
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.34, April 2018

27

Efficient and Privacy Preserving Protocol against Insider

Attack for Data Storage in Cloud Computing

Jennifer Batamuliza
University of Rwanda(UR) African Center of Excellence in Data Science

(ACE-DS) PhD Candidate in Data Mining

University of Kigali (UoK)

ABSTRACT

Cloud computing provides remote users a flexible and

convenient way to obtain cloud services on demand such as

cloud storage service, which has been facing great security and

privacy challenges, especially insider attacks. However, most of

the previous work on the cloud security focusing on the storage

security can’t be effective against insider threats. Wei’s scheme

on the cloud storage, which is based on an ID-based strong

designated verifier signature (IBSDVS) protocol, takes privacy

and confidentiality into consideration. But it also can’t be

against insider attacks and its confidentiality exists security

flaws. Hence, in this paper, we propose an efficient data storage

protocol in the cloud computing, which can be against insider

attacks as well as providing privacy preserving and

confidentiality. Similar to Wei’s scheme, our protocol adopts an

IBSDVS scheme that has the secure property of non-

delegatability. Then the analysis of security and performance are

described in detail.

Keywords
Cloud computing, storage security, designate verifier signature,

privacy preserving, and insider attack.

1. INTRODUCTION
CLOUD computing [1] has become the common focus of the

industry, academic circle, government and all walks of life

concerned in the field of information technology currently.

Cloud computing embodies the idea that the network is the

computer. It combines large amounts of computing resources,

storage resources, and software and hardware resources together

to form a huge scale of pool sharing virtual IT resource. Then it

can provide remote users a flexible and convenient way to obtain

cloud services on demand such as data storage and data

computation [2]. Due to its convenience, economy, scalability

and other advantages, cloud computing attracts more and more

enterprises’ sight. They can liberate from the heavy pressure of

the IT infrastructure management and maintenance by renting

the necessary resources. In the IT industry, cloud computing,

which is generally regarded as another an important growth

point after the Internet economic boom, has great market

prospects [3].

In the same time, with the development of cloud computing,

cloud storage has become a hot researching topics in the

filed of information storage. Compared with traditional storage

devices, data storage in cloud computing is not just a hardware,

but a system constituted with network equipment, storage

equipment, servers, software applications, public access

interfaces, access networks and clients. Cloud storage provides

remote storage service that the local data would store in an
available online storage space, which is provided by cloud

storage service provider (CSSP). Users who require storage

service no longer need to build their own data center, but only

apply for storage service to CSSP. Then it plays a role in saving

the hardware and software infrastructure investment.

Furthermore, when the concept of cloud storage was put

forward, it got the supports and attention with numerous

manufacturers. Amazon launched simple storage service(S3)

with elastic block storage (EBS) technology to support persistent

data storage. Google launched the google drive online storage

service(GDrive). CDNetworks and Nirvanix formed a strategic

partnership to provide an integrated platform of cloud storage

service and content delivery service. And Windows Azure was

introduced by Microsoft, which has established huge data

centres in USA around.

Even if the cloud storage has advantages of low price, deploying

conveniently and so on, it faces many key issues that security

problem is the first to bear the brunt. With the increasing

popularity of cloud storage, the customers worry about security

and privacy challenges [4], which has become an important

factor to restrict its development, have showed a gradually rising

trend. From an investigation conducted by Twinstrata on the

new cloud storage service in 2012, only 20% of respondents will

put their private data in the cloud storage servers (CSS). In a

cloud storage model, once the data is outsourced to a cloud

storage service provider, it means that data owners give up the

control of their data, because CSSP have the priority access right

to cloud users’ data or applications [5]. In addition, the existing

cloud storage platforms are always having fatal security flaws.

Google happened a serious cloud security accident that a large

number of users’ private documents were leaked in 2009. In the

same year, the Simple Storage Service of Amazon happened two

interruptions in the single storage service [6]. Thus, it may exist

the internal staff dereliction of duty, hacker attacks, system

malfunctions leaded to security mechanism failure and a variety

of other risks, CSSP don’t have enough evidences to convince

cloud users that their data is correctly stored in the cloud storage

servers. Hence one can see that data security is one of the major

obstacles to cloud storage development and cloud storage

system has an urgent demand on the security mechanism. The

cloud storage security can be divided into two categories: Secure

cloud storage and Secure cloud auditing. Secure cloud storage

refers to making sure that the cloud users could securely and

correctly store their data at mistrusting cloud storage servers,

while secure cloud auditing refers to verifying the integrity and

correctness of the outsourced data at mistrusting cloud storage

servers. Therefore, cloud data integrity also can be split into the

integrity of storing and the integrity of using. There have been

many researches on the secure cloud auditing, such as [7], [8],

[9], [10], [11]. However, in this paper, we only discuss the

secure cloud storage in the cloud computing. We involve the

designated verifier signature technique with secure properties of

non-delegatability, no transferability, unforgeability and privacy

of signer’s identity to achieve that messages can be stored

correctly by means of secure transmission and integrity

verifying. Moreover, privacy preserving [12], [13], [14] can’t be

ignored for secure cloud storage.

In this paper, we propose a new secure cloud storage protocol

with designated verifier signature. Then the main research

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.34, April 2018

28

contents and achievements of this paper are as follow: In next

section, we give a brief overview on the related work. Section 3

introduces the secure cloud storage model, secure definitions

and necessary preliminary knowledge. We review the existing

Sec Cloud scheme in Section 4 and give the secure analysis in

Section 5. Section 6 proposes our new secure cloud storage

protocol with designated verifier signature. Then Section 7

describes performance analysis and security analysis of our

protocol. In the end, we conclude this paper in Section 8.

2. RELATED WORK
Currently, there are many researches on the security of cloud

computing. And it is pay more attention to the secure cloud

storage while the attention to secure cloud computation is on the

contrary. To verify the integrity of a large file deposited at a

remote cloud storage server, Deswarte et al.[15] in 2004 first

proposed a scheme of validating remote data integrity based on a

hash function with RSA. Since this scheme is on account of the

public key cryptography, the cost of calculating is great

expensive. In 2007, Juels et al.[7] proposed a scheme of proofs

of retrievability for large static files, which not only verify the

integrity of remote data, but also can retrieve the damage data

with a certain probability by using the method of sentinels

hidden.

