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ABSTRACT 
This paper presents the modelling of three links rigid 

manipulator (TRLM) deriving its dynamic equations 

depending on Lagrange/Euler (L-E) method, the manipulator 

design and implementation has a complexity, uncertainty and 

instability dynamic features which lead to a non-linear 

characteristics, so controlling the manipulator means 

controlling multi-body multi-input multi-output (MIMO) non-

linear and coupled system, the second part of this paper 

introduce a precise modified Proportional Integral Derivative 

(PID) controller to control the manipulator under applying 

different scenarios for the reference signal according to 

manipulator applications. 
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1. INTRODUCTION 
 Recently robots have been considered as an indispensable 

part of advanced manufacturing field with the ability of robots 

to accomplish hazardous and risky jobs for human. In 

robotics, there are two main subjects which are kinematics 

and dynamics. Within the science of kinematics one studies 

the position, the velocity, the acceleration and all higher order 

derivatives of the position variables. Kinematics itself is 

divided into Forward and Inverse kinematics [1, 2]. 

However, the relationship between these motions and the 

forces and torques that cause them constitutes the problem of 

dynamics [3, 4]. The dynamic model of a robot studies the 

relation between the joint actuator torques and the resulting 

motion.  

There are two problems related to the dynamics of a 

manipulator; the first; given the trajectory point [position (𝜃), 

velocity (𝜃 ), and acceleration (Ӫ)] and we wish to calculate 

the required vector of joint torques (𝜏). In other words, 

computation of the vector 𝜏(𝑡) necessary to obtain a desired 

trajectory 𝑞 (t), 𝑞 (t), q(t) (q is the generalized joint 

coordinates), once the forces applied of the end-effector are 

known. This is the Inverse dynamic problem.  

The second is to calculate how the mechanism will move 

under application of a set of joint torques, that is, given a 

torque vector 𝜏 calculate the resulting motion (position, 

velocity, acceleration) of the manipulator In other words, 

computation of the time evolution of 𝑞 (t) then of 𝑞 (t) and q(t), 

given the vector of generalized forces (torques) 𝜏(𝑡) applied 

to the joints and, in case, the external forces  applied  to  the  

end-effector, and the initial conditions q(t = t0) 𝑞 (t = t0) and 

this is Direct dynamic model [5]. An accurate dynamic model 

of a robot manipulator has many benefits; for the design of 

motion control system, analysis of mechanical design, and 

simulation of manipulator motion [6]. In other words, to 

achieve a proper control, a valid dynamic model must be 

obtained. In Kostic et al. [7] approach for modeling and 

identification of a high-performance robot control, they 

highlighted a procedure for obtaining kinematic and dynamic 

models of a robot for the control design. The procedure 

involves deduction of the robot’s kinematic and dynamic 

models, estimation of the model parameters experimentally, 

validation of the model and identification of the remaining 

robot dynamics, which should not be ignored if robustness 

and high-performance robot operation are required. There are 

many approaches for generating the dynamic equations of a 

mechanical system. 

Two commonly methods are used for formulating the 

dynamics based on the specific geometric and inertial 

parameters of the robot, they are L-E formulation and the 

recursive Newton-Euler method [8]. Both are equivalent as 

both describe the dynamic behaviour of the robot motion, but 

are specifically useful for different purposes. We will use L-E 

method for our derivation which relies on the energy 

properties of mechanical systems to compute the equations of 

motion. 

Serial linkage robot arms are a highly non-linear uncertain 

system with complicated interactions between each joint [9]. 

These interactions represent gravitational forces dependent on 

the position of the joint, effective inertia forces due to the 

acceleration of each joint where the deriving torque is acting 

reaction forces due to the accelerations of other joints, 

Coriolis forces generated by the velocities of the other joints 

and centrifugal forces generated by the angular velocity of 

each joint. Therefore, the robot arms are usually assumed as 

non-linear, uncertain, MIMO system. 

