
International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.34, April 2018 

18 

A New Efficient Residue to Binary Converter for (5n+2)-

bit Dynamic Range Moduli Set 

Salifu Abdul-Mumin 
Department of Computer Scienc 

University for Development 
Studies 

Navrongo, Ghana 

 

Mohammed Ibrahim Daabo 
Department of Computer Scienc 

University for Development 
Studies 

Navrongo, Ghana 

Akobre Stephen 
Department of Computer Scienc 

University for Development 
Studies 

Navrongo, Ghana 

 

ABSTRACT 

This paper proposes an efficient residue to binary converter 

on a new three-moduli set (22𝑛+1, 22𝑛+1 − 1, 2𝑛 − 1) using 

the Mixed Radix Conversion. The proposed reverse 

converters are adder based and memoryless. In comparison 

with other moduli sets with similar dynamic range, the new 

schemes out-perform the existing schemes in terms of both 

hardware cost and propagation delay. 
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1. INTRODUCTION 
RNS is a non-weighted number system which support 

parallelism and can perform carry-free arithmetic [1]. These 

inherent properties make RNS very suitable to achieve a fast 

digital signal processing (DSP) systems including intensive 

computations like digital filtering, convolutions, correlations, 

Discrete Fourier Transform (DFT) computations, Fast Fourier 

Transform (FFT) computations and Direct Digital Frequency 

(DDF) synthesis [2]. However, RNS has not found a 

widespread usage in general purpose computing due to some 

difficult operations including overflow detection, magnitude 

comparison, sign detection, moduli selection, and conversion 

from decimal/binary to RNS and most especially the vice visa, 

[3], [4], [5]. Of many of these numerous RNS difficult 

operations, Data conversion is very critical. For a milestone 

chalked in the application of RNS, The conversion overhead 

must not nullify the advantages of RNS, and hence the need 

for efficient conversion algorithm for data conversion either 

from binary/decimal to residue or from residue to 

binary/decimal.  Data Conversion, which is usually based on 

either the Chinese Remainder Theorem (CRT) [6]],[7] [8] or 

the Mixed Radix Conversion (MRC) [9] can be categorized 

into forward and reverse conversions. The forward conversion 

is conversion of binary/decimal to a residue form while the 

reverse conversion involves converting the RNS number into 

binary or decimal [10], [5]. Relatively, reverse conversion is 

more complex.  

In the early days, many famous moduli sets, such as (2𝑛 − 1,
2𝑛 , 2𝑛 + 1) and (2𝑛 − 1, 2𝑛 , 2𝑛 + 1, 22𝑛 + 1) etc have been 

proposed to reduce the design overhead of their residue to 

binary converters [11], [12], [13], [14], [15]. But these could 

not maintain a high-speed internal RNS processing under a 

given dynamic range (DR) since the hardware requirement of 

performing the modulo  2𝑛 + 1 − 𝑡𝑦𝑝𝑒 arithmetic is so 

complex that it degrades the entire RNS system performance 

in terms of hardware cost and operation speed. To overcome 

the above constraint, the latest co-prime moduli set (2𝑛 ,
2𝑛+1, 2𝑛 − 1) which is free of   2𝑛 + 1 − 𝑡𝑦𝑝𝑒 modulus is 

proposed in [16]. The internal RNS processing for the above 

mentioned moduli set only relies on efficient modulo 2𝑛  and 
 2𝑛 + 1 − 𝑡𝑦𝑝𝑒 operations for leading to a simple and fast 

RNS system. However the Dynamic range of these moduli set 

are not relatively large and cannot be used by applications that 

require a large Dynamic Range.  

In this paper, a moduli set with a large dynamic range is 

proposed. A residue to binary/decimal converter is designed 

and implemented using this moduli set. The conversion 

overhead is computed and compared with similar converters. 

The rest of the paper is organized as follows; section 2 gave a 

brief background of RNS. The proposed reverse converter is 

presented in section 3and in section 4, the hardware 

realization is illustrated. Section 5 presented the evaluation 

comparison and the paper is concluded in section 6. 

2. BACKGROUND 
Residue Number System (RNS) is defined by the set S which 

includes N integers that are pair-wise relatively prime. That is 

S = {m1, m2, . . . ,mN }, where gcd (mi ,m j ) = 1 for i , j = 1, . . 