Shacham and Waters put forward two improved scheme with

compact POR[16] by using homomorphic verifiable tags. The

one is based on pseudo random function and does not support

the public verification. The other one is based on BLS signature

and support the public verification. After doing a lot of research

work, Ateniese et al.[8] introduced a protocol of provable data

possession at untrusted stores(PDP), which is the first

considering the public verification. Two schemes in their paper

also uses the technology of homomorphic verifiable tags with

RSA and supports privacy protection. But multiple servers can

realize collusion attacks, so they are not suitable for multiple

copy protocols. Then Ateniese et al. proposed a scalable-

PDP[17] scheme again supporting data dynamic operation and it

is provable security in the random oracle model. In 2009, Erway

et al.[9] proposed 2 kinds of dynamic provable data

possession(DPDP) to achieve data updating. One is rank-based

authenticated skip lists and the other one is based on the RSA-

tree structure. Furthermore, Wang et al.[10] realized the cloud

data storage public verification and dynamic operations by

applying the third-party auditor. Their protocol uses the

technologies of Merkle Hash Tree[18] to build BLS[19] for

block tag authentication, while it dose’t support privacy

preserving. Later, an improved scheme was proposed to support

privacy preserving on dynamic remote data storage with public

integrity auditing in [20], which makes use of the public

homomorphic key and the random mask technique. In

subsequent studies, Wang et al. based paper [10] and further

discussed the bilinear aggregation signature algorithm[21].

Hence, the third-part auditor can implement multiple integrity

auditing tasks with multiple users efficiently. In [22], Zhu et al.

put forward a kind of cooperative provable data possession,

which can support batch auditing for multiple clouds and also

was extended to support the dynamic auditing in [23]. Both [22]

and [23] does’t support batch auditing for multiple cloud users.

However, Zhu’s schemes as well as [10], [20], [21] are suffering

expensive computational cost for the third-party auditor.

Accordingly, Kang et al.[11] brought about the batch auditing

for multiple clouds and multiple cloud users. All the schemes

above are proposed to achieve the cloud storage security.

Contrarily, the comparison is so dramatic between the cloud

computation security and the cloud storage security. The secure

cloud computation is consist of remote computation auditing and

verifiable computation. Golle et al.[24] put forward schemes that

prevents cheating by making sure if participants were honest and

correctly performing the computations, or allowing participants

to prove if they have done most of the computations allocated

with high probability. Monrose et al.[25] introduced a

framework of remote auditing based on an existing distributed

computing model. Their scheme supports efficient approaches

for verifying whether a remote host correctly performed the

assigned task. In [26], authors gave the concept of veri?able

computation. Due to the host with weak computing capability,

the host should outsource the computation of a function on

difference parameters that were chosen dynamically to the

remote servers, which responded the computation results and the

proofs to prove the correctness of the computation on the gave

parameters. But it is a fully homomorphic encryption scheme, its

computational cost on the proof verifying is great. Moveover,

[27], [28] were proposed by Wei et al., which introduced

auditing schemes to achieve the cloud computation security as

well as the cloud storage security and privacy cheating

discouragement by the technologies of designated verifier

signature, batch auditing and probabilistic sampling technique.

In 2011, Canetti et al.[29] researched on verifiable computation

with two or more clouds.

3. DATA STORAGE PROTOCOL IN

CLOUD COMPUTING
In this section, we first present the definitions of data sharing

protocol including the protocol architecture, the security model

and the preliminaries of our scheme.

3.1 Data sharing architecture
We construct a general architecture for data sharing, which

contains the cloud servers, the cloud users and the verifying

agencies, as shown in Fig. 1. In the cloud computing

environment, there are a lot of cloud servers managed by one or

multiple cloud service providers (CSPs), which have high

computational resources and a large of storage space.

CSP further has the abilities of batch auditing and parallel

performing a number of sub-tasks divided by a large task, which

are allocated to multiple cloud servers. The cloud user may be a

computer, a laptop or a mobile phone, which has not enough

computational and storage resources compared with the cloud

server. Cloud users create data and outsource their data to the

cloud servers. When they desire to obtain computational and

storage services, cloud users should send requests for applying

corresponding service. Our auditing model also involves

verifying agencies (VAs) trusted and designated by cloud users.

VA has more professional knowledge and capacities to execute

the auditing service than cloud users.

Then VAs should be in charge of the auditing results on data

storage and computation.

3.2 Definitions of secure data sharing
Definition 1 (Data sharing). A secure data sharing with a ID-

based designated verifier signature(IBSDVS) scheme con-sists

of Setup, KeyExtract, DataSign, DataTran, VerSign, Simulate.

Setup(1) ! fmpk; mskg : This algorithm takes 1 as input, where

is a security parameter, and outputs a system master public key

mpk and a system master private key msk.

KeyExtract(msk; A) ! fskAg : The algorithm takes msk and an

identity ID of Alice as input. Then it outputs a secret key skID.

DataSign(skA; A; B; mpk; M) ! f g : The algorithm takes Alice’s

secret key skA and identity A as a signer, Bob’s identity B as a

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.34, April 2018

29

verifier, mpk, and a message M = fm1; m2; :::; mng 2 f0; 1g as

input. It outputs a signature for Bob.

DataT ran(M; ; keyA;B) ! fEkeyA;B(M;)g : The algorithm takes

the message M, its signature and the section key keyA;B as input.

It outputs the secret message fEkeyA;B(M;)g.

V erSign(M; ; A; B; skB; mpk) ! f0; 1g: The algo-rithm takes the

message M, its signature , the identities of Alice with A and Bob

with B, Bob’s secret key skB and mpk as input. Then it outputs 0

or 1.

Simulate(skB; A; B; mpk; M) ! f g : The algorithm takes Bob’s

secret key skB and identity B as a signer, Alice’s identity A as a

verifier, mpk, and a message M as input. It outputs a simulated

signature for Alice.

1) Non-Delegatability: Delegatability is that without

leak-ing their private key, a signer or a designated verifier can

delegate a third-party to produce a valid signature. Hence, we

give the following definition of Non-Delegatability.

Definition 2 (Non-Delegatability). A data sharing protocol with

an IBSDVS scheme is non-delegatable with (t; t0; "; "0) if for

every algorithm F and its runtime is at most t, it exists a black-

box knowledge extractor K satisfying the following conditions:

For every Setup(1) ! fmpk; mskg,

 every

A; B 2 f0; 1g , every KeyExtract(msk; A) ! skA,

KeyExtract(msk; B) ! skB, and

 every message

M 2 f0; 1g , if F (can be denoted by FA;B;M) generates a

valid signature on M with respect to A, V with a probability ".

And then K extracts secret key skA or skB on inputting M

and on oracle access to FA;B;M in expected time (t0 < P1(t)) with a

probability ("0 > P2(t)), where P1(t) and P2(t) are two polynomial

functions.

2) Non-transferability: Non-transferability is that a mes-

sage M and its IBSDVS signature are given and there is no

possible for an adversary A with secret keys of signer or verifier

to distinguish whether the signature is signed by singer or

verifier.

Definition 3 (Non-transferability). A data sharing protocol with

an IBSDVS scheme is non-transferable if the signature signed

by the signer is indistinguishable from 0 signed by the

designated verifier, i.e.

fDataSign(skA; A; B; mpk; M)

Simulate(skB; B; A; mpk; M)g:

If the two distributions are identical, we say that the data sharing

protocol with an IBSDVS scheme is perfectly non-transferable.

