
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.32, April 2018

21

Benchmarking Raspberry Pi 2 Beowulf Cluster

Dimitrios Papakyriakou

mVAS Testing and Deployment
Engineer

COSMOTE Fixed and Mobile
Telecommunications S.A

Athens, Greece

Dimitra Kottou
Core Network Design

 Engineer
COSMOTE Fixed and Mobile

Telecommunications S.A
Athens, Greece

Ioannis Kostouros
mVAS Testing and Deployment

Engineer
COSMOTE Fixed and Mobile

Telecommunications S.A
Athens, Greece

ABSTRACT

This paper presents a performance benchmarking of a

Raspberry Pi 2 Beowulf cluster. Parallel computing systems

with high performance parallel processing capabilities has

become a popular standard for addressing not only scientific

but also commercial applications. The fact that the raspberry

pi is a tiny and affordable single board computer (SBC), given

the chance to almost everyone to experiment with knowledge

and practices in a wide variety of projects akin to super-

computing to run parallel jobs. This research project involves

the design and construction of a high performance Beowulf

cluster, composed of 12 Raspberry Pi 2 model B computers

with CPU 900MHz, 32-bit quad-core ARM Cortex-A7 CPU

processors and RAM 1GHz each node. All of them are

connected over an Ethernet Network 100 Mbps in a parallel

mode of operation so that to build a kind of supercomputer. In

addition, with the help of the High Performance Linpack

(HPL), we observe and depict the cluster performance

benchmarking of our system by using mathematical

applications to calculate the scalar multiplication of a matrix,

extracting performance metrics such as runtime and GFLOPS.

Keywords

Raspberry Pi cluster, Cluster Computing, Message Passing

Interface, High Performance Linpack (HPL), Benchmarking

RPi clusters.

1. INTRODUCTION
We may not have been realized in our mind that our real

world is massively parallel, where many complex and

interrelated events are happening at the same time. Parallel

computing compared to serial computing is much better suited

to model, simulate and understand complex real world

phenomena, such as Galaxy Formation, Planetary

Movements, and Climate Changes. That is to say, when we

deal with large and complex problems, it’s impractical or

impossible to solve them on a single computer, with given

limited RAM memory, and even worst to deal with the so

called “Grand Challenge Problems”. In this case we definitely

require Petaflops and Petabytes of computer resources to

possibly reach a mathematical problem solution.

Nowadays, we all understand that Digital Globalization is the

new era of global flows of data information and

communication. Internet of Things (IoT) and Clouding are

driving data complexity and advanced analytic techniques

against large and diverse data sets from different sources. The

Big Data era needs to embrace data parallel computing

technics so that to increase the efficient data analysis, where

data processing and data excavation are the main area in

supercomputer applications today. Since supercomputers

require an enormous amount of energy to operate, the

alternative solution is to use an affordable single board

computer (SBC), such as Raspberry Pi 2 Model B to

experiment parallel computing topics.

Raspberry Pi (RPi) 2 Model B “Figure 1” is equipped with a

900 MHz quad-core ARM Cortex-A7 CPU (BCM2836) and 1

GB of RAM (LP DDR2 SDRAM) [1]. The low cost of the

Raspberry Pi was the driving force for us to investigate a

viable option for building a high performance cluster

computer and to study the Pi’s ability to perform in a parallel

clustering mode of operation.

An additional motivation for this project is to gain knowledge,

experience and understanding of a fully functional clustering

computer by the construction and using different

benchmarking processes. Moreover, there is an Academic and

Professional interest from the authors to investigate later on,

how the parallel computing systems can be used for testing

purposes in cloud environment.

At this stage in our current project we built a 12 node RPi’s 2

cluster with message passing interface (MPI) configuration so

that to measure the performance of the cluster with the High-

performance Linpack (HPL) benchmark.

Figure 1: Single Board Computer (SBC) - Raspberry Pi 2

Model B [1].

2. SYSTEM DESCRIPTION

2.1 Hardware Equipment
The cluster is composed of 12 Raspberry Pi 2’s “Figure 2”, of

which one RPi is the master (or head) node, responsible for

distributing jobs and resources including itself in this process.