. , N and i = j and gcd means the greatest common divisor  

Any integer X in [0, M − 1] can be uniquely represented with 

an N-tuple  where 𝑀 =   𝑚𝑖
𝑁
𝑖=1 , 𝑋 = (𝑥1, 𝑥2, … … 𝑥𝑛) and 

𝑥𝑖 = |𝑋|𝑚 𝑖
 [4]. 

3. PROPOSED REVERSE CONVERTER  

3.1 Conversion Algorithm 
Given the moduli set, (22𝑛+1, 22𝑛+1 − 1, 2𝑛 − 1), let 

𝑚1 = 22𝑛  + 1, 𝑚2 = 22𝑛  + 1 − 1, 𝑚3 = 2𝑛 − 1. The 

information moduli are  5𝑛 + 2 − 𝑏𝑖𝑡 number. The Mixed 

Radix Conversion (MRC) is employed to convert the number 

in RNS representation to its (binary/decimal) equivalent. 

The general form of the MRC is given as follows; 

𝑋 = 𝑑1 + 𝑑2𝑚1 + 𝑑3𝑚1𝑚2 + ⋯ + 𝑑𝑛𝑚1𝑚2𝑚3 … 𝑚𝑛−1 (1) 

Where 𝑑𝑖 , 𝑖 = 1,2, … , 𝑛 are the Mixed Radix Digits (MRDs) 

and computed as follows: 

    𝑑1 = 𝑥1  

    𝑑2 =   𝑥2 − 𝑑1  𝑚1
−1 𝑚2

 
𝑚2

  

    𝑑3 =    𝑥3 − 𝑑1  𝑚1
−1 𝑚3

− 𝑑2  𝑚2
−1 𝑚3

 
𝑚3

  

     ⋮  
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    𝑑𝑛 =   …   𝑥3 − 𝑑1  𝑚1
−1 𝑚𝑛

− 𝑑2  𝑚2
−1 𝑚𝑛

− ⋯ −

𝑑𝑛−1  𝑚𝑛−1
−1  𝑚𝑛

 
𝑚𝑛

                                          (2)  

That is, 𝑋 in the interval [0, 𝑀] can be uniquely represented 

Theorem1: Given the moduli set (22𝑛+1, 22𝑛+1 − 1, 2𝑛 − 1), 

where 𝑚1 = 22𝑛  + 1, 𝑚2 = 22𝑛  + 1 − 1, 𝑚3 = 2𝑛 − 1, for 

every integer 𝑛 > 1, the following hold true: 

                                 𝑚1
−1 𝑚2

= 1       (3)                                                                          

                                  𝑚1
−1 𝑚3

= 2𝑛−1    (4)      

  

                                   𝑚2
−1 𝑚3

= 1          (5)  

Proof: If it can be demonstrated that  mi
−1 × mi m i

= 1, then 

mi
−1 is the multiplicative inverse of mi with respect to mi. 

Thus; 

For (3) 

|(22𝑛  + 1)(1)|22𝑛  + 1−1 

| 22𝑛  + 1 − 1 + 1 |22𝑛  + 1−1 = 1 

Also for (4), 

|(22𝑛  + 1)(2𝑛−1)|2𝑛 −1 

| 23𝑛 |2𝑛  −1 = 1 

And finally for (5), 

|(22𝑛  + 1 − 1)(1)|2𝑛  −1 

|((22𝑛  ∗ 2) − 1)|2𝑛  −1 

|2 − 1|2𝑛  −1 =  1 

Therefore we can re-write (2) as 

                                          𝑑1 = 𝑥1  

                                𝑑2 = |(𝑥2 − 𝑑1)(1)|22𝑛 +1−1  

                                      = |𝑥2 − 𝑥1|22𝑛 +1−1  

                            𝑑3 = |( 𝑥3 − 𝑑1  2𝑛−1 − 𝑑2)(1)|2𝑛 −1  

                                    = |2𝑛−1𝑥3 − 2𝑛−1𝑥1 − 𝑑2|2𝑛 −1  (6)                                                              

And (1) then becomes; 

         𝑋 =  𝑥1 +  𝑑2(22𝑛+1) + 𝑑3(24𝑛+2 − 22𝑛+1)  

                                = 𝑥1 + 22𝑛+1𝑑2 + 24𝑛+2𝑑3

− 22𝑛+1𝑑3          (7) 

3.2 Hardware Realization  
Equation (6) and equation (7) are simplified as follows; 

𝑑1 = 𝑥1,2𝑛𝑥1,2𝑛−1 … … … . 𝑥1,1𝑥1,0                   
2𝑛+1

 