3) Unforgeability: Without getting a signer’s secret key

skA or a designated verifier’s secret key skB, it is not

computationally feasible to calculate the designated verifier

signature with message M in a probabilistic polynomial-time.

Hence, we can define it by playing the following game between

a probabilistic polynomial-time adversary A and a challenger C.

1) Challenger C produces a system master key pair (mpk;

msk) by running the Setup algorithm, and in-vokes an adversary

A on inputting mpk.

2) Then A issues queries, for many times polynomially,

to the following oracles adaptively:

OK : The oracle takes as input a query identity ID, then it

computes and returns KeyExtract(msk; ID) ! fskIDg to A.

ODSign: A issues a query (A; B; M) to the oracle and it outputs a

valid signature to A.

OV er: A issues a query (A; B; M;) to the oracle and it outputs 1

if is valid or otherwise, outputs 0.

3) Finally, A forms its forgery (A ; B ; M ;). It wins the

game if

a. V erSign(A ; B ; skB ; mpk; M ;) ! 1;

b. A did not issue a query to OK on inputting A and B ;

c. A did not issue a query to ODSign on inputting(A ; B ;

M).

Definition 4 (Unforgeability). A data sharing protocol with an

IBSDVS scheme is unforgeable with (t; qK ; qDSign; qV er; ") if no

adversary A can runs in time at t, issues at most qK queries to OK

, qDSign queries to ODSign and qV er queries to OV er, and wins the

game with probability at least ".

4) Privacy: It is not computationally feasible for an ad-

versary A to determine the key pair of signature without

knowing a designated verifier’s secret key skB or a signer’s

secret key skA. Then we define PSI of a data sharing protocol

with an IBSDVS scheme as follow by describing a game played

between the challenger C and a distinguisher D.

1) Challenger C produces a system master key pair (mpk;

msk) by running the Setup algorithm, and in-vokes a

distinguisher D on inputting mpk.

2) D issues queries, for many times polynomially, to the

same oracles adaptively in the unforgeability game.

3) D takes A0, A1, which are two signer identities, and B

of a verifier identity and a message M . Then C tosses a coin b 2

f0; 1g and computes

KeyExreact(mpk; A) ! skA b b

DataSign(sk ; A ; B ; mpk; M) ! :

Ab b

4) D continues to issue queries.

5) D outputs a bit b0, which is 1 or 0. It wins the game if

a. b0 = b;

b. D did not query OK on inputting B ; and

c. For any d 2 f0; 1g, D did not query OV er on inputting

(Ad; B ; M ;).

Definition 5 (Privacy of signers identity). A data shar-ing

protocol with an IBSDVS scheme is PSI security with (t; qK ;

qDSign; qV er; ") if no distinguisher D runs in time at most t, issues

at most qK queries to OK , qDSign queries to ODSign, and qV er

queries to OV er and wins the game with a probability that

deviates from one-half by more than ".

3.3 Preliminary knowledge
1) Bilinear pairings: Let G1 and G2 are respectively a

cycle additive group and a cycle multiplicative group, which has

the same prime order q. Then let P is the generator of G1.

Assume that the Discrete Logarithm Problem (DLP) in G1 and

G2 is both hard problem. Let e^ : G1 G1 ! G2 is the bilinear

pairings with following properties:

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.34, April 2018

30

1) Bilinearity: For all P; P 0 2 G1 and a; b 2 Z, there is

e^(aP; bP 0) = e^(P; P 0)ab.

2) Non-degeneracy: If there is e^(P; P 0) = 1 for 8P 0 2

G1,

then P =

3) Computability: For 8P; P 0 2 G1, there exists an

effective algorithm to compute e^(P; P 0).

Generally, we can use the Weil pairing or the reformed Tate

pairing[19] to construct bilinear pairings.

2) CBDH Assumption: The Computational Bilinear

Diffie-

Hellman (CBDH) assumption is that let G(1k) !

q;

G1

;

G2

; e^ (P; aP; bP; cP) input, where P

2

h i given is asabc

G1, a; b; c 2 Z. Then it computes e^(P; P) 2 G2 as output.

The difficulty of CBDH problem is based on CBDH as-

sumption. Due k is big enough, an algorithm A has the

advantage AdvG;A(k) to solve BDH problem if

Pr[A(q; G1; G2; e;^ aP; bP; cP) = e^(P; P)abc] AdvG;A(k) We

definite CBDH assumption[?] that AdvG;A(k) can be negligible

for all the PPT algorithm A with k. That is,

Pr[CBDH] AdvG;A(k):

3) Designated Verifier Signature: Designated verifier sig-

nature [30], [31], [32] refers that only the designated verifier B

can verify the validity of the signature signed by A, while B

can’t convince others that the legitimate signature is really

signed by A. Because B can also construct a legitimate signa-

ture by himself. Even though an adversary get the private keys

of the signer A and the designated verifier B, it is impossible for

the adversary to decide whether the legitimate signature is

signed by A or B. Strong designated verifier signature is a

special designated verifier signature. In the verification process,

it should be used the the designated verifier’s private key so that

only the designated verifier has the capacity to verify the

signature.

4. ANALYSIS OF THE SECCLOUD

PROTOCOL
To achieve secure cloud computing, the basic SecCloud protocol

relying on the identity-based cryptography. Here this paper

review their proposed protocol which consists of two phases:

system initialization, secure cloud storage.

A. Review of the SecCloud protocol

1) Initialization: The Initialization phase includes two

 steps:

Setup(1) ! params. In this step, Initialization System takes 1 as

input and chooses a number s 2 Zq randomly as the system

master secret key, then it computes Ppub = s P as the system

public key. Finally, the outputs of this step is params = (G1; G2;

q; e;^ P; Ppub; H; H1; H2; H3).

UserReg(ID) ! (params; skID). In order to register to

Initialization System, this step takes a cloud user’s identity ID as

input to get the cloud services. Then Initialization System

outputs params and a user secret key skID = s QID, and sends

them to the cloud user(U), where QID = H1(ID).

2) Cloud storage security: This Cloud storage security

phase includes the following four steps:

StorageApp(M) ! I. This step takes a message with n blocks M =

m1; m2; :::; mn 2 Zq as input by U. Then it outputs the space list I

= i1; i2; :::; in distributed by the cloud service provider(CSP) and

sent to U.

DataSign(M; I) ! . This step takes n unsign data

M = m1; m2; :::; mn 2 Zq and space list I = i1; i2; :::; in as

input by U. Then it outputs with n signatures on these data. For

each data block mi, U randomly picks up ri 2 Zq and computes a

signature i on the basis of the designated verifier signature

technology:

Ui = ri QID

hi = H2(Uikmikii)

Vi = (ri + hi) skID

i = e^(Vi; QCS)

where = f ig1;:::;n and i = (Ui; i).