The most used form of industrial controllers is the PID 

controller. Statistics shows that they constitute more than 90% 

of feedback controller used today. This is because it’s low 

cost, simple in structure and robust in performance over a 

wide range of operation conditions [10]. 

This paper is organized as follows; section two introduces the 

mathematical model of the manipulator deriving its dynamic 

equations showing the response of the system without control. 

Section three introduces the design of PID controller 

representing some tuning parameters methods to have the 

optimum response; also it represents the simulation results. 
Finally, Section four represents conclusion and future work. 
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2. DYNAMICS OF THREE-LINKS 

MANIPULATOR 
We consider the three-link robotic manipulator. The physical 

system is shown in fig. 1  

 

Fig.1 Three Link Manipulator 

The system consists of three masses connected by weightless 

bars. The bars have length d1, d2, d3. The masses are denoted 

by m1, m2, m3, respectively. 

Let 𝜃1, 𝜃2, 𝜃3 denote the angles in which the first bar rotates 

about the origin and the second bar rotates about endpoint of 

the first bar. 

The equations for the x-position and the y-position: 

 X1 = d1 sin 𝜃1, Y1 = - d1 cos 𝜃1    (1) 

X2 = d1 sin 𝜃1 + d2 sin (𝜃1 + 𝜃2),  

Y2 = - [d1 cos 𝜃1+d2 cos (𝜃1+𝜃2)]   (2) 

X3 = d1 sin 𝜃1 + d2 sin (𝜃1 + 𝜃2) + d3 sin (𝜃1 + 𝜃2 +𝜃3) 

Y3 = - [d1 cos 𝜃1 + d2 cos (𝜃1+𝜃2) + d3 cos (𝜃1+𝜃2+𝜃3)]        

                                                   (3)  

The joint velocity of each link, 

   V12 = 𝑥 12+𝑦 12, V22 = 𝑥 22+𝑦 22, V32 = 𝑥 32+𝑦 32  (4) 

The Kinetic energy (K.E) of each link, 

Ki = ½ mi vi
2      (5) 

i = 1, 2, 3 (no. of joints) 

The total K.E of all links; 

   K = K1 + K2 + K3     (6) 

The potential energy (P.E) of each link; 

   Pi = - mi g Yi             (7) 

The total P.E of all links; 

    P = P1 + P2 + P3      (8) 

2.1 Lagrange-Euler Formulation 
 The L-E equations are obtained as [2]: 

     L = K – P   , 

     𝜏i = d/dt [𝛿L / 𝛿𝜃 i] – [𝛿𝐿 / 𝛿𝜃i]     (9)  

Where: 

     K = Total kinetic energy of the robot arms system. 

     P = Total potential energy of the robot arms system  

     𝜃i = Generalized coordinates of the robot arms. 

     𝜃 i = First time derivative of the generalized coordinate. 

     𝜏i = Generalized torques applied to the system at joint i                                

             to drive link i. 

By applying (9) to The Lagrange function of the robot arm 

yields the necessary generalized torque Ti for joint i actuator 

to drive the i-th link of the manipulator, for i = 1, 2, 3 which 

gives: 

     𝜏1 = [(m1 + m2 + m3) d12 + (m2 + m3) d22 
+ m3 d32+ 2 (m2 + m3) d1 d2 cos 𝜃2+2 m3 
d2 d3 cos 𝜃3+ 2 m3 d1 d2 cos (𝜃2 + 
𝜃3)] Ӫ 1+[(m1+ m2) d22+ m3d32 + (m2+m3) d1 d2 
cos𝜃2 + 2 m3 d2 d3 cos𝜃3 + m3 d1 d2 
cos(𝜃2+𝜃3)] Ӫ2 + [m3 d32+m3 d2 d3 cos𝜃3+m3 d1 
d2 d3 cos (𝜃2+𝜃3)] Ӫ3 - [(m2 + m3) d1 d2 sin 
𝜃2+ m3 d1 d2 sin (𝜃2 + 𝜃3)] 𝜃 22 - [m3 d2 d3 
sin 𝜃3 + m3 d1 d2 sin (𝜃2 + 𝜃3)] 𝜃 32 -[2 
(m2 + m3) d1 d2 sin 𝜃2 + 2 m3 d1 d2 sin 
( 𝜃2 + 𝜃3)] 𝜃 1 𝜃 2 - [2 m3 d2 d3 sin 𝜃3 + 2 
m3 d1 d2 sin (𝜃2 + 𝜃3)] 𝜃 1 𝜃 3 - [2 m3 d2 
d3 sin 𝜃3 + 2 m3 d1 d2 sin (𝜃2 + 𝜃3)] 𝜃 2 
𝜃 3 + [(m1 + m2 + m3) d1 g sin 𝜃1+ (m2 + 
m3) d2 g sin (𝜃2 + 𝜃1)+ m3 d3 g sin ( 𝜃1 + 
𝜃2 + 𝜃3)         (10)                             