The rest 11 RPi’s are simply the worker nodes obeying in the

master node instructions. All the nodes are stacked together in

two groups of 5 RPi’s each, and are connected to a 16-Port

10/100 Mbps Ethernet switch, where the maximum network

throughput for any individual node is 100 Mbps. Each RPi

requires a microSD card since the Pi cannot be booted without

it. The size of each microSD card is 32GB. There is an

external Hard Disk (HD) with size 320GB connected to the

master node, apart from the microSD card of size 32GB

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.32, April 2018

22

needed to boot it. Moreover, there are 3 USB cords to power

the individual Pi’s with 2 switch-mode power supplies of

100W with 5V output boosted to 5.5V so as to adjust the

voltage drop. In addition, there are 4 cooling FANs to provide

cooling solutions to the system thermal problems and 3

voltage meters to supervise the voltage output of the switch-

mode power supplies.

Figure 2: Construction of the Beowulf Cluster.

2.2 Software Tools
The Operating System used to setup the RPi’s in the cluster is

the Raspbian GNU/Linux 8 (Jessie) which is one of the

official supported Operating System (OS) [2].

The 2nd Software Package we needed to install is the Message

Passing Interface (MPI). The MPI is not a library but a

standard for development of message-passing libraries based

on recommendations of the MPI Forum [3]. There are two

prominent implementations of MPI that can be used on the

Raspberry Pi. These are: OpenMPI and MPICH. In our case

we use MPICH [4], which originally standing for Message

Passing Interface Chameleon. It’s an implementation of the

MPI standard that supports C, C++ and FORTRAN

applications. MPICH is a high performance and wide portable

implementation of the Message Passing Interface (MPI)

standard.

The 3th software package we needed to install is the (GNU

Compiler Collection) GCC Fortran compiler which has

optimization and multi-threading features. It’s the default

compiler suite in High Performance Computing (HPC).

The 4th SW package we needed to install so that to configure

properly the cluster is the MPI4PY which stands for MPI for

Python. MPI for Python provides MPI bindings for Python.

This allows any python program to use a multiple-processor

configuration computer. This package is built on top of the

MPI-1/2/3 specifications and provides an object-oriented

interface for parallel programming in Python. It supports

point-to-point (send and receive) and collective (broadcast,

scatter and gather) communications for any Python object.

Since Message Passing Interface (MPI) is the de facto

standard for High Performance Computing (HPC) and parallel

programming and the MPI4PY is well-regarded and efficient

implementation of MPI for Python, we decided to use this

package on the Raspberry Pi for parallel programming. The

6th SW package was the High Performance Linpack (HPL)

[5]. The High Performance Linpack benchmark used to

measure the performance of a HPC system. It’s used by both

the TOP 500 [6] and the Green 500 [7] to compile their

rankings. The HPL benchmark is based on the original

Linpack benchmark, measuring performance based on solving

a system of linear equations using LU factorization [8].

In addition to the above software packages, we lastly needed

to load the High Performance Linpack (HPL) software

dependency which was the Basic Linear Algebra

Subprograms (BLAS). BLAS are a set of well-defined basic

linear algebra operations routines to provide standard building

blocks so as to perform basic vector and matrix operations [9].

2.3 Design and Setup
The below mentioned “Figure 3” depicts the RPI cluster

architecture diagram.

Figure 3: Beowulf cluster architecture diagram

2.3.1 Design
The Cluster design is composed of 12 Raspberry Pi’s

connected to the 16-Port 10/100 Mbps Ethernet switch. One

out of the 12 Pi is the master or head of the cluster and the rest

11 are slaves or workers. The network configuration is built

with static routing namely, each node has a static IP address

and the configuration is in such a way where the master can

only communicate to every node with secure shell. NFS

server shared folder created and configured to both master and

slaves Raspberry Pi’s since it’s easier to setup the whole

cluster from design point of view. Moreover, there is a sharing

internet connection to Raspberry Pi’s meaning that the slave

nodes communicate with the Internet via the master node,

having the ability to update the operating system with new

releases and the RPi’s firmware software as well. As far as the

master node is concerned, the boot partition still remains in

the microSD card but the root partition is located in the

external Hard Disk (HD) with size 320GB. A backup and

Shrink procedure to save the master node image is applied

prior any significant upgrade and configuration changes so

that to be able to reload the previous backup image in case of

serious software crash.