DataEnca(M; ; kID;CS) ! EkID;CS (fM; g). This step takes the pairs

of the message and corresponding signature

fM; g and the session key kID;CS by U. Then it outputs EkID;CS

(fM; g) encrypted by kID;CS and sent to CSP, where keyID;CS =

H3(^e(skID; QCS)).

Similarly, the session key between U and VA is kID;V A =

H3(^e(skID; QV A)) and returns EkID;V A (fM; g) to VA.

DataVer(EkID;CS (fM; g); kCS;ID; skCS) ! f0; 1g. This step takes

EkID;CS (fM; g), kCS;ID and skCS by CSP. It decrypts and obtains

the pairs fM; g by its own session key

kCS;ID, since

kCS;ID = H3(^e(skCS; QID))

= H3(^e(s QCS; QID))

= H3(^e(QCS; s QID))

= H3(^e(QCS; skID)) = kID;CS

Then CSP takes the secret key skCS to check the validity of the

signatures by the following equation:

?

i = e^(Ui + H2(Uikmikii)QID; skCS)

If the above equation holds, returns 1; Otherwise, returns 0.

B. Insider attacks of the SecCloud protocol

The SecCloud protocol described above enjoys the desirable

features of secure storage in cloud computing and achieving

privacy cheating discouragement by designated verifier sig-

nature. Regarding the security of the data storage protocol in

cloud computing, three insider attacks should be extra

considered in this protocol.

1) An adversary, who is delegated some computational

information rather than the private keys, may simulate to forge

valid signatures to demonstrate the authenticity of the stored

data to convince others.

2) An adversary may break its confidentiality and then

arbitrarily modify the stored data to compromise the data

integrity or reveal the confidential data or in both of cases.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.34, April 2018

31

3) An adversary may obtain the private information such

as a cloud user’s identity information.

Therefore, stronger adversaries may exist in the real cloud

environment. For example, suppose either a cloud user or

a cloud storage service provider has revealed e^(QID;

skCS) (both the cloud user, cloud storage service provider can

compute) to an adversary C, then the following insider attacks

are possible:

Authentication attack: Assume that a cloud user (U) has sent an

authenticated information fM; g to the cloud storage service

provider (CSSP) according to the designated verifier signature in

the step of Data signing. However, if the value of e^(QID; skCS),

obtained by an adversary C in the process of communication

between U and CSSP, is insider leaked. After that, C possessed

the value of e^(QID; skCS). For each data block mi with its

signature i, there is

i = e^(Ui + H2(Uikmikii)QID; skCS)

= e^(U; skCS)^e(H2(Uikmikii)QID; skCS)

= e^(QID; skCS)ri e^(QID; skCS)H2(Uikmikii)

= e^(QID; skCS)
ri+H2(Uikmikii)

:

Hence, the adversary C, disguising as a legitimate cloud user,

can generate the valid signatures that are designated to CSSP on

any message M = fm1; m2; :::; mng 2 Zq by the following

algorithm:

For each data block mi , C picks up a random number ri and

computes

Ui = ri QID;

i = e^(QID; skCS)
ri +H2(Ui kmi kii):

Then the signature of each block mi is i = (Ui ; i). Due to = f i g,

the forgery of data-signature pairs are fM ; g.

Therefore, no one, including a cloud user and CSSP, can

distinguish this forged signature from the original signature

produced by the cloud user U or the adversary C.

Confidentiality attack: In this SecCloud protocol, a cloud user

and a cloud storage service provider should pre-compute their

own session keys kID;CS and kCS;ID in order to guaranteing the

confidentiality of data trans-mission. However, similar to the

Authentication attack above, an adversary C may obtain the

insider leaked val-ues of e^(QID; skCS) or e^(skID; QCS) or both

of them. Then C can break the confidentiality of data

transmission to arbitrarily modify the stored data to compromise

the data integrity or reveal the confidential data or in both of

cases, since the session keys that

kID;CS = H3(^e(skID; QCS)); kCS;ID = H3(^e(skCS; QID))

= H3(^e(s QCS; QID))

= H3(^e(QCS; s QID))

= H3(^e(QCS; skID)) = kID;CS:

Therefore, if the adversary C obtains the value of e^(QID; skCS)

or e^(skID; QCS) or both of them, C cloud easily calculates their

session keys and launches confiden-tiality attack successfully to

fetch the data-signature pairs of fM; g.

4.1 The new secure data sharing protocol for

cloud storage
In this section, we propose a new secure data shared scheme for

storage in cloud computing. Similar to the SecCloud scheme

above, our scheme also involves a ID-based strong designated

verifier signature (IDSDVS)[33]. However, our auditing

protocol with the IDSDVS is more security than the SecCloud

scheme, since it has the secure properties of non-delegatability,

non-transferability, unforgeability and privacy of signers

identity. A. System initialization

The cloud storage system includes a number of cloud servers

and cloud users. Cloud users outsource their data to cloud

servers, which are controlled by one or more cloud service

provider. Here, as figure Fig.1 shows, we consider a cloud

service provider(CSP) and a cloud user to describe our secure

data sharing scheme for storage in cloud computing with

security and privacy considerations. (Table Notions)

Setup(): The Initialization Procedure, which is a trusted third-

party, takes a security parameter as input to generate the

system parameters and master secret keys. Let G and GT be two

cyclic groups and the orders of both are q. Then Initialization

Procedure makes a bilinear mapping e^ : G G ! GT , which is

admissible. There are some secure hash functions chosen as

follow, H1 : f0; 1g ! G, H2 : f0; 1g GT ! G, H3 : G ! Zq, H4 : GT

! Zq. Furthermore, Initialization Procedure randomly chooses a

number s 2 Zq as the system master secret keys and selects g 2

G, which is a random generator. It computes its public key g1 =

gs. Finally, the Initialization Procedure outputs a system master

public

key mpk = (G; GT ; e;^ q; g; g1; H1; H2; H3; H4). The system

master secret key msk = s is safely kept.

B. Cloud user’s secure data storage

In order to obtain the cloud storage service from CSP, in the

first, a cloud user should interact with Initialization Procedure in

a secure way to extract the system master public key mpk and its

secret key. Then the cloud user will transmit its messages to the

cloud servers. We consider that the cloud user and the cloud

service provider’s identities are U, CS and the messages are M =

fm1; m2; :::; mn g 2 Zq. And assume that CSP has allocated

storage spaces for the messages M with space index set X = fx1;

x2; :::xng.

KeyExtract(msk; U): The cloud user submits its identity U to

Initialization Procedure. It takes msk and U as input and

computes

skU = Qs
U ;

where QU = H1(U) is a public key of the cloud user and skU is its

secret key. Then Initialization Procedure returns the secret key

skU and the system master public key mpk.