𝜏2 = [(m1 + m2) d22 + m3 d32 + (m2 + m3) 
d1 d2 cos 𝜃2+ 2 m3                                                                                                        
d2 d3 cos 𝜃3 + m3 d1 d2 cos (𝜃1 + 𝜃3)] 
Ӫ1+ [(m2 + m3) d22 + m3 d32 + 2 m3 d1 d2 
cos 𝜃3] Ӫ2 + [m3 d32 + m3 d2 d3 cos 𝜃3] 
Ӫ3+ [(m2 + m3) d1 d2 sin 𝜃2 + m3 d1 d2 
sin (𝜃2 + 𝜃3)] 𝜃 12 - [m2 d2 d3 sin 𝜃3] 𝜃 32 - 
[2 m3 d2 d3 sin 𝜃3] 𝜃 1 𝜃 3 - [2 m3 d1 d2 
sin 𝜃3] 𝜃 2 𝜃 3+ [(m2 + m3) d1 g sin (𝜃1 + 
𝜃2) + m3 d3 g sin (𝜃1 + 𝜃2 +𝜃3)]       
              (11)                                 
       

𝜏3 = [m3 + d32 + m3 d2 d3 cos 𝜃3 + m3 d1 
d2 cos (𝜃2 + 𝜃3)]                                                                  
Ӫ1 + [m3 d32 + m3 d2 d3 cos 𝜃3] Ӫ2+ m3 
d32 Ӫ3+ [m3 d2 d3 sin 𝜃3 + m3 d1 d2 sin 
(𝜃2 + 𝜃3)] 𝜃 12 + [m3 d1 d2 sin 𝜃3] 𝜃 22 - [2 
m3 d2 d3 sin 𝜃3] 𝜃 1 𝜃 2 + m3 d3 g sin 
( 𝜃+𝜃2+ 𝜃3)  (12) 

Let us rewrite the dynamic equations in the general form:  

   𝜏i=Dii𝜃 i                                "Effective torque''                                                      

+Dik𝜃 k+Dim𝜃 m                                     "Coupling torque"       

+Diii𝜃 i2+Dikk𝜃 k2+Dimm𝜃 m2                   "Centrifugal torque" 

+ Diik 𝜃 i 𝜃 k + Diki 𝜃 k 𝜃 i 

+Diim𝜃 i𝜃 m+Dimi 𝜃 m 𝜃 i                          "Coriolis torque" 

+ Dikm 𝜃 k 𝜃 m + Dimk 𝜃 m 𝜃 k+Di                                                 

"Gravity torque" 

x
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Fig. (1)  Three links robot manipulator
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Unfortunately, the computation of these coefficients requires a 

large amount of arithmetic operations. Thus, the L-E 

equations are very difficult to utilize for real-time control 

purposes unless they are simplified [11]. 

These dynamic motion equations of a manipulator are 

coupled, nonlinear, and second order ordinary differential 

equations. The use of these equations to compute the joints 

torques from the given joint positions, velocities and 

accelerations for each trajectory set point in real time has been 

a computational bottleneck. In order to perform real-time 

control, a simplified robot arm dynamic model is proposed 

which ignores the Coriolis and centrifugal forces [12].  