2.3.2 Setup
The first step was to prepare the master node by loading the

Raspbian GNU/Linux 8 (Jessie) operating system in the

microSD card since the Pi can boot only from that card. Once

we are able to boot up a single Pi, then we install the gfortran

software package and Message Passing Interface (MPI) by

installing the MPICH software package and the MPI4PY

software. At this point, we took the image of the microSD

card and replicate it to equal microSD cards as such the

number of the slave Raspberry Pi’s that the cluster is

composed of, so as to avoid the repetition of the work for each

Pi. The next step was to configure the network. We accessed

each Pi giving a static IP address from 192.168.1.1 domain for

this project, a hostname per Pi, such as rpi01-master, rpi02-

client etc. The configuration of the SSH keys for each Pi

followed, since the master node needs password less access

into the slave Raspberry Pi’s over Secure Shell (SSH).

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.32, April 2018

23

At this stage the cluster can be tested successfully provided

that everything is configured correctly. Here, the Network File

System (NFS) configuration took place so that to easier

configure the High Performance Linpack (HPL).

The last step was to install the High Performance Linpack

(HPL) with all the dependencies, such as the Basic Linear

Algebra Subprograms (BLAS) development libraries in the

master node. In the slave nodes, there is only a need to install

the Basic Linear Algebra Subprograms (BLAS) development

libraries and nothing more.

3. PERFORMANCE EVALUATION
The crucial aim of the running tests in the raspberry cluster is

to determine if the cluster was scalable, meaning that, if the

addition of more cores resulted an addition to the processing

capacity of the cluster. Moreover, we had to keep in our mind

that each Raspberry Pi comprises a quad-core CPU (4 threads

total), meaning that 4 processes can run at the same time per

RPi. As a result, 12 Pis comprises 48 cores and as a result 48

processes can be run simultaneously.

3.1 HPL Benchmarks
Broadly speaking, benchmarking is a process of running

standard programs to evaluate the speed of a system, where in

our case we use the so called High-Performance Linpack

(HPL). The Linpack Benchmark is a measure of a computer’s

floating rate of execution and determines the upper bound of

double precision floating point performance on a distributed

parallel system. In other words, measures how fast a computer

solves a random dense linear system of equations of order (n),

[𝛢 × 𝑥 = 𝑏; 𝐴 ∈ 𝑅𝑛𝑥𝑛 ; 𝑥, 𝑏 ∈ 𝑅𝑛] by first computing the

LU factorization [10], with row partial pivoting of [𝑛 𝑏𝑦 (𝑛 +
1)] coefficient matrix [𝛢 𝑏] = [L, U y]. Since the lower

triangular factor (L) is applied to (b) as the factorization

progresses, the solution (x) is obtained by solving the upper

triangular system 𝑈 × 𝑥 = 𝑦. The lower triangular matrix

(L) is left unpivoted and the array of pivots is not returned.

The data is distributed onto a two-dimensional grid of

processes (𝑃 𝑏𝑦 𝑄), according to the block-cyclic scheme, to

ensure "good" load balance, as well as the scalability of the

algorithm [11],[12]. To determine the scalability of the

cluster, the problem size or matrix size (N) was kept constant

and the number of processors was gradually varied from 4 (1

RPi) to 48 (12 RPi). Since there is no formula mentioned

anywhere we run the benchmark several times in order to get

the best possible results of HPL benchmark. We had to fine

tune several configuration parameters in the HPL.dat file,

focusing especially in the Number of problems size (N), the

Number of the block size (NBs) in the grid and the Number of

process grids (𝑃 × 𝑄) [13].