Similarly, the Initialization Procedure takes msk and CSP’s

identity CS as input. Then it returns mpk and the secret keys

skCS = Qs
CS to the the cloud service provider, where QCS =

H1(CS).

Note that the two steps of Setup and KeyExtract can be executed

off-line.

To verify the integrity of stored data, the cloud user should

generate authentication blocks by signing every data block mi of

M. Moreover, the cloud user signs each block with a designated

verifier signature as follow, which is only verified by the

designated CSP.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.34, April 2018

32

DataSign(skU ; U; CS; mpk; M; X): This algorithm takes the

secret key skU , the identities U andCS, the sys-tem master

public key mpk and the n unsigned da-ta Mfm1; m2; :::; mng

with space index set X =

fx1; x2; :::xng as input by the cloud user. A cloud user with an

identity U sign the messages M for a CSP with an identity CS.

For each data block mi with the space index xi, the cloud user

randomly chooses ri; li 2 Zq and computes

a = e^(g; gli);

i 1

ci2 = H2(mijjUjjxi; ai);

ci = ci1
ci2

;

zi = g
li =skU

H3(ci)
;

i = H4(^e(QCS; g1)
ri);

i = (ci; zi; i):

Then the cloud user securely transmits = fM; g to CSP by its

session key keyU;CS, where = f ig(i = 1; 2; :::; n).

In order to guarantee the data confidentiality and ensure data

transmission securely, the cloud user performs DataTran

algorithm.

DataTran(M; ; keyU;CS) ! fEkeyU;CS (M;)g: This algorithm takes

the message M, its signature and the section key keyU;CS as

input. It outputs the ciphertext message EkeyU;CS (M;). After

identifying the cloud storage server, the cloud user randomly

chooses y 2 Zq

and calculates the session key keyU;CS as following.

Y = gy,

keyU;CS = H4(^e(QCS; g1)
y),

where g1 = gs. Then the cloud user securely encrypts

= fM; g by its session key keyU;CS and transmits the ciphertext

EkeyU;CS (M;) and the secure parameter Y to CSP, where = f ig(i

= 1; 2; :::; n).

At the cloud side, when the cloud storage service provider

receives the encrypted packets and secure parameter Y =

gy, it decrypts EkeyU;CS (M;) to extract fM; g by its own session

key keyCS;U as following.

keyCS;U = H4(^e(skCS; Y)):

The cloud user and CSP are sharing a pair of symmetrical keys,

since

keyCS;U = H4(^e(skCS; Y))

= H4(^e(Qs
CS; gy))

= H4(^e(Qy
CS; gs))

= H4(^e(QCS; g1)
y):

Due to the hardness of Bilinear DiffieCHellman (BDH)

problem, the session key is secure against the insider attacks.

Then CSP further needs to verify the valid of fM; g by the

VerSign algorithm.

VerSign(U; CS; skCS; mpk;): The cloud service provider CS

executes this algorithm and takes its own secret key skCS, the

system master public key mpk and the message-signature pairs =

fM; g from the cloud

user U as input. For each message block mi with its signature i =

(ci; zi; i), it behaves as follow:

a0
i = e^(zi; g)^e(QU ; g1)

H3(ci);

c0 = H

2

(m U x ; a0);

i2 ijj jj i i

ci
0
1 = ci=ci

0
2 :

Finally, CSP checks

 ?
; ci

0
1

));

 i = H4(e(skCS

where returns true if correct for all blocks, and otherwise,

returns false.

After verifying the valid of fM; g, if the verifying result is true,

it means that the messages M are securely and correctly

transmitted to CSP. And CSP would store the messages M

according the storage space index set X = fx1; x2; :::xng.

Otherwise, CSP broadcasts an “error message” to the cloud user

to alert the invalid of fM; g.

5 ANALYSIS OF THE PROPOSED

SCHEME
In Section 4, we proposed a new secure data sharing protocol

with a ID-based strong designated verifier signa-ture (IBSDVS)

scheme, which has secure properties of non-delegatability, non-

transferability, unforgeability and privacy of signer’s identity.

Then in this section we provide a detailed analysis of security

and performance.

A. Security analysis

1) Against insider attack: Our protocol can resist the

insid-er attack due to the fact that the designated verifier

signature adopted in our protocol with a non-delegatability

property []. The cloud user as a signer implements DataSign

algorithm and the cloud storage service provider (CSSP) as a

verifier implements Verify algorithm, which both may launch

the insider attack by leaking some effective information rather

than the secret keys skU , skCS. Hence, an adversary gotten the

leaking information may forge a valid signature without the

secret keys of the cloud user’s skU and the CSSP’s skCS.

However, DataSign algorithm produced the signature is i = (ci;

zi; i), where

ci = ci1
ci2

= gri H2(mijjUjjxi; e^(g; gsli));

zi = g
li =skU

H3(ci)
;

i = H4(^e(QCS; g1)
ri)

= H4(^e(Qs
CS; gri) = H4(^e(skCS; gri):

Our protocol is non-delegatability. On the one hand, even if an

adversary has known e^(g; g1) and e^(QCS; g1), ri; li 2 Zq can not

be obtained and are chosen randomly for each data block mi.

Furthermore, the key component is zi = gli =skU
H3(ci), due skU is

unknown unless it can be delegated directly by the signer.

Otherwise, it is impossible to compute a valid signature. On the

other hand, the simulate algorithm produces

the signature is i = (ci; zi; i), where ci; zi 2 G are selected

randomly and

i = H4(^e(skCS; ci1))

= H4(^e(skCS; ci=H2(mijjUjjxi; ai)))

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.34, April 2018

33

= H4(^e(skCS; ci=H2(mijjUjjxi; e^(zi; g)^e(skCS;

g)H3(ci)))):

Even though a simulator has delegated e^(skCS; g) rather than

skCS, it can not simulate a valid signature due ci ; zi 2 G chosen

randomly by the simulator for each data block mi are different

from ci; zi 2 G randomly selected by the CSSP as a verifier.

Hence, it must obtain the secret key skCS, e^(skCS; ci1) can be

simulated successfully.

In summary, unless knowing the secret keys skU or skCS, can it

produce the valid signature by a third-party. Com-paring with

Wei’s scheme[28], our protocol can resist the insider attack by

adopting a designated verifier signature that is non-

delegatability. Moreover, we show proof of non-delegatability

as follow and other secure properties such as non-transferability,

unforgeability and privacy in our protocol.

2) Proofs of secure properties in our protocol: Let g, e, t

respectively on behalf of the runtime of a multiplication in group

G, the runtime of a bilinear pairing evaluating, the runtime of a

exponential operation.