2.2 State Space Representation 
The derivation of the dynamic model of a manipulator based 

on the L-E formulation is simple and systematic. The L-E 

equations of motion can be utilized to solve for the forward 

dynamics problem. 

Next, we transform the dynamic equations (second order 

differential equation) into the state space representation [13]. 

The coupling inertias are neglected since they are very small 

compared with the effective joint inertia. It is noted that, the 

design of the variable structure controller does not require 

accurate mathematical dynamic model of the manipulator, 

thus the bounds of the model parameters are sufficient to 

construct the controller. This property is desirable since the 

complexity of the manipulator dynamics make the exact 

calculation of the dynamics infeasible if not impossible [5, 

11]. 

Define the state variables as: 

𝜃1 = x1          ,             𝜃 1 = x2 

𝜃2 = x3          ,             𝜃 2 = x4 

𝜃3 = x5          ,             𝜃 3 = x6 

𝜃 1 = 𝑥 1 = x2 

Ӫ1 = 𝑥 2 = [𝜏1+D122 x42+D133 x62+D112 x2 x4+D113 x2                                  

x6+D123 x4 x6–C1] / D11                              

𝜃 2 = 𝑥 3 = x4 

Ӫ2 = 𝑥 4 = [ 𝜏2 + D233 x62 + D231 x2 x6 + D223 x4 x6 – D211 

x22 – C2] / D22 

𝜃 3 = 𝑥 5 = x6 

Ӫ3 = 𝑥 6 = [𝜏3 + D311 x22 + D322 x42 + D312 x2 x4 – C3] / 

D33 

By applying Rung-Kutta forth order (ode-45) method with a 

sample rate (0.001) to solve the above equations, assuming 

the following parameters, 

                 m1 = 1 kg,     m2 = 0.8 kg,      m3 = 3 kg, 

                 d1 = 1 m,       d2 = 0.8 m,      d3 = 0.6 m 

With initial conditions: 

 x (0) = [0.175, 0, 0.25, 0, 0.275, 0]T, 

 The torques 𝜏i are set to Zero,  

That is there is no control on the links. These leads to the 

results shown in the figures 2, 3 and 4 below: 

 

Fig. 2 state versus time for first link 

 

Fig. 3 state versus time for second link 

 
Fig. 4 State versus time for third link 

As shown in the above figures, the system performance is 

oscillatory under no torques applied (without control). The 

velocity of the link decreases as it goes to the point of 

changing direction till it becomes zero at the point of 

changing direction then, it starts to increase again.  

In general, the motion control problem consists of obtaining 

dynamic model of the manipulator and validates this model, 

then using this model to design a robust controller that 

achieves the desired response and performance that resists the 

environmental characteristics. 

3  CONTROLLER DESIGN 
The control problem for robot manipulators is the problem of 

determining the time history of joint inputs required to hold 

the system of three links in a particular position on X-Y plane 

or to cause the end-effector to execute a command motion. 

Having a robust controller gives us the ability to hold each 

link at a particular angle 𝜃i with respect to X-axis. Our 

algorithm used works by defining an error variable which is 

the difference between the desired position (target position) 

and the real position of the manipulator with the effect of the 

controller. 

The general form of equations of motion can be written as  

𝜏 =  M (𝑞)𝑞  +  V (𝑞, 𝑞 )  +  G (𝑞)     (13) 

Where, q is the generalized joint coordinates 

M (𝑞)  is the mass matrix (inertia matrix) 

V (𝑞,𝑞 )  is the centrifugal & Coriolis forces 

G (𝑞)  is the gravity forces 

𝜏  is the generalized forces (torques applied to the robot) 
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𝑀 (𝑞)     =   
𝐷11 0 0

0 𝐷22 0
0 0 𝐷33

       (14)   

𝑉 (𝑞, 𝑞 )  =

  