Briefly, the most important parameters in HPL.dat file that we

had to configure are analyzed below:

Number of problems sizes (N). – Parameter (N) specifies the

problem size. The aim is to find the largest problem size that

fits into the main memory of a specific cluster and for this

reason, the main memory capacity for storing double

precision (8 Bytes) numbers is calculated. That is to say, in

order to get the best performance of the cluster, it’s needed to

have the largest problem size that can fix in the entire main

RPi memory. We use an “optimal” configuration which is

found by the Nelder-Mead tuning method and changes the

problem size (N) with other parameters unchanged. The max

problem size is calculated as [14] suggests: 𝑁𝑚𝑎𝑥 =

80% 𝑚 × 𝑛 where (m) is the free memory in doubles for the

machine with the least available free memory and (n) is the

number of nodes. The mathematical expression can be seen as

such:

 Nmax = (
Memory in Gbytes × 1024 3 × No of Nodes

8
) × Z The

(N) in overall must be (80-90) % of the size of the total

memory. In particular, in our Raspberry Pi cluster, the

maximum possible value for (N) is 32105 (representing

approximately the 80% of the available memory) taking into

account the 12 RPi nodes, the 4 cores per RPi node, the

Memory per Node equal to 1GB and the block size (NB)

equal to 128. As a rule of thumb, it’s wise to use the (N) equal

to 80% of available memory in order to avoid cluster crash

with errors. For a single RPi, Nmax ≈ 11585 × 0.8 = 9268
or alternatively we have the following,: Nmax ≈ 11585 ×
0.9 = 10426.

Number of block size (NBs). – The (NB) is the block size in

the grid. HPL uses the block size (NB) for the data

distribution and for the computational granularity. Usually

block sizes giving good results are within [96, 104, 112, 120,

128… 256] range. The principle is that smaller (NB) gives

better load balance from a data distribution point of view, but

it’s preferred not to have very large values of (NB). From

computational point of view, a too small value of (NB) will

probably limit the computational performance. As a result

there is a need to apply a trial and error method to find the

best approach for better computational performance.

Number of process grids (𝑃 × 𝑄). – (𝑃 × 𝑄) is the size of the

grid where P (the number of process rows) and Q (the number

of process columns) should be close to being a “square”.

According to the developers of the (HPL) in [15], [16] (P) and

(Q) should be approximately equal, with Q slightly larger than

P which is equal to the number of processors that the cluster

has.

Since (N) should be (NB) aligned [17], [18] an additional

optimization is needed. For instance, if we consider NB=128,

with 12 RPi’s, then (N) is calculated as following:

Nmax = (
Memory in Gbytes ×1024 3×No of Nodes

8
) × Z

Where (Z) is the reduction coefficient, taking values between

(80-90) percent, and as a result we have below:

N = (
1GB ×1024 3 ×12

8
) × 80% = 32105. Considering

NB=128, we calculate (
32105

128
 × 128 = 250.8203125 ≈

250) and next (250 × 128 = 32000). As a result, we

optimize the parameters N=32000, NB=128 and 𝑃 × 𝑄 = 48

in the HPL.dat when we run it for the 12 RPi’s. The same

optimization logic was applied when executing the benchmark

with different values using all the nodes, since there is

different proportion of the systems’ total main memory when

we use different number of RPi’s in the testing.

3.2 Results

3.2.1 Computing Performance vs. Number of

Node (HPL)
“Table 1” and “Table 2” depicts the detailed data of the HPL

performance analysis with the parameters (N), (P), (Q), and

(NB) as well as the runtimes results of the cluster, required to

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.32, April 2018

24

solve the linear system and the achieved GFlops. In “Table 1”,

the HPL run with system memory utilization (≈ 80%)

compared to what “Table 2” shows up, which is (≈ 85%).