Property 1. (Non-delegatability) Imaging that the KEA-BDH

assumption holds with a probability (1 "00). Then the our data

sharing protocol adopted the IBSDVS scheme is non-

delegatable with (t; t0; "; "0) in the context of Definition 4, in

which "0 > (1 "00)=("=qH2 1=q) and t0 < t+(qH1 +qH2) g.

Proof. Assuming that mpk = (G; GT ; e;^ q; g; g1), where g1 = g ,

and QCS = g . An extractor K existed that extracts the secret key

of either a signer or a designated verifier by inputting the

signature i and accessing a black-box oracle of an algorithm F.

Let FU;CS;M be a simulator token (U; CS; M) as input. For each

data block mi, K supplies hash oracles H2, H3 and H4 and

maintains tables of T H1; T H2; T H3; T H4 to avoid issuing

repeated queries to the oracles.

H1 Query: Given a query ID, K selects randomly !ID 2 Zq. If

!ID has been in the table T H1, choosing an another number.

Then it tosses a coin bID so that

Pr[bID = 1] = , which is to be determined later.

If bID = 0, K sets QID = (g)!ID ; otherwise, it

sets QID = g!ID . In either case, K stores the tuple

(ID; QID; bID; !ID) into table T H1 and returns QID

to FU;CS;M .

H2 Query: Given a query (mijjUjjxi; ai), K randomly chooses di 2

Zq. If d has been in the table T H2, choosing an another number.

Then it returns Qi = gdi and stores (mijjUjjxi; ai; di; Qi) into T H2.

H3 Query: Given a query ci, K randomly chooses cl 2 Zq. If cl

has been in the table T H3, choosing an another number and

storing (ci; cl) into T H3. Then it returns cl.

H4 Query: Given a query Ti, K randomly chooses i 2 Zq. If has

been in the table T H4, choosing an another number and storing

(Ti;) into T H4. Then it returns i.

KeyExtract Query: Given an identity ID, K retrieves the tuple

(ID; QID; bID; !ID) from table T H1. If bID =

1, K calculates the cloud user’s secret key skID = (g)!ID and

returns to FU;CS;M . Otherwise, bID = 0, K aborts.

K implements FU;CS;M to generate a signature i = (ci; zi; i). Then

K implements FU;CS;M again to gener-ate a forgery i
0 = (c0

i; zi
0;

i
0) with fixed coins. When (mijjUjjxi; ai), where ai = e^(zi;

g)^e(QU ; g)H3(ci), is issued to oracle H2. The answers of the

oracle H2 for the first and the second run of FU;CS;M are different.

Q0
i = ci=g ! is the answer and ! is chosen by K.

There are further two cases:

If (H3(c
0

i); zi
0) 6= (H3(ci); zi), K produces the cloud user’s secret

key skU as in the simulation of Extract oracle.

Otherwise, K recovers Ti
0 = (^e(QCS; Ri

0)) from hash table H4,

where Ri
0 = c0

i=Q0
i = ci=Q0

i = g !. Then we regard FU;CS;M as a

function by inputting (g1; QCS), and it outputs (Ri
0; e^(g; g) 2!).

Furthermore, we take the KEACBDH assumption to claim that

the event happens with a probability (1 "00)

that there is an algorithm FU;CS;M on the same random coins,

which produces an output (!; R0; e^(g; g) 2!). With the value !, K

computes and skCS = g1 . Then the private key of the cloud

storage service provider is skCS.

Assume that (H3(c
0

i); zi
0) 6= (H3(ci); zi) with a probability

2 [0; 1]. Then the probability of a successful extraction of a

cloud users private key is "0 = "("=qH2 1=q) according to the

general forking lemma [26], Then the prob-ability of a

successful extraction of a CSSPs private key is "1 = (1)(1

"00)"("=qH2 1=q). Hence, the probability of a successful

extraction of a private key is

" = "0 + "1 > (1 "00)"("=qH2 1=q):

And the runtime is about

t0 < t + (qH1 + qH2) g:

Property 2. (Non-transferable) Our proposed data sharing

protocol with an IBSDVS scheme is satisfying the Definition 3

and non-transferable perfectly.

Proof. The designated verifier cloud storage service provider

(CSSP) can simulate to generate a signature on the original

message M as follow: For every data block mi, CSSP ran-domly

chooses c0
i; zi

0 2 G and computes

a0
i = e^(zi

0; g)^e(QU ; g1)
H3(c0i);

c0
i2 = H2(mijjUjjxi; a

0
i);

c0
i1 = c0

i=c0
i2 ;

i
0 = H4(^e(skS; c0

i1));

i
0 = (c0

i; zi
0; i

0):

Then the simulate signature is= f i
0gi2(1;2;:::;n).

signature i = (ci; zi; i) on mi is determined by the random

numbers ri; li 2 Zq, while the simulate signature of mi is i = (c0
i;

zi
0; i

0), which is determined by the random numbers ci; zi 2 G. So

a random pair (ri; li) maps a random pair (ci; zi) and for any pair

(ci; zi), there is a corresponding pair (ri; li). Because of both (ri;

li) and (ci; zi) randomly

chosen, the signatures i = (ci; zi; i) and i = (c0
i; zi

0; i
0) are

indistinguishable. Hence, even if an adversary A has secret

keys of the cloud user, the CSSP or both, it is impossible to

distinguish signatures from 0.

Property 3. (Unforgeability) If the weak GBDH assumption (t;

") holds, the data sharing protocol with an IBSDVS scheme is

unforgeable with (t0; qH1 ; qH2 ; qK ; qDSign; qV er; qSim; "0), where

t < 2t0 + 2(qH1 + qH2 + qK + 2qDSign) g + 2(2qDSign +

3qSim + 3qV er) e + 2(qDSign + qSim + qV er) t, and

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.34, April 2018

34

" > "0=[2(qK)2]("0=[2(qK)2qH2] 1=q):

Proof. Given the data sharing protocol with an IBSDVS scheme

is unforgeability, then by using it an algorithm B is built to solve

the weak GBDH problem. Given (g; g ; g ; g) and the oracle O ,

that a random instance of the weak GB-DH problem, the

algorithm B purposes to obtain e^(g; g) . Furthermore, it works

as follow:

Setup: B invokes an adversary A on inputting mkp = (G; GT ;

e;^ q; g; g1), where g1 = g . Note that the master secret key is

msk = that is unknown to B. It then simulates oracles for A as

below.

Query: B simulates and issues random oracles H1; H2; H3; H4;

KeyExtract in the same way as K dose in Property 1 and also

including data signing oracle and verification oracle.

DataSign Query: Given a query (U; CS; M), B retrieves the

tuple (U; QU ; bU ; !U) from T H1. Here we need to distinguish

two cases:

1) If bU = 1, produces the cloud user’s private key skU as

in the simulation of KeyExtract oracle in Property 1 and then

calculates the signature i by taking the DataSign algorithm for

each data block with inputting (skU ; U; CS; mpk; mi) by

accessing to random oracles H2; H3 and H4.