𝑑2

= | 𝑥2,2𝑛𝑥2,2𝑛−1 … … … . 𝑥2,1𝑥2,0                    

2𝑛+1

− 𝑥1,2𝑛𝑥1,2𝑛−1 … … … . 𝑥1,1𝑥1,0                   
2𝑛+1

|22𝑛 + 1−1 

= | 𝑥2,2𝑛𝑥2,2𝑛−1 … … … . 𝑥2,1𝑥2,0                    

2𝑛+1

+ 𝑥 1,2𝑛𝑥 1,2𝑛−1 … … … . 𝑥 1,1𝑥 1,0                   
2𝑛+1

|22𝑛 + 1−1 

= 𝑑2,2𝑛𝑑2,2𝑛−1 … … … . 𝑑2,1𝑑2,1                   
2𝑛+1

 

𝑑3

= |2𝑛−1  𝑥3,𝑛−1𝑥3,𝑛−2 … … . . 𝑥3,1𝑥3,0                    
𝑛

− 2𝑛−1(𝑥1,2𝑛𝑥1,2𝑛−1 … … … . 𝑥1,1𝑥1,0                   )

2𝑛+1

− (𝑑2,2𝑛𝑑2,2𝑛−1 … … … . 𝑑2,1𝑑2,1                   
2𝑛+1

)|2𝑛−1 

= |2𝑛−1  𝑥3,𝑛−1𝑥3,𝑛−2 … … . . 𝑥3,1𝑥3,0                    
𝑛

+ 2𝑛−1(𝑥 1,2𝑛𝑥 1,2𝑛−1 … … … . 𝑥 1,1𝑥 1,0                   )

2𝑛+1

+ (𝑑 
2,2𝑛𝑑 

2,2𝑛−1 … … … . 𝑑 
2,1𝑑 

2,1                   
2𝑛+1

)|2𝑛−1 

  = | 𝑥3,0 
1−𝑏𝑖𝑡

+ 𝑥 1,𝑛+1𝑥 1,𝑛 … … 𝑥 1,1𝑥 1,0               
𝑛+2

+

𝑑 
2,2𝑛𝑑 

2,2𝑛−1 … … 𝑑 
2,1𝑑 

2,0
                 

2𝑛+1

|2𝑛−1 

= 𝑑3,𝑛−1𝑑3,𝑛−2 … … . 𝑑3,1𝑑3,0                 
𝑛−𝑏𝑖𝑡

 

From equation (7), let  

𝐶 = 𝑥1 + 22𝑛+1𝑑2 

= 00 … 00     
2𝑛+1

𝑥1,2𝑛𝑥1,2𝑛−1 … 𝑥1,0

+ 𝑑2,2𝑛𝑑2,2𝑛−1 … 𝑑2,0 00 … 00     
2𝑛+1

 

= 𝑥1,2𝑛𝑥1,2𝑛−1 … 𝑥1,0 ⋈ 𝑑2,2𝑛𝑑2,2𝑛−1 … 𝑑2,0 

= 𝐶4𝑛+1𝐶4𝑛 … 𝐶1𝐶0 

And  

𝐴 = 𝐶 + 24𝑛+2𝑑3 

= 00 … 00     
𝑛

𝐶4𝑛+1𝐶4𝑛 … 𝐶1𝐶0

+ 𝑑3,𝑛−1𝑑3,𝑛−2 … 𝑑3,0 00 … 00     
4𝑛+2

 

= 𝐶4𝑛+1𝐶4𝑛 … 𝐶1𝐶0 ⋈ 𝑑3,𝑛−1𝑑3,𝑛−2 … 𝑑3,0 

= 𝐴5𝑛+1𝐴5𝑛 … 𝐴1𝐴0 

Thus equation (7) becomes 

𝑋
=  𝐴5𝑛+1𝐴5𝑛 … 𝐴1𝐴0           

5𝑛+2

−  𝑑3,𝑛−1𝑑3,𝑛−2 … … . 𝑑3,1𝑑3,0                 
𝑛−𝑏𝑖𝑡

 00 … 00     
2𝑛+1
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𝐴5𝑛+1𝐴5𝑛 … 𝐴1𝐴0           
5𝑛+2

+ 𝑑 
3,𝑛−1𝑑 

3,𝑛−2 … … . 𝑑 
3,1𝑑 

3,0                 
𝑛−𝑏𝑖𝑡

 11 … 11     
2𝑛+1

 

The proposed schematic diagram will be as follows; 

 

