloud

Computing Graduate Class students for their contributions in

the initial phase of the work.

8. REFERENCES

[1] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka and

T. Turletti, "A survey of software-defined networking: Past,

present, future of programmable networks", IEEE Commun.

Surv. Tut., vol. 16, no. 3, pp. 1617-1634, 2014

[2] N. Feamster, J. Rexford and E. Zegura, "The road to

SDN", Queue, vol. 11, no. 12, pp. 20:20-20:40, 2013

[3] K. Ahokas, “Software-defined networking”, Aalto

University School of Science.

[4] S. Shin and G. Gu, ”Attacking software-defined networks:

A first feasibility study (short paper)” , In HotSDN'13.

[5] M. Yu, L. Jose, and R. Miao, “Software defined traffic

measurement with OpenSketch”. In Proceedings of the 10th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI'13). April (2013).

[6] http://archive.openflow.org/documents/openflow-spec-

v1.0.0.pdf

[7] A. Doria, J. Hadi Salim, R. Haas, H. Khosravi, W. Wang,

L. Dong, R. Gopal, and J. Halpern, “Forwarding and control

element separation” (ForCES) protocol specification, RFC

5810 (Proposed Standard), March 2010,

[8] Devolved Control of ATM Networks.

http://www.cl.cam.ac.uk/research/srg/netos/old-

projects/dcan/#pub.

[9] H. Wang, L. Xu, and G. Guofei, “Of-Guard: A DoS

Attack Prevention Extension in Software-Defined Networks’,

In USENIX Open Network Summit, 2014.

[10] T. Limoncelli, “Openflow: a radical new idea in

networking”,. Commun. ACM, 55(8):42–47, August 2012.

[11] K. Benton, L. J. Camp, and C. Small. OpenFlow

Vulnerability Assessment. HotSDN '13, pages 151--152,

2013.

9. AUTHOR’S PROFILE

 Safi Faizullah received his Ph.D. in Computer Science from

Rutgers University, New Brunswick, New Jersey, USA in

2002. He also received MS and M. Phil. Degrees in Computer

Science from Rutgers University, New Brunswick, New

Jersey, USA in 2000 and 2001, respectively. Dr. Faizullah

also earned his BS and MS degrees in Information and

Computer Science from KFUPM, Dhahran, KSA in 1991 and

1994, respectively. His research interests are in computer

networks, mobile computing, wireless networks, distributed

and enterprise systems. He has authored over twenty refereed

journals and conference papers. Dr. Faizullah works for

Hewlett-Packard and he is a Visiting Research Professor of

Computer Science at Rutgers University. He is currently

Professor with Dept. of Computer Science, IUM. He is a

Senior member of IEEE, SCIEI, PMI and ACM.

Dr. Saad Al-mutairi (BSc, MSc, Ph.D) has completed his

Ph.D & master in De Montfort University, UK. Currently, he

is working as a Dean of Information Technology Deanship

and also an Associate Professor in Computer and Information

http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://www.cl.cam.ac.uk/research/srg/netos/old-projects/dcan/#pub
http://www.cl.cam.ac.uk/research/srg/netos/old-projects/dcan/#pub

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.31, April 2018

24

Technology Faculty at Tabuk University, Saudi Arabia. His

research interests are software engineering & Developments,

Cloud computing, security requirement engineering for

context-aware systems using the Uniform Modeling Language

(UML). In connection with his research, he has published a

number of papers in various international journals and

conferences. He is a good team leader and he has established

many software’s to support regular activities of university.

IJCATM : www.ijcaonline.org