2) If bU = 0, B chooses randomly zi 2 G and

cij 2 Z, then computes ci = g
cij , ai =

e^(zi; g)^e(QU ; g1)
H3(ci), Qi = H2(mijjUjjxi; ai),

R = ci=Qi

^ cij di

, where di

and i = H4((QV ; g1))

is in the entry (mijjUjjxi; ai; di; Qi) of table T H2 for the query

(mijjUjjxi; ai). B asks random oracles H2; H3 and H4 for related

hashing operations.

Note that since the scheme is perfectly non-transferable

(Property 2), the Sign oracle is per-fectly simulated.

Simulate Query: This can be answered by B in a similar way

with the simulation of DataSign oracle. The differ-ence is that

now B generates the signature from the point of a designated

verifier.

Verify Query: Given a query (mi; U; CS; i), where i = (ci; zi; i), B

retrieves the tuple (CS; QCS; bCS; !CS) from T H1. Again, there

are two cases:

1) If bCS = 1, B generates the user secret key skCS as in

the simulation of KeyExtract oracle, and then

verifies the signature i by running the Verify algorithm on

inputting (mi; U; CS; skCS; mpk; i).

B looks up hash tables H2; H3 and H4 for the cor-

responding hashing operation. If there is no match,

B simply returns 0 indicating that the signature is

invalid. As we assume that A would not use a value before

asking the corresponding random oracle on the input, the event

will not happen that the signature is valid but B returns 0 when

A luckily guesses a hashing result before the hashing query is

issued.

2) If such a tuple is not found, B looks up

 the hash table T H4 indexed by i. If there

 is no match, it simply returns 0. Else B re-

 trieves the match tuple (Ti; i) in T H4. It com-

 putes ai
0 = e^(zi; g)^e(QU ; g1)

H3(ci), and Qi
0 =

 H

2

(m U x ; a0), R0 = c =Q0 . It looks up hash

 ijj jj i i i i i

 tables T H2 and T H3 for the corresponding hashing

 operation. If there is no match, it simply returns 0.

 0!CS

; Ti)

 Else B asks the oracle O on inputting (Ri!

 to obtain a decision bit. If Ti 6= e^(g; Ri
0 CS) ,

 B returns 0 indicating that the signature is invalid;

 otherwise it returns 1.

Forge:

A

generates its forgery,

 i i

 (U ; CS ; m ;) for each

data block mi , where i = (ci ; zi ; i). B then checks the va-lidity

of the forgery as in the simulation of Verify. If invalid, it aborts;

otherwise, it retrieves the two tuples (U ; QU ; bU ; !U) and (CS ;

QCS; bCS; !CS) from table T H1. If bU = 1 or bCS = 1, B aborts.

The validity of guarantees that there is a tuple (Ti ; i) in T H4, a

tuple (ci ; cij) in T H3 and a tuple (mi ; ai ; di ; Qi) in T H2 under

our assumptions about random

oracles. B rewinds A to the status of querying oracle H2 on

inputting (mi ; ai). It sets Q0
i = ci =g , and answers A with

Q0
i. It then continues to simulate oracles for A as in the Query

phase. Suppose that, A produces a successful forgery once

again, say (U0 ; CS0 ; m0
i; i

0) where i
0 = (c0

i; zi
0 ; i

0). If (U0 ;

CS0 ; m0
i; i

0) 6= (U ; CS ; mi ; i), B aborts. Other-

wise, there are two cases:

1) If (H

3

(c0); z0) = (H

3

(c); z), we have that

 i i 6 i i 0

zi skU
H3(ci) = g

li = gli
0 = zi0 skU

H3(ci).

Hence,

B

recovers sk by computing sk =

 0

) H3

 1U U

(zi =zi
0

)
(H3(ci (ci)) .

Note that skU = ((g)!U) . B can compute

1

e^(g; g) = e^(skU
!U ; g).

2) If (H3(c
0

i); zi
0) = (H3(ci); zi), we have that Ri

0 = c0

i=Q0
i = ci =Q0

i = g . B retrieves the tuple (Ti
0 ; i

0) from table T

H4. Note that Ti
0 = e^(QCS ; Ri

0) and QCS = (g)!CS . Hence, B

can compute e^(g; g) = (Ti
0

)
!
CS

1 .

In either case, B solves the given instance of the weak GBDH

problem.

Therefore, the probability of a successful forgery of (U ; CS ; mi

; i) is

> "0=[2(qK)2]("0=[2(qK)2qH2] 1=q):

Fig. 1. Performance comparison.

And the runtime is about

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.34, April 2018

35

t < 2t0 + 2(qH1 + qH2 + qK + 2qDSign) g

+ 2(2qDSign + 3qSim + 3qV er) e

+ 2(qDSign + qSim + qV er) t

considering only the runtime of g, e and t.

Property 4. (Privacy) Our proposed data sharing protocol with

an IBSDVS scheme is satisfying the Definition 5 and privacy

perfectly.

Proof. In this paper, our protocol mainly achieves the privacy of

the cloud user and the CSSP’s identities. In Property 1, without

delegating the secret keys skU and skCS, an adversary can not

produce a valid signature and also can not verify the signature

successfully. And in Property 2, the signature i signed by the

cloud user is indistinguishable from i signed by the designated

verifier CSSP, even if given the secret keys skU and skCS. Hence,

It is not computationally feasible for an adversary to determine

the key pair of signature i without knowing a designated verifier

CSSPs secret key skCS or a signer the cloud users secret key skU

.

B. Performance analysis

1.1
Let g, e, t respectively on behalf of the runtime of a

multiplication in group G, the runtime of a bilinear pairing

evaluating, the runtime of a exponential operation.

To analyze the performance of our data sharing protocol, we

compare our protocol with current IBSDVS schemes about

computation cost and signature size in Table 1, where G Z2
q

means that this signature algorithm contains three elements that

one is an element in G and two are in Zq. Note that, for each data

block mi, the computation of gli and gri in those signature

algorithms is taken as one scalar multiplication since they can be

computed sequentially when they are sorted. Finally, from the

Table 1, we obtain the fact that the IBSDVS scheme adopted in

our data sharing protocol for cloud storage is more efficient than

other IBSDVS scheme on both signature size and computation

cost.

Table 1. Performance comparison.

6 CONCLUSION
In this paper, we construct a cloud storage environment to

propose a novel secure data sharing protocol that can resist the

insider attack due to the fact that the designated verifier

signature adopted in our protocol with a non-delegatability

property. We have defined the concepts of non-delegatability,

unforgeability,non-transferable and privacy of signer’s identity

and proposed a novel data sharing protocol to achieve the secu-

rity goals. By the extensive security analysis and performance

analysis, our data sharing protocol is proved that not only can

resist the insider attack with enjoying all secure properties, but

also can be more efficient

7 REFERENCES
[1] P. Mell and T. Grance, “The nist definition of cloud

computing,” 2011.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica et al.,

“A view of cloud computing,” Communications of the

ACM, vol. 53, no. 4, pp. 50–58, 2010.