Fig 1: Schematic Diagram of the Reverse Converter 

The hardware requirements of this architecture and the delay 

imposed in computing the binary number is as follows; 

Area = Area (CPA1) + Area (CSA) + Area (CPA 2) + Area 

(CPA 3) 

 2𝑛 + 1 + 𝑛 + 𝑛 +  5𝑛 + 2 = 9𝑛 + 3  

𝐷𝑒𝑙𝑎𝑦 =  4𝑛 + 2 + 1 + 2𝑛 + 10𝑛 + 4 = 16𝑛 + 7  

4. PERFORMANCE EVALUATION 
In this section, the performance of the proposed moduli set is 

evaluated with the state of the art as shown in the table below. 

Table 1: Area and Delay Comparison 

Reverse 

Converter 

Area  Delay 

[17] 𝑛2 + 12𝑛 + 12 16𝑛 + 22 

[18a] 2.5𝑛2 + 25.5𝑛 + 12 18𝑛 + 23 

[18b] 23𝑛 + 11 16𝑛 + 14 

[19] (5𝑛2 + 43𝑛) 6 + 16𝑛 − 1  18𝑛 + 7 

Proposed 

System 
9𝑛 + 3 16𝑛 + 7 

The area of the [17], [18a] and [19] all have an asymptotic 

complexity of O(n2) whiles the proposed system has a 

corresponding value of O(n). In the system proposed in [18b], 

the area has an asymptotic complexity of O(n) but has 

superior values than the one in the proposed system for values 

of n. As the values of 𝑛 increases, the time and space 

complexity for the proposed system is better than those 

proposed in [17], [18a], [18a] and [19].  

Table 2 Area Analysis  

Conver

ters 

Area n-Values 

2 3 4 5 6 

[17] 𝑛2 + 12𝑛 + 12 40 57 76 97 12

0 

[18a] 2.5𝑛2 + 25.5𝑛
+ 12 

73 11

1 

15

4 

20

2 

25

5 

[18b] 23𝑛 + 11 57 80 10

3 

12

6 

14

9 

[19]  5𝑛2 + 43𝑛 6 + 16𝑛 − 1  2.8

6 

3.2

8 

3.6

5 

4 4.3

4 

Propos

ed 

System 

9𝑛 + 3 21 30 39 48 57 

 
In table 2, converters [17], [18a] and [18b] have values of 

their area more than the proposed system. Therefore, the 

proposed system performs better than them in terms of area.  

From table 2, the converter in [19] will perform better than the 

proposed system in terms of area.  

Table 3: Delay Analysis  

Converters Delay n-Values 

2 3 4 5 6 

[17] 16𝑛 + 22 54 70 86 102 118 

[18a] 18𝑛 + 23 59 77 95 113 131 

[18b] 16𝑛 + 14 46 62 78 94 110 

[19] 18𝑛 + 7 43 61 79 97 115 

Proposed 

System 
16𝑛 + 7 39 55 71 87 103 

 

In table 3, all the existing systems have values more than the 

proposed system. Therefore the proposed system performs 

better the existing systems in terms of delay. 

5. CONCLUSION 
A new reverse converter with a high dynamic range is 

proposed and implemented. This reverse converter is suitable 

for applications requiring high dynamic range like Digital 

Signal processing, Cryptography etc. The Area and the 

Propagation Delay of the proposed system are computed and 

𝑂𝑃𝑈 

𝐶𝑃𝐴 1 2𝑛 + 1 − 𝑏𝑖𝑡 

𝐶𝑃𝐴 2 (𝑛 − 𝑏𝑖𝑡) 

𝐶𝑃𝐴 3  5𝑛 + 2 − 𝑏𝑖𝑡 

𝐶𝑆𝐴 (𝑛 − 𝑏𝑖𝑡) 

 
𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 

𝑥2 𝑥1 𝑥3 

𝑥2 𝑑1 

𝑑2 

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 

𝑥3 

𝑐 𝑠 
𝐶 

𝐴 

𝑑3 

𝑋 

2𝑛−1 
2𝑛−1 

22𝑛+1 

24𝑛+2 

22𝑛+1 
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compared to converters with similar Dynamic Range. The 

proposed system outperformed the state of the art in terms of 

Delay. The proposed system performs better than those 

proposed in [17], [18a] and [18b] in terms of Area. However, 

the converter proposed in [19], shows a gain in terms of Area 

over the proposed system even though it has an asymptotic 

complexity of 𝑂(𝑛2).  
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