
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.32, April 2018

7

Improvised Priority based Round Robin CPU Scheduling

Kawser Irom Rushee
Department of Computer

Science
American International
University-Bangladesh

Dhaka, Bangladesh

Kazi A. Kalpoma
Department of Computer
Science and Engineering
Ahsanullah University of
Science & Technology

Dhaka, Bangladesh

Tahmina Akter
Department of Computer

Science
American International
University-Bangladesh

Dhaka, Bangladesh

ABSTRACT

In this paper a new approach for Priority based round robin

CPU scheduling algorithm is performed which improves the

CPU performance in real time operating system. It retains the

advantage of existing round-robin algorithms [5, 6, 8] and

improves the performance. The proposed algorithm gives

better performance with given priority as well as assigned

priority and in both cases, minimize average waiting time

which context switch number, and Average turnaround time

from existing round robin algorithms. The paper gives a

Graph comparative analysis of proposed algorithm with

existing round robin scheduling algorithms on various cases

with different combination of CPU burst varying time

quantum, average waiting time, average turnaround time and

number of context switches.

General Terms

Algorithms, CPU performance

Keywords

Round-Robin, Context switch number, Average waiting time,

Average turnaround time

1. INTRODUCTION
The process scheduling is the activity of the process manager

that manages the deletion of the running process from the

CPU and the choice of another process on the basis of a

specific approach. Process scheduling is an essential part of a

Multiprogramming operating system [9]. Multiple processes

are permitted by the operating system to be loaded into the

executable memory at a time and loaded process shares the

CPU using time multiplexing CPU scheduling decides which

processes run when there are more than one process running.

It is important because it can have a big effect on resource

utilization and the overall performance of the system. There is

a bunch of CPU scheduling algorithms [1, 2] like

•First Come First Serve (FCFS)

•Shortest Job First Scheduling (SJFS)

•Round Robin scheduling (RR)

•Priority Scheduling etc

But except Round Robin scheduling these are rarely used

because of their drawbacks and disadvantages.

A number of assumptions are considered in CPU scheduling

which are as follows [3, 4] :

1. Job pool consists of runnable processes waiting for the

CPU.

2. All processes are self-determining and race for resources.

3. The job of the scheduler is to distribute the limited

resources of CPU to the different processes fairly and in a

way that optimizes some performance criteria.

Schedulers are superior system software which handles

process scheduling in numerous ways. Their main task is to

select the jobs to be submitted into the system and to decide

which process to run [10]. Schedulers are of three types

•Long Term Scheduler

•Short Term Scheduler

•Medium Term Scheduler

Priority based problem (PB):

1. Ishwari and Deepa [6] in PB algorithm they used

prioritization only once when round robin algorithm is

applied. Then they sort rest process according the shortest

burst time and give a new priority according that sequence.

However the problems are:

a. If a new process comes with high priority and big burst

time, according PB algorithm this new process priority will

change lowest priority because of its big burst time.

b. Similarly if a new process comes with low priority and

small burst time, according this algorithm this new process

priority will change to higher priority because of its small

burst time.

2. Starvation of big burst time is possible if small no of burst

time processes keep arriving continuously.

Improvised RR problem (RR):

Abhishek et al. [5] did not use any priority. Sorted the

processes according to small burst time they used round robin

algorithm. But if a process with big burst time arrives which is

most important than other small no of burst time process then

it has to wait until other processes given time quantum is over.

A superior scheduling algorithm for real time and time

sharing system must have the following characteristics [7]:

� Minimum context switches.

� Maximum CPU utilization.

� Maximum throughput.

� Minimum turnaround time.

� Minimum waiting time.

Considering the drawbacks, limitation and characteristics of

above mentioned algorithms we proposed an algorithm which

will minimize context switch, average waiting time and

average turnaround time. We have run our algorithm on

different type of datasets and compared with existing

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.32, April 2018

8

algorithms that shows our algorithm is successful to achieve

our objective.

