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ABSTRACT 

Cloud computing provides remote users a flexible and 

convenient way to obtain cloud services on demand such as 

cloud storage service, which has been facing great security and 

privacy challenges, especially insider attacks. However, most of 

the previous work on the cloud security focusing on the storage 

security can’t be effective against insider threats. Wei’s scheme 

on the cloud storage, which is based on an ID-based strong 

designated verifier signature (IBSDVS) protocol, takes privacy 

and confidentiality into consideration. But it also can’t be 

against insider attacks and its confidentiality exists security 

flaws. Hence, in this paper, we propose an efficient data storage 

protocol in the cloud computing, which can be against insider 

attacks as well as providing privacy preserving and 

confidentiality. Similar to Wei’s scheme, our protocol adopts an 

IBSDVS scheme that has the secure property of non-

delegatability. Then the analysis of security and performance are 

described in detail. 

Keywords 
Cloud computing, storage security, designate verifier signature, 

privacy preserving, and insider attack. 

1. INTRODUCTION 
CLOUD computing [1] has become the common focus of the 

industry, academic circle, government and all walks of life 

concerned in the field of information technology currently. 

Cloud computing embodies the idea that the network is the 

computer. It combines large amounts of computing resources, 

storage resources, and software and hardware resources together 

to form a huge scale of pool sharing virtual IT resource. Then it 

can provide remote users a flexible and convenient way to obtain 

cloud services on demand such as data storage and data 

computation [2]. Due to its convenience, economy, scalability 

and other advantages, cloud computing attracts more and more 

enterprises’ sight. They can liberate from the heavy pressure of 

the IT infrastructure management and maintenance by renting 

the necessary resources. In the IT industry, cloud computing, 

which is generally regarded as another an important growth 

point after the Internet economic boom, has great market 

prospects [3]. 

In the same time, with the development of cloud computing, 

cloud storage has become a hot researching topics in the 

filed of information storage. Compared with traditional storage 

devices, data storage in cloud computing is not just a hardware, 

but a system constituted with network equipment, storage 

equipment, servers, software applications, public access 

interfaces, access networks and clients. Cloud storage provides 

remote storage service that the local data would store in an 
available online storage space, which is provided by cloud 

storage service provider (CSSP). Users who require storage 

service no longer need to build their own data center, but only 

apply for storage service to CSSP. Then it plays a role in saving 

the hardware and software infrastructure investment. 

Furthermore, when the concept of cloud storage was put 

forward, it got the supports and attention with numerous 

manufacturers. Amazon launched simple storage service(S3) 

with elastic block storage (EBS) technology to support persistent 

data storage. Google launched the google drive online storage 

service(GDrive). CDNetworks and Nirvanix formed a strategic 

partnership to provide an integrated platform of cloud storage 

service and content delivery service. And Windows Azure was 

introduced by Microsoft, which has established huge data 

centres in USA around. 

Even if the cloud storage has advantages of low price, deploying 

conveniently and so on, it faces many key issues that security 

problem is the first to bear the brunt. With the increasing 

popularity of cloud storage, the customers worry about security 

and privacy challenges [4], which has become an important 

factor to restrict its development, have showed a gradually rising 

trend. From an investigation conducted by Twinstrata on the 

new cloud storage service in 2012, only 20% of respondents will 

put their private data in the cloud storage servers (CSS). In a 

cloud storage model, once the data is outsourced to a cloud 

storage service provider, it means that data owners give up the 

control of their data, because CSSP have the priority access right 

to cloud users’ data or applications [5]. In addition, the existing 

cloud storage platforms are always having fatal security flaws. 