−𝐷122  𝜃 2
2−𝐷133  𝜃 3

2−𝐷122  𝜃 1𝜃 2−𝐷133  𝜃 1𝜃 3−𝐷123  𝜃 2𝜃 3
𝐷233  𝜃 3−𝐷213  𝜃 1𝜃 3−𝐷223  𝜃 2𝜃 3+𝐷211  𝜃 1

2

𝐷311  𝜃 1
2+𝐷322  𝜃 2

2 + 𝐷312  𝜃 1𝜃 2

          

(15) 

G (𝑞)    = [D311 (𝜃 1)
2 + D322 (𝜃 2)

2 + D312 𝜃 1 𝜃 2]     (16) 

By solving the function 𝑞 , we get 

 𝑞 =  𝑀 (𝑞)−1 [−𝑉(𝑞, 𝑞 )  −  𝐺 (𝑞)]  +  𝜏                  (17) 

The controller for any joint would be 

Fi = Kpi e + Kdi 𝑒  + Kii  𝒆 dt       where i = 1, 2, 3    (18) 

The error (e) signals general form is 

e (𝜽i) = 𝜽if – 𝜽i    where 𝜽if is the target position.    (19) 

By assuming that: 

 𝑥𝑖  =   𝒆 (𝜽𝒊) 𝑑𝑡, then 𝑥 i = 𝜽if – 𝜽i    ;     (20) 

𝜽0   = [𝜽1(0)    𝜽2(0)    𝜽3(0)]T 

   

𝜃 𝑚1

𝜃 𝑚2

𝜃 𝑚3

  = 𝑀 (𝑞)−1 ∗ [−𝑉 (𝑞 , 𝑞 )  −  𝐺 (𝑞) ] + 

 

𝑘𝑝1  𝜃1𝑓 − 𝜃1 − 𝑘𝑑1 𝜃1
 + 𝑘𝑖1 𝑥1

𝑘𝑝2  𝜃2𝑓 − 𝜃2 − 𝑘𝑑2 𝜃2
 + 𝑘𝑖2 𝑥2

𝑘𝑝3  𝜃3𝑓 − 𝜃3 − 𝑘𝑑3 𝜃3
 + 𝑘𝑖3 𝑥3

           (21) 

This is a second order non-linear system; we have to convert 

it to a first order system by using state space previously 

explained. By choosing a proper set of state variables, 

complex systems may be brought to a more convenient form 

(state-space form), which only requires solving first order 

ODE’s in matrix form [14]. 

Defining the state variables as: 

   z1 = x1  , 𝜃1 = z4    ,  𝜃 1 = z7  ,  𝜃 1 = 𝑧 7 

   z2 = x2  ,  𝜃2 = x5  ,  𝜃 2 = z8  ,  𝜃 2= 𝑧 8 

   z3 = x3  ,  𝜃3 = x6  ,  𝜃 3 = z9   , 𝜃 3= 𝑧 9 

The initial conditions are given by 

 Z0 = [z10 z20 z30 z40 z50 z60 z70 z80 z90]. 

Now, we have a system of first order nonlinear differential 

equations. 

3.1 PID Tuning methods 
There are many methods for tuning PID parameters, Ziegler 

Nichols [15], Cohen-Coon [16] and Differential Evolution 

method [17]. PID tuning using Ziegler Nichols method is 

based on the frequency response of the closed-loop system. 

Another method for tuning PID parameters is the DE 

algorithm which is known to be another effective global 

optimizer. The performance of the DE depends on three main 

operations: mutation, generation (reproduction) and selection 

[18]. 

 

3.2  Simulation and results 
By applying that: 

θ1f = 90o, θ2f = 30o, and θ3f = 30o and 

θ1i = 45o, θ2i = 90o, and θ3i = -90o  

The simulation results show that the PID controller gets the 

links of masses M1, M2 and M3 to the desired positions 

determined by the angles in a short time (less than 4 seconds) 

that shows also a rapid response for the system with no steady 

state error. As shown in the following figures 5, 6 and 7. 