2. Proposed Algorithm
We have modified the Priority based round robin CPU

scheduling algorithm to improve the performance of CPU.

Proposed algorithm is described below with different steps

and a flowchart is given in Figure 1. In this algorithm, if

processes come without given priority, a priority is assigned

as FCFS basis first. Initially Counter (Counts Number of

process) is initialized as 1 and it increase up to N (total

number of process). Before performing the algorithm it needs

to calculate the shortest and largest burst time to decide

quantum time, K. Following condition is considered for

quantum time, K:

 Shortest burst_time ≤ K ≤ 0.5(Largest burst_time)

.

Figure 1: Flow chart of our proposed algorithm

 Proposed algorithm consists following three steps:

Step1: if Priority is given move to step2 else give priority

based on FCFS and then move to step 2

Step 2: Allocate CPU to every process in round robin fashion,

according to the priority, for given time quantum (K)

considering the following logic which impose only for the

first cycle. Move to step 3 after completion of first cycle.

if(process.burst_time>2K)

Then allocate CPU to the current process for one time

quantum

Else

Allocate CPU to the current process for total burst time

Step 3: After completion of Second step following steps are

performed:

a) Processes are arranged in increasing order on their

remaining CPU burst time in the ready queue. New priorities

are given according to the remaining CPU bursts of processes;

the process with shortest remaining CPU burst is allocated

with highest priority.

b) The processes are executed according to the new priorities

based on the remaining CPU bursts, and each process gets the

control of the CPU until they finished their execution.

We have taken various cases with variation in burst time to

evaluate the performance. Our algorithm performs better in

each case which has been shown in the next section. An

example has been shown below to illustrate our algorithm. In

Table 1 process with burst time and given priority is shown.

For better understanding we have sort the processes according

to priority also in this table.

Table 1: Processes with burst time, priority and after Sort

according to Priority

Given After Sort

Process
Burst

time

Priority

(Given)
Process

Burst

time

Priority

(Given)

A 22 4 C 9 1

B 18 2 B 18 2

C 9 1 D 10 3

D 10 3 A 22 4

E 4 5 E 4 5

First sort the processes according to priority.

Table 2: Expected CPU burst for 2
nd

 and 3
rd

 Step

2
nd

 Step 3
rd

 Step

Proces
Burst

time

Priority

(Given)
Process

Burst

time

Priority

(Assigned)

C 9 1 B 13 1

B 5 2 A 17 2

D 10 3

A 5 4

E 4 5

In step 1, in this case priority is given. So, we have to move to

step 2.

In step 2, Let time quantum=5ms

We have taken 5ms time quantum (K) for our evaluation

randomly by taking in consideration the following condition:

Shortest burst_time =4

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.32, April 2018

9

Largest burst_time = 22

 Since, 4 < K < 11

Here Process C has burst time 9 and 9 is not greater than

2*time quantum. So we have to allocate CPU for process C

according to its burst time.

In the same manner other processes are executed according to

their priorities. The sequence of execution for step2 is shown

in Table 2. Expected CPU burst for 2nd step is shown in

Table 2.

Step 3 includes the changing of process’s priorities according

to the remaining CPU Burst Time. The process with least

remaining CPU Burst Time is assigned highest priority. The

new assigned priorities and Expected CPU burst for 3rd step

is also shown in Table 2.

 Now the processes are executed according to the new priority

allocated without taking consideration of time quantum. The

Gantt chart of the process execution by our algorithm is given

in Figure 2.

0 9 14 24 29 33 46 63

Figure 2: Gantt chart

Result:

 Context Switch: 6

Average waiting time: 22.4

Average turnaround Time: 35

3. Comparison with Existing algorithms
In this section proposed algorithm is compared with existing

round-robin algorithms for different cases. These comparisons

take processes with different combination of burst time,

priority and varying different time quantum. Proposed

algorithm is compared with existing round-robin algorithms

which are Round Robin without Priority (RRWP), Round

Robin with Priority (RRP), Improvised Round Robin (IRR).