Google happened a serious cloud security accident that a large 

number of users’ private documents were leaked in 2009. In the 

same year, the Simple Storage Service of Amazon happened two 

interruptions in the single storage service [6]. Thus, it may exist 

the internal staff dereliction of duty, hacker attacks, system 

malfunctions leaded to security mechanism failure and a variety 

of other risks, CSSP don’t have enough evidences to convince 

cloud users that their data is correctly stored in the cloud storage 

servers. Hence one can see that data security is one of the major 

obstacles to cloud storage development and cloud storage 

system has an urgent demand on the security mechanism. The 

cloud storage security can be divided into two categories: Secure 

cloud storage and Secure cloud auditing. Secure cloud storage 

refers to making sure that the cloud users could securely and 

correctly store their data at mistrusting cloud storage servers, 

while secure cloud auditing refers to verifying the integrity and 

correctness of the outsourced data at mistrusting cloud storage 

servers. Therefore, cloud data integrity also can be split into the 

integrity of storing and the integrity of using. There have been 

many researches on the secure cloud auditing, such as [7], [8], 

[9], [10], [11]. However, in this paper, we only discuss the 

secure cloud storage in the cloud computing. We involve the 

designated verifier signature technique with secure properties of 

non-delegatability, no transferability, unforgeability and privacy 

of signer’s identity to achieve that messages can be stored 

correctly by means of secure transmission and integrity 

verifying. Moreover, privacy preserving [12], [13], [14] can’t be 

ignored for secure cloud storage. 

In this paper, we propose a new secure cloud storage protocol 

with designated verifier signature. Then the main research 
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contents and achievements of this paper are as follow: In next 

section, we give a brief overview on the related work. Section 3 

introduces the secure cloud storage model, secure definitions 

and necessary preliminary knowledge. We review the existing 

Sec Cloud scheme in Section 4 and give the secure analysis in 

Section 5. Section 6 proposes our new secure cloud storage 

protocol with designated verifier signature. Then Section 7 

describes performance analysis and security analysis of our 

protocol. In the end, we conclude this paper in Section 8.  

2.  RELATED WORK 
Currently, there are many researches on the security of cloud 

computing. And it is pay more attention to the secure cloud 

storage while the attention to secure cloud computation is on the 

contrary. To verify the integrity of a large file deposited at a 

remote cloud storage server, Deswarte et al.[15] in 2004 first 

proposed a scheme of validating remote data integrity based on a 

hash function with RSA. Since this scheme is on account of the 

public key cryptography, the cost of calculating is great 

expensive. In 2007, Juels et al.[7] proposed a scheme of proofs 

of retrievability for large static files, which not only verify the 

integrity of remote data, but also can retrieve the damage data 

with a certain probability by using the method of sentinels 

hidden. 

Shacham and Waters put forward two improved scheme with 

compact POR[16] by using homomorphic verifiable tags. The 

one is based on pseudo random function and does not support 

the public verification. The other one is based on BLS signature 

and support the public verification. After doing a lot of research 

work, Ateniese et al.[8] introduced a protocol of provable data 

possession at untrusted stores(PDP), which is the first 

considering the public verification. Two schemes in their paper 

also uses the technology of homomorphic verifiable tags with 

RSA and supports privacy protection. But multiple servers can 

realize collusion attacks, so they are not suitable for multiple 

copy protocols. Then Ateniese et al. proposed a scalable-

PDP[17] scheme again supporting data dynamic operation and it 

is provable security in the random oracle model. In 2009, Erway 

et al.[9] proposed 2 kinds of dynamic provable data 

possession(DPDP) to achieve data updating. One is rank-based 

authenticated skip lists and the other one is based on the RSA-

tree structure. Furthermore, Wang et al.[10] realized the cloud 

data storage public verification and dynamic operations by 

applying the third-party auditor. Their protocol uses the 

technologies of Merkle Hash Tree[18] to build BLS[19] for 

block tag authentication, while it dose’t support privacy 

preserving. Later, an improved scheme was proposed to support 

privacy preserving on dynamic remote data storage with public 

integrity auditing in [20], which makes use of the public 

homomorphic key and the random mask technique. In 

subsequent studies, Wang et al. based paper [10] and further 

discussed the bilinear aggregation signature algorithm[21]. 

Hence, the third-part auditor can implement multiple integrity 

auditing tasks with multiple users efficiently. In [22], Zhu et al. 

put forward a kind of cooperative provable data possession, 

which can support batch auditing for multiple clouds and also 

was extended to support the dynamic auditing in [23]. Both [22] 

and [23] does’t support batch auditing for multiple cloud users. 

However, Zhu’s schemes as well as [10], [20], [21] are suffering 

expensive computational cost for the third-party auditor. 

Accordingly, Kang et al.[11] brought about the batch auditing 

for multiple clouds and multiple cloud users. All the schemes 

above are proposed to achieve the cloud storage security. 