[3] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented

cloud com-puting: Vision, hype, and reality for delivering it

services as computing utilities,” in High Performance

Computing and Communications, 2008. HPCC’08. 10th

IEEE International Conference on. Ieee, 2008, pp. 5–13.

[4] K. Popovic and Z. Hocenski, “Cloud computing security

issues and challenges,” in MIPRO, 2010 proceedings of the

33rd international convention. IEEE, 2010, pp. 344–349.

[5] D.-G. Feng, M. Zhang, Y. Zhang, and Z. Xu, “Study on

cloud computing security,” Journal of Software, vol. 22,

no. 1, pp. 71–83, 2011.

[6] Y. Chen, V. Paxson, and R. H. Katz, “Whats new about

cloud computing security,” University of California,

Berkeley Report No. UCB/EECS-2010-5 January, vol. 20,

no. 2010, pp. 2010–5, 2010.

[7] A. Juels and B. S. Kaliski Jr, “Pors: Proofs of retrievability

for large files,” in Proceedings of the 14th ACM conference

on Computer and communications security. ACM, 2007,

pp. 584–597.

[8] A. Giuseppe, B. Randal, C. Reza et al., “Provable data

possession at untrusted stores,” Proceedings of CCS, vol.

10, pp. 598–609, 2007.

[9] C. Erway, A. Kupc¨¸u,¨ C. Papamanthou, and R. Tamassia,

“Dynamic provable data possession,” in Proceedings of the

16th ACM conference on Computer and communications

security. ACM, 2009, pp. 213–222.

[10] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling

public verifiability and data dynamics for storage security

in cloud computing,” in Computer Security–ESORICS

2009. Springer, 2009, pp. 355–370.

[11] K. Yang and X. Jia, “An efficient and secure dynamic

auditing protocol for data storage in cloud computing,”

Parallel and Distributed Systems, IEEE Transactions on,

vol. 24, no. 9, pp. 1717–1726, 2013.

[12] M. Mowbray and S. Pearson, “A client-based privacy

manager for cloud computing,” in Proceedings of the fourth

international ICST conference on COMmunication system

softWAre and middlewaRE. ACM, 2009, p. 5.

[13] E. Bertino, F. Paci, R. Ferrini, and N. Shang, “Privacy-

preserving digital identity management for cloud

computing.” IEEE Data Eng. Bull., vol. 32, no. 1, pp. 21–

27, 2009.

[14] S. Pearson, Y. Shen, and M. Mowbray, “A privacy

manager for cloud computing,” in Cloud Computing.

Springer, 2009, pp. 90–106.

[15] Y. Deswarte, J.-J. Quisquater, and A. Sa¨ıdane, “Remote

integrity check-ing,” in Integrity and Internal Control in

Information Systems VI. Springer, 2004, pp. 1–11.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.34, April 2018

36

[16] H. Shacham and B. Waters, “Compact proofs of

retrievability,” in Advances in Cryptology-ASIACRYPT

2008. Springer, 2008, pp. 90– 107.

[17] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik,

“Scalable and efficient provable data possession,” in

Proceedings of the 4th international conference on Security

and privacy in communication netowrks. ACM, 2008, p. 9.

[18] R. C. Merkle, “Protocols for public key cryptosystems,” in

2012 IEEE Symposium on Security and Privacy. IEEE

Computer Society, 1980, pp. 122–122.

[19] D. Boneh, B. Lynn, and H. Shacham, “Short signatures

from the weil pairing,” in Advances in

CryptologyłASIACRYPT 2001. Springer, 2001, pp. 514–

532.

[20] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-

preserving public auditing for data storage security in cloud

computing,” in INFOCOM, 2010 Proceedings IEEE. Ieee,

2010, pp. 1–9.

[21] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling

public auditability and data dynamics for storage security in

cloud computing,” Parallel and Distributed Systems, IEEE

Transactions on, vol. 22, no. 5, pp. 847–859, 2011.

[22] Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu, “Cooperative

provable data possession for integrity verification in

multicloud storage,” Parallel and Distributed Systems,

IEEE Transactions on, vol. 23, no. 12, pp. 2231– 2244,

2012.

[23] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S. Yau,

“Dynamic audit services for integrity verification of

outsourced storages in clouds,” in Proceedings of the 2011

ACM Symposium on Applied Computing. ACM, 2011, pp.

1550–1557.

[24] P. Golle and I. Mironov, “Uncheatable distributed

computations,” in Topics in CryptologyłCT-RSA 2001.

Springer, 2001, pp. 425–440.

[25] F. Monrose, P. Wyckoff, and A. D. Rubin, “Distributed

execution with remote audit,” in NDSS, vol. 99, 1999, pp.

3–5.

[26] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive

verifiable com-puting: Outsourcing computation to

untrusted workers,” in Advances in Cryptology–CRYPTO

2010. Springer, 2010, pp. 465–482.

[27] L. Wei, H. Zhu, Z. Cao, W. Jia, and A. V. Vasilakos,

“Seccloud: Bridging secure storage and computation in

cloud,” in Distributed Computing Sys-tems Workshops

(ICDCSW), 2010 IEEE 30th International Conference on.

IEEE, 2010, pp. 52–61.

[28] L. Wei, H. Zhu, Z. Cao, X. Dong, W. Jia, Y. Chen, and A.

V. Vasilakos, “Security and privacy for storage and

computation in cloud computing,” Information Sciences,

vol. 258, pp. 371–386, 2014.

[29] R. Canetti, B. Riva, and G. Rothblum, “Verifiable

computation with two or more clouds,” in Workshop on

Cryptography and Security in Clouds, 2011.

[30] S. Saeednia, S. Kremer, and O. Markowitch, “An efficient

strong designated verifier signature scheme,” in

Information Security and Cryptology-ICISC 2003.

Springer, 2004, pp. 40–54.

[31] W. Susilo, F. Zhang, and Y. Mu, “Identity-based strong

designated veri-fier signature schemes,” in Information

Security and Privacy. Springer, 2004, pp. 313–324.

[32] B. Kang, C. Boyd, and E. Dawson, “A novel identity-based

strong designated verifier signature scheme,” Journal of

Systems and Software, vol. 82, no. 2, pp. 270–273, 2009.

[33] H. Tian, X. Chen, F. Zhang, B. Wei, Z. Jiang, and Y. Liu,

“A non-delegatable strong designated verifier signature in

id-based setting for mobile environment,” Mathematical

and Computer Modelling, vol. 58, no. 5, pp. 1289–1300,

2013.

IJCATM : www.ijcaonline.org