The highest performance peaks can be seen in “Figure 4”, and

“Figure 5”, respectively in the command line interface as

well, whereas “Figure 6” and “Figure 7” depict the cluster

performance results in GFlops with 80% and 85% system

memory utilization. The theoretical peak performance can be

determined by counting the number of floating-point additions

and multiplication (in double precision), that can be

completed during the cycle time of the machine. The equation

(1) which gives the theoretical peak performance is depicted

below:

Rpeak GFlops =

Average frequency GHz × No of Cores ×
operations per cycle (1)

The efficiency of the system in percent is calculated such as
𝑅𝑚𝑎𝑥

𝑅𝑝𝑒𝑎𝑘
 × 100 and is dependent on the executed operations. The

ARM Cortex A7 processors, used in our cluster, can process

one floating-point addition in one cycle, requiring two cycles

for a floating-point multiplication.

Moreover, the results in “Figure 8” show that increasing the

problem size (N), results in a better GFlops performance. At

the same time we notice that increasing the problem size (N)

and the RPi’s in the testing, results an increasing of the

speedup of the system which can be seen easily in the “table

1” and “table 2” as well. Apart from the cluster performance

in GFlops, the investigation of the speedup when we add

gradually RPi nodes in the test was a research question to be

answered. The speedup (Sp) that can be achieved when the

testing is run and can be defined with equation (2) as

following:

𝑆𝑝 =
𝐹𝑝

𝐹1
 (2)

Where (F1) is the GFlops on a single-processor system and

(Fp) is the GFlops on a multiprocessor system. The theoretical

maximum speedup is equal to the number of single-processor

nodes. That is to say, for the two RPi nodes the value is 2, for

the four nodes the value is 4 and so on. The “Table 1” and

“Table 2” depicts the experimental results of the HPL

benchmarking testing. It can be seen the increased speedup

performance achieved by (HPL) testing when we gradually

increase the RPi Nodes from 1 to 12 in the cluster. The

outcome of the (HPL) is exactly what we were expecting

since the increased RPi’s means increased processors in the

testing.

Table 1. Beowulf cluster setup parameters and testing

results with 80% system memory utilization

System

Memory

utilized

N

Nodes

used

NB
Time

[sec]

GFlops

Speedup

≈ 80%

9216 1 128 587.51 0.888 1.00

13056 2 128 842.38 1.762 ≈ 1.98

18560 4 128 1640.98 2.598 ≈ 2.92

22656 6 128 2028.69 3.822 ≈ 4.30

26240 8 128 2446.26 4.924 ≈ 5.54

29312 10 128 2938.29 5.715 ≈ 6.43

32000 12 128 3137.71 6.963 ≈ 7.84

 Table 2. Beowulf cluster setup parameters and testing

results with 85% system memory utilization.

System

Memory

utilized

N

Nodes

used

NB
Time

[sec]

GFlops

Speedup

≈ 85%

9984 1 128 702.79 0.944 1.00

13952 2 128 1021.63 1.773 ≈ 1.87

19712 4 128 1905.89 2.679 ≈ 2.83

24192 6 128 2373.69 3.977 ≈ 4.21

27904 8 128 2742.70 5.282 ≈ 5.59

31104 10 128 3385.03 5.927 ≈ 6.27

34048 12 128 3666.16 7.178 ≈ 7.60

Figure 4: Highest measured cluster performance results in

GFlops with 80% system memory utilization.

Figure 5: Highest measured cluster performance in

GFlops with 85% system memory utilization.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.32, April 2018

25

Figure 4: HPL cluster performance results in GFlops with 80% system memory utilization (4 threads per node)

Figure 5: HPL cluster performance results in GFlops with 85% system memory utilization (4 threads per node)

587.51

842.38

1640.98

2028.69

2446.26

2938.29
3137.71

0.888

1.762

2.598

3.822

4.924

5.715

6.963

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

0

500

1000

1500

2000

2500

3000

3500

1 2 4 6 8 10 12

G
Fl

o
p

s

Ti
m

e
 (

se
c)

Raspberry Pi 2 Nodes in Cluster (80 % memory utilization)

HPL Analysis (Time, GFlops, RPi nodes)