We compared our proposed algorithm with these three

algorithms for about 50 times in different types of cases

including all small burst time process, all large burst time

process, and all medium burst time process and taking

different combination of them. Eight of the cases are shown in

Table 3. For each case minimum three different time quantum

has been taken. So more than 24 numbers of comparisons

have been shown here. Comparisons have been made for

average waiting time, average context switch and average

turnaround time. Comparison results are shown in Table 4 to

Table 11.

Table 4: Comparison of algorithms for case1

Algorith

m

Averag

e

Waiting

Time

Average

Turnaroun

d Time

Contex

t

Switch

Time

Quantu

m

(K)

RRWP 33.2 45.8 13

5

RRP 29.2 41.8 13

IRR 26.2 38.8 8

Process

name

Case 1 Case 2 Case 3 Case 4

Burst time Priority

(Given)

Burst time Priority

(Given)

Burst time Priority(Given) Burst time Priority (Given)

A 22 4 20 5 250 1 2 1

B 18 2 34 2 170 5 1 2

C 9 1 5 1 75 2 3 4

D 10 3 12 4 100 6 5 3

E 4 5 26 3 130 4 4 5

F - - - - 50 3 6 6

Process

name

Case 5 Case 6 Case 7 Case 8

Burst time Priority

(Given)

Burst time Priority

(Given)

Burst time Priority

(Given)

Burst time Priority

(Assigned)

A 2 1 20 5 2500 3 15 1

B 1 2 340 7 10 2 5 2

C 3 4 5 1 9 1 150 3

D 150 3 120 4 1 4 450 4

E 400 5 26 3 5 5 60 5

F 650 6 2 6 - - 20 6

G - - 3 2 - - 4 7

Table 3: Eight Cases

C B D A E B A

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.32, April 2018

10

Proposed 22.4 35 6

RRWP 36.8 49.4 8

9

RRP 29.6 42.2 8

IRR 28 40.6 7

Proposed 24.6 37.2 5

RRWP 36 48.6 6

12

RRP 28 40.6 6

IRR 28 40.6 6

Proposed 26.4 39 4

Graph representation of average waiting time, average

turnaround time and context switch for case 1 are given below

in Figure 3, Figure 4 and Figure 5 respectively.

Figure 3: Average Waiting Time for case1

Figure 4: Average Turnaround Time for case1

Figure 5: Context Switch for case1

Table 5: Comparison of algorithms for case2

Algorithm Average

Waiting

Time

Average

Turnaround

Time

Context

Switch

Time

Quantum

(K)

RRWP 46.4 65.8 20

5

RRP 46.4 65.8 20

IRR 30.4 49.8 8

Proposed 30.4 49.8 8

RRWP 48 67.4 11

10

RRP 48.8 67.8 11

IRR 36.4 55.8 8

Proposed 34.4 53.8 6

RRWP 48.4 67.8 8

15

RRP 46.6 66 8

IRR 39.4 58.8 7

Proposed 37.4 56.8 5

RRWP 52.6 72 7

19

RRP 49 68.4 7

IRR 43.4 62.8 7

Proposed 37.2 56.6 4

Graph representation of average waiting time, average

turnaround time and context switch for case 2 are given below

in Figure 6, Figure 7 and Figure 8 respectively.

0
5

10
15
20
25
30
35
40

RR without
priority

RR with
priority

Improvised
RR

Proposed

0
10
20
30
40
50
60

RR without
priority

RR with
priority

Improvised
RR

Proposed

0
2
4
6
8

10
12
14

RR without
priority

RR with
priority

Improvised
RR

Proposed

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.32, April 2018

11

Figure 6: Average Waiting Time for case2

Figure 7: Average Turnaround Time for case2

Figure 8: Context Switch for case2

Table 6: Comparison of algorithms for case3

Algorithm Average

Waiting

Time

Average

Turnaround

Time

Contex

t

Switch

Time

Quan

tum

(K)

RRWP 430 559.167 16

50

RRP 396.667 525.833 16

IRR 313.333 442.5 10

Proposed 284.167 413.333 8

RRWP 457.5 586.667 12

RRP 395.833 525 12

80 IRR 324.167 453.333 9

Proposed 302.5 431.667 7

RRWP 432.5 561.667 9

100

RRP 384.167 513.333 9

IRR 350.833 480 8

Proposed 317.5 446.667 6

Graph representation of average waiting time, average

turnaround time and context switch for case 3 are given below

in Figure 9, Figure 10 and Figure11 respectively.