Contrarily, the comparison is so dramatic between the cloud 

computation security and the cloud storage security. The secure 

cloud computation is consist of remote computation auditing and 

verifiable computation. Golle et al.[24] put forward schemes that 

prevents cheating by making sure if participants were honest and 

correctly performing the computations, or allowing participants 

to prove if they have done most of the computations allocated 

with high probability. Monrose et al.[25] introduced a 

framework of remote auditing based on an existing distributed 

computing model. Their scheme supports efficient approaches 

for verifying whether a remote host correctly performed the 

assigned task. In [26], authors gave the concept of veri?able 

computation. Due to the host with weak computing capability, 

the host should outsource the computation of a function on 

difference parameters that were chosen dynamically to the 

remote servers, which responded the computation results and the 

proofs to prove the correctness of the computation on the gave 

parameters. But it is a fully homomorphic encryption scheme, its 

computational cost on the proof verifying is great. Moveover, 

[27], [28] were proposed by Wei et al., which introduced 

auditing schemes to achieve the cloud computation security as 

well as the cloud storage security and privacy cheating 

discouragement by the technologies of designated verifier 

signature, batch auditing and probabilistic sampling technique. 

In 2011, Canetti et al.[29] researched on verifiable computation 

with two or more clouds.  

3.  DATA STORAGE PROTOCOL IN 

CLOUD COMPUTING 
In this section, we first present the definitions of data sharing 

protocol including the protocol architecture, the security model 

and the preliminaries of our scheme. 

3.1 Data sharing architecture 
We construct a general architecture for data sharing, which 

contains the cloud servers, the cloud users and the verifying 

agencies, as shown in Fig. 1. In the cloud computing 

environment, there are a lot of cloud servers managed by one or 

multiple cloud service providers (CSPs), which have high 

computational resources and a large of storage space. 

CSP further has the abilities of batch auditing and parallel 

performing a number of sub-tasks divided by a large task, which 

are allocated to multiple cloud servers. The cloud user may be a 

computer, a laptop or a mobile phone, which has not enough 

computational and storage resources compared with the cloud 

server. Cloud users create data and outsource their data to the 

cloud servers. When they desire to obtain computational and 

storage services, cloud users should send requests for applying 

corresponding service. Our auditing model also involves 

verifying agencies (VAs) trusted and designated by cloud users. 

VA has more professional knowledge and capacities to execute 

the auditing service than cloud users. 

Then VAs should be in charge of the auditing results on data 

storage and computation. 

3.2  Definitions of secure data sharing 
Definition 1 (Data sharing). A secure data sharing with a ID-

based designated verifier signature(IBSDVS) scheme con-sists 

of Setup, KeyExtract, DataSign, DataTran, VerSign, Simulate. 

Setup(1 ) ! fmpk; mskg : This algorithm takes 1 as input, where 

is a security parameter, and outputs a system master public key 

mpk and a system master private key msk. 

KeyExtract(msk; A) ! fskAg : The algorithm takes msk and an 

identity ID of Alice as input. Then it outputs a secret key skID. 

DataSign(skA; A; B; mpk; M) ! f g : The algorithm takes Alice’s 

secret key skA and identity A as a signer, Bob’s identity B as a 
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verifier, mpk, and a message M = fm1; m2; :::; mng 2 f0; 1g as 

input. It outputs a signature for Bob. 

DataT ran(M; ; keyA;B) ! fEkeyA;B(M; )g : The algorithm takes 

the message M, its signature and the section key keyA;B as input. 

It outputs the secret message fEkeyA;B(M; )g. 

V erSign(M; ; A; B; skB; mpk) ! f0; 1g: The algo-rithm takes the 

message M, its signature , the identities of Alice with A and Bob 

with B, Bob’s secret key skB and mpk as input. Then it outputs 0 

or 1. 

Simulate(skB; A; B; mpk; M) ! f g : The algorithm takes Bob’s 

secret key skB and identity B as a signer, Alice’s identity A as a 

verifier, mpk, and a message M as input. It outputs a simulated 

signature for Alice. 

1) Non-Delegatability: Delegatability is that without 

leak-ing their private key, a signer or a designated verifier can 

delegate a third-party to produce a valid signature. Hence