Nodes Time GFlops

702.79

1021.63

1905.89

2373.69

2742.7

3385.03

3666.16

0.944

1.773

2.679

3.977

5.282

5.927

7.178

0

1

2

3

4

5

6

7

8

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 6 8 10 12

G
Fl

o
p

s

Ti
m

e
 (

se
c)

Raspberry Pi 2 Nodes in Cluster (85% memory utilization)

HPL Analysis (Time, GFlops, RPi nodes)

Nodes Time GFlops

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.32, April 2018

26

Figure 6: HPL cluster performance results compared to increased problem size (4 threads per node)

4. CONCLUSION
In this project, we implemented and analyzed the performance

of a cluster with low cost, with embedded ARM processors

and Raspberry Pi 2 platform by using the HPL benchmark.

After performing this work, we can state the following

observations: (a) the increase of the number of processors or

the number of the RPi nodes, resulted a considerable increase

in the peak performance in GFlops; (b) the increase of the RPi

nodes resulted a considerable increase in speedup of the

cluster; (c) In addition, increasing the problem size (N)

resulted in a better GFlops performance; (d) after the analysis

and the results obtained by running the HPL benchmark, we

can conclude that the ARM processors performed well when

running parallel applications. Apparently, such an RPi cluster

cannot be used for scientific research as a large scale

supercomputer, but can be used for Academic educational

reasons with no doubts. (e) We have noticed that with

increasing the system memory utilization from 80 % into

85%, the performance in GFlops had been better –or slightly

better- as expected to be, but the speedup was not. The

explanation could be that the on-board (10/100 Mbps)

Ethernet limits the cluster ability to outperform due to

interconnection limits, meaning how quickly nodes/processes

could communicate with each other. Obviously, the limitation

of the 1 GB memory is an obstacle to achieve better

performance but the cluster is scalable with no doubts.

Despite the limitations the RPi’s depicted, since it’s a single

board computer (SBC) with embedded RAM, the Beowulf

cluster can be used in a professional manner for automation

testing purposes. In our job, we are moving from manual

testing to automation testing procedures with agile

methodologies. The parallel computing systems can be used

as a centralized architecture to perform, in a large scale,

automation testing in cloud environment with Internet of

Things (IoT) applications by using for instance Python

programming. This idea has been applied successfully by the

authors in functional testing used in the Telecom sector and in

particular in Value Added Services (VAS) Nodes. Linux and

Python used with incredible performance in limited functional

tests, using the parallel computing feature itself to increase the

performance or in a way where the master node guides the

clients to perform different set of testing batches, in different

Telecom nodes at the same time.

In addition, for the authors the project had been extremely

educational to see in practice how to build and analyze a

parallel computing system with low cost and affordable single

board computers (SBCs) and how the parallel computing

systems can be used for testing purposes.

5. FUTURE WORK
Since our primary job is the design, testing and deployment in

the Telecom Core Network and Value Added Services (VAS)

domain, we are very interested in researching the Telecom

cloud environment with High Performance Parallel

Computing Systems. Our first attempt was to design and

deploy an affordable parallel computing system using

Raspberry’s Pi 2 so that to move forward a few steps the idea

of using cluster architectures in automation testing. The next

step is to carry on with building a High Performance Hadoop

cluster so that to research and analyze the cluster processing

capabilities of large amount of data under the scope of Big

Data Analytics. The Internet of Things (IoT) is served by

cloud environments producing huge amount of data,

especially in the Telecom sector where High Performance

Computing Systems are needed and in turn there is a

challenge opportunity to investigate not only the design and

architecture but also the Automation Testing Methodologies

in clouding.

6. ACKNOWLEDGMENTS
We express our sincere gratitude to all multi Value Added

Services (mVAS) team for the precious suggestions,

0.888

1.762

2.598

3.822

4.924

5.715

6.963

9216

13056

18560

22656

26240

29312

32000

0

5000

10000

15000

20000

25000

30000

35000

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

1 2 4 6 8 10 12

P
ro

b
le

m
 S

iz
e

 (
N

)

G
Fl

o
p

s

Raspberry Pi 2 nodes in the cluster (80% memory utilization)

HPL Performance (N, GFlops, RPi nodes)

GFlops Nodes N

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.32, April 2018

27

motivation and knowledge contribution for the successful

completion of this project.

7. REFERENCES
[1] Raspberry Pi 2 Model B. [Online]. Available:

https://www.raspberrypi.org/products/raspberry-pi-2-

model-b/

[2] Raspberry Pi 2 Model B. Operating System. [Online].

Available: https://www.raspberrypi.org/downloads/

[3] MPI. MPI Forum. [Online]. Available: http://mpi-

forum.org/

[4] MPI. MPICH. [Online]. Available:

https://www.mpich.org/

[5] Netlib. HPL. [Online]. Available:

http://www.netlib.org/benchmark/hpl/

[6] Top500.org. Top500 lists. [Online]. Available:

https://www.top500.org/.

[7] Green500.org. Green500 lists. [Online]. Available:

https://www.top500.org/green500/.

[8] LU factorization. [Online]. Available:

https://www.geeksforgeeks.org/l-u-decomposition-

system-linear-equations/

[9] Netlib. Netlib blas, [Online]. Available:

http://www.netlib.org/blas/.

[10] Mathematics. LU Decomposition of a System of Linear

Equations. [Online]. Available:

https://www.geeksforgeeks.org/l-u-decomposition-

system-linear-equations/

[11] Dunlop, D., Varrette, S. and Bouvry, P. 2010. Deskilling

HPL, Vol. 6068 of Lecture Notes in Computer Science,

Springer, Heidelberg, Berlin, 102–114.

[12] Luszczek, P., Dongarra, J., Koester, D., Rabenseifner, R.,

Lucas, B., Kepner, J., McCalpin, J., Bailey, D. and

Takahashi, D. 2005. Introduction to the HPC Challenge

Benchmark Suite, Technical Report, ICL, University of

Tennessee at Knoxville.

[13] Netlib. HPL Tuning.

http://www.netlib.org/benchmark/hpl/tuning.html#tips

[14] Dunlop, D., Varrette, S. and Bouvry, P. 2008. On the use

of a genetic algorithm in high performance computer

benchmark tuning, Proceedings of the International

Symposium on Performance Evaluation of Computer and

Telecommunication Systems, SPECTS 2008, Art.

No.:4667550, 105-113.

[15] HPL Frequently Asked Questions. [Online]. Available:

http://www.netlib.org/benchmark/hpl/faqs.html

[16] Sindi, M. 2009. HowTo – High Performance Linpack

(HPL), Technical Report, Center for Research

Computing, University of Notre Dame.

[17] Petitet, A., Whaley, R. C., Dongarra, J., and Cleary, A.

HPL - a portable implementation of the high-

performance linpack benchmark for distributed-memory

computers. http://www.netlib.org/benchmark/hpl/

[18] Cox J. Simon, Cox T. James, Boardman P. Richard,

Johnston J. Steven, Scott Mark, and Neil S. O’Brien.

Iridis-pi: a low-cost, compact demonstration cluster.

Cluster Computing 17, no. 2 (June 22, 2013): 349-58.

doi: 10.1007/s10586-013-0282-7.

IJCATM : www.ijcaonline.org

https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/downloads/
http://mpi-forum.org/
http://mpi-forum.org/
https://www.mpich.org/
http://www.netlib.org/benchmark/hpl/
https://www.top500.org/
https://www.top500.org/green500/
https://www.geeksforgeeks.org/l-u-decomposition-system-linear-equations/
https://www.geeksforgeeks.org/l-u-decomposition-system-linear-equations/
http://www.netlib.org/blas/
https://www.geeksforgeeks.org/l-u-decomposition-system-linear-equations/
https://www.geeksforgeeks.org/l-u-decomposition-system-linear-equations/
http://www.netlib.org/benchmark/hpl/tuning.html#tips
http://www.netlib.org/benchmark/hpl/faqs.html
http://www.netlib.org/benchmark/hpl/