Figure 9: Average Waiting Time for case 3

Figure 10: Average Turnaround Time for case 3

0
10
20
30
40
50
60

RR without
priority

RR with
priority

Improvised
RR

Proposed

0
10
20
30
40
50
60
70
80

RR without
priority

RR with
priority

Improvised
RR

Proposed

0
5

10
15
20
25

RR without
priority

RR with
priority

Improvised
RR

Proposed

0
50

100
150
200
250
300
350
400
450
500

RR without
priority

RR with
priority

Improvised RR

Proposed

0
100
200
300
400
500
600
700

RR without
priority

RR with
priority

Improvised RR

Proposed

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.32, April 2018

12

Figure 11: Context Switch for case 3

Table 7: Comparison of algorithms for case 4

Algorith

m

Averag

e

Waiting

Time

Average

Turnaroun

d Time

Contex

t

Switch

Time

Quantu

m

(K)

RRWP 0 2 1

1

RRWP 0 2 1

IRR 0 2 1

Proposed 0 2 0

RRWP 0 2 0

2

RRP 0 2 0

IRR 0 2 0

Proposed 0 2 0

RRWP 0 2 0

5

RRP 0 2 0

IRR 0 2 0

Proposed 0 2 0

Graph representation of average waiting time, average

turnaround time and context switch for case 4 are given below

in Figure 12, Figure 13 and Figure 14 respectively.

Figure 12: Average Waiting Time for case 4

Figure 13: Average Turnaround Time for case 4

Figure 14: Context Switch for case 4

Table 8: Comparison of algorithms for case5

Algorith

m

Averag

e

Waiting

Time

Average

Turnaroun

d Time

Contex

t

Switch

Time

Quantu

m

(K)

RRWP 238.33 439.33 1205

1

RRP 238.5 439.5 1205

IRR 122.17 323.17 10

Proposed 121.5 322.5 9

RRWP 232.17 433.17 122

10

RRP 233.83 434.83 122

IRR 127.17 328.17 8

Proposed 127.17 328.17 8

RRWP 203.83 404.83 15

100

RRP 220.5 421.5 15

IRR 187.17 388.17 8

Proposed 161.67 362.67 7

Graph representation of average waiting time, average

turnaround time and context switch for case 5 are given below

in Figure 15, Figure 16 and Figure 17 respectively.

0
2
4
6
8

10
12
14
16
18

RR without
priority

RR with
priority

Improvised RR

Proposed

0

0.2

0.4

0.6

0.8

1

RR without
priority

RR with
priority

Improvised
RR

Proposed

0

0.5

1

1.5

2

2.5

RR without
priority

RR with
priority

Improvised
RR

Proposed

0
0.2
0.4
0.6
0.8

1
1.2

RR without
priority

RR with
priority

Improvised
RR

Proposed

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.32, April 2018

13

Figure 15: Average Waiting Time for case 5

Figure 16: Average Turnaround Time for case 5

Figure 17: Context Switch for case 5

Table 9: Comparison of algorithms for case 6

Algorith

m

Averag

e

Waiting

Time

Average

Turnaroun

d Time

Contex

t

Switch

Time

Quantu

m

(K)

RRWP 84.86 158.57 53

10

RRP 73.57 147.286 53

IRR 53.571 127.286 10

Proposed 53.285 127 9

RRWP 104.86 178.57 24

25

RRP 79 152.714 24

IRR 68.286 142 9

Proposed 58.286 132 8

RRWP 183 256.714 10

100

RRP 90.429 164.143 10

IRR 90.429 164.423 8

Proposed 78.714 152.429 7

Graph representation of average waiting time, average

turnaround time and context switch for case 6 are given

below in Figure 21, Figure 22 and Figure 23 respectively.