 

Fig. 5 (a) the time response of θ1 of mass M1, (b) the error 

of θ1 

 

Fig. 6 (a) the time response of θ2 of mass M2, (b) the error 

of θ2 
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Fig. 7 (a) the time response of θ3 of mass M3, (b) the error 

of θ3 

 
The second part of the simulation procedures is a multi-step 

response which is achieved by comparing the response of [19] 

with our results. Figures 8, 9 and 10 show the closed-loop 

transient response of the controller. Our modified PID 

controller achieved the target positions for the masses M1, M2 

and M3 which is determined by the target angles θ1f, θ2f and 

θ3f.  

The rise time for θ1, θ2 and θ3 approximately equals (0.6, 0.6 

and 0.6) seconds respectively with very small overshoots (0.2, 

0.2 and 0.1 %) and with almost no steady state error. The 

comparison between figures 11, 12 in [19] and our modified 

controller figures 8, 9 and 10 showed that the transient 

response of our controller is more convenient than transient 

response of [19]. 

 

Fig. 8 Transient Response of 𝜽1 

Fig. 9 Transient Response of 𝜽2 

Fig. 10 Transient Response of 𝜽3 

 

Fig. 11 Transient Response of 𝜽1 of [19] 

 

Fig. 12 Transient Response of 𝜽2 of [19] 

4.  CONCLUSION 
In this paper the dynamic equations of a TRLM were derived 

using L-E method. The system behaviours without control are 

shown. We also introduced a robust PID controller applying 

to the manipulator to control the position of its end-effector. 

The controller was tested within Matlab/Simulink 

environment. From the results, we can conclude that obtaining 

the correct dynamic model of a robot is a necessary step for its 

control. In other words, to achieve a proper control, a valid 

dynamic model must be obtained. The PID controller can 

control the position of manipulator well, but this is dependent 

on setting the values of PID parameters with proper values. 

As shown in the comparisons; we can get a better system 

response. As a future work, we would use neural PID 

controller instead of the conventional PID controller. 

Applying disturbance to the system showing the disturbance 

rejection of the controller it would give better accuracy. 

5.  APPENDIX. A 
D11  = (m1 + m2 + m3) d12 + (m2 + m3) d22 + m3 d32 

           + 2 m3 d2 d3 cos x5 + 2 (m2 + m3) d1 d2 cosx3   

           + 2 m3 d1 d2 cos (x3 + x5) 

D122 = (m2 + m3) d1 d2 sin x3 + m3d1d2 sin (x3 + x5) 

D133 = m3 d2 d3 sin x5 + m3 d1 d2 sin (x3 + x5)  

D112 = 2 (m2 + m3) d1 d2 sin x3 + 2 m3 d1 d2 sin (x3 + x5) 

D113 = 2 m3 d2 d3 sin x5 + 2 m3 d1 d2 sin (x3 + x5) 
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D123 = 2 m3 d2 d3 sin x5 + 2 m3 d1 d2 sin (x3 + x5) 

C1   = (m1 + m2 + m3) g d1 sin x1 + (m2 + m3) g d2 sin 

           (x1 + x3) + m3 g d3 sin (x1 + x3 + x5) 

D22  = (m2 + m3) d22 + m3 d32 + 2 m3 d1 d2 cos x5 

D211 = (m2 + m3) d1 d2 sin x3 + m3 d1 d2 sin (x3+ x5) 

D233 = m3 d2 d3 sin x5 

D213 = 2 m3 d2 d3 sin x5 

D223 = 2 m3 d1 d2 sin x5 

C2  = (m2+m3) d2 g sin (x1 x3) + m3 d3 g sin (x1+x3 + x5) 

D33  = m3 d32 

D311 = m3 d2 d3 sin x5 + m3 d1 d2 sin (x3 + x5) 

D322 = m3 d1 d2 sin x5 

D312 = 2 m3 d2 d3 sin x5 

C3    = m3 d3 g sin (x1 + x5 + x3) 
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