Figure 21: Average Waiting Time for case 6

Figure 22: Average Turnaround Time for case 6

0
50

100
150
200
250
300

RR without
priority

RR with
priority

Improvised
RR

Proposed

0
50

100
150
200
250
300
350
400
450
500

RR without
priority

RR with
priority

Improvised
RR

Proposed

0
200
400
600
800

1000
1200
1400

RR without
priority

RR with
priority

Improvised
RR

Proposed

0

50

100

150

200

RR without
priority

RR with
priority

Improvised RR

Proposed

0
50

100
150
200
250
300

RR without
priority

RR with
priority

Improvised RR

Proposed

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.32, April 2018

14

Figure 23: Context Switch for case 6

Table 10: Comparison of algorithms for case 7

Algorith

m

Averag

e

Waiting

Time

Average

Turnaroun

d Time

Contex

t

Switch

Time

Quantu

m

(K)

RRWP 20.6 525.6 505

5

RRP 18.4 523.4 505

IRR 18.4 523.4 7

Proposed 16.6 521.6 5

RRWP 94.8 599.8 28

100

RRP 54.6 559.6 28

IRR 54.6 559.6 5

Proposed 54.6 559.6 5

RRWP 814.8 1319.8 6

1000

RRP 414.6 919.6 6

IRR 414.6 919.6 5

Proposed 414.6 919.6 5

Graph representation of average waiting time, average

turnaround time and context switch for case 7 are given below

in Figure 24, Figure 25 and Figure 26 respectively.

Figure 24: Average Waiting Time for case 7

Figure 25: Average Turnaround Time for case 7

Figure 26: Context Switch for case 7

Table 11: Comparison of algorithms for case 8

Algorith

m

Averag

e

Waiting

Time

Average

Turnaroun

d Time

Contex

t

Switch

Time

Quantu

m

(K)

RRWP 119.29 219.86 140

5 Proposed 74.29 174.86 11

RRWP 122.86 223.43 71

10 Proposed 81 181.57 9

RRWP 153.86 254.43 17

50 Proposed 131.86 232.43 8

Here, for case 8 priority is not given. So priority is assigned as

FCFS manner. That is why in this case comparison has done

only with RRWP. Graph representation of average waiting

time, average turnaround time and context switch for case 8

are given below in Figure 27, Figure 28 and Figure 29

respectively.

0
10
20
30
40
50
60

RR without
priority

RR with
priority

Improvised RR

Proposed

0
100
200
300
400
500
600
700
800
900

RR without
priority

RR with
priority

Improvised RR

Proposed

0
200
400
600
800

1000
1200
1400

RR without
priority

RR with
priority

Improvised RR

Proposed

0
100
200
300
400
500
600

RR without
priority

RR with
priority

Improvised RR

Proposed

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.32, April 2018

15

Figure 27: Average Waiting Time for case 8

Figure 28: Average Turnaround Time for case 8

Figure 29: Context Switch for case 8

In each case our algorithm minimized context switch, average

turnaround time and average waiting time. Even this performs

better for without given priority processes (for case 8 shown

in Table 11). In every comparison our algorithm gives better

performance except a very few comparison such as shown in

table 5 for quantum time 5 only (Equal performance to IRR

and better than RRWP and RRP), table 7 for quantum time 2

,5 and table 10 for quantum 100 and 1000(Equal performance

to IRR and better than RRWP and RRP) . This can be

neglected as it gives equal performances on those

comparisons. It also performs better than RRWP in the case of

without given priority. Provided all comparisons in above

proofs that, proposed algorithm gives better performance than

RRP, RRWP, and IRR with accuracy.

4. Performance Analysis
We compared cases with different combination of quantum

time from smallest quantum time (1 digit) up to largest

quantum time(4 digit).Only for the first cycle we have given

CPU to the processes considering time quantum(K) according

our algorithm condition. After first cycle SJFS manner is

followed in our algorithm for to assign priority and CU

execution. Thus proposed algorithm has minimized context

switches and improves the performance than other compared

algorithms.

Performance analysis has been done with some example

represented in following table 12. Considering,

Proposed algorithm performance better than RRWP, RRW

and IRR then, Performance =Yes.

Proposed algorithm performance equal to RRWP, RRW and

IRR then, Performance=No.

Proposed algorithm performance equal to IRR then,

Performance=Moderate.

Table 12: Performance Analysis

Time

Quantum(K)

Case

Number

Shortest burst

time-Largest

burst time

Performance

1 4 1-6 Yes

5 1 4-22 Yes

8 5-450 Yes

7 1-2500 Yes

4 1-6 No

10

2 4-22 Yes

5 1-650 Moderate

6 2-340 Yes

8 5-450 Yes

50

3 5-34 Yes

8 5-450 Yes

100

3 50-250 Yes

5 1-650 Yes

7 1-2500 Moderate

5. CONCLUSION
Our modified Priority based round robin CPU scheduling

algorithm improves the performance of CPU. It minimizes not

only average waiting time but also minimizes context

switching and average turnaround time. It gives better

performance for both cases with given priority and without

given priority processes.

In future, it can be possible to improve the algorithm for

the cases only where the performance of proposed algorithm

is equal rather than better.

6. REFERENCES
[1] Silberschatz, A., Peterson, J. L., and Galvin,

B.,Operating System Concepts, Addison Wesley, 7th

Edition, 2006.

0
20
40
60
80

100
120
140
160
180

RR without
priority

Proposed

0
50

100
150
200
250
300

RR without
priority

Proposed

0
20
40
60
80

100
120
140
160

RR without
priority

Proposed

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.32, April 2018

16

[2] E.O. Oyetunji, A. E. Oluleye,” Performance Assessment

of Some CPU Scheduling Algorithms”, Research Journal

of Information Technology,1(1): pp 22-26, 2009.

[3] Englander, I., 2003. The Architecture of Computer

Hardware and Systems Software; An Information

Technology Approach, 3rd Edition,John Wiley & Sons,

Inc.

[4] Yavatkar, R. and K . Lakshman,1995. A CPU

Scheduling Algorithm for Continuous M edia

Applications, In Proceedings of the 5th International

Workshop on Network and Operating System Support

for Digital Audio and Video, pp: 210-213.

[5] Abhishek Sirohi, Aseem Pratap, and Mayank Aggarwal,

“Improvised Round Robin (CPU) Scheduling

Algorithm”, International Journal of Computer

Applications (0975 – 8887)Volume 99– No.18, August

2014.

[6] Ishwari Singh Rajput, Deepa Gupta,” A Priority based

Round Robin CPU Scheduling Algorithm for Real Time

Systems “,International Journal of Innovations in

Engineering and Technology (IJIET)

[7] Ajit Singh, Priyanka Goyal, Sahil Batra,” An Optimized

Round Robin Scheduling Algorithm for CPU

Scheduling”, (IJCSE) International Journal on Computer

Science and Engineering Vol. 02, No. 07, 2383-2385,

2010. 9.

[8] Rakesh kumar yadav, Abhishek K Mishra, Navin

Prakash, Himanshu Sharma,” An Improved Round Robin

Scheduling Algorithm for CPU Scheduling”, (IJCSE)

International Journal on Computer Science and

Engineering Vol. 02, No. 04, 1064-1066, 2010.

[9] William Stallings, Operating Systems Internal and

Design Principles, 5th Edition , 2006.

[10] Saroj Hiranwal, K. C. Roy,” Adaptive Round Robin

Scheduling using shortest burst approach based on smart

time slice”, International Journal of Computer Science

and Communication Vol. 2, No. 2, pp. 319-323, July-

December 2011.

IJCATM : www.ijcaonline.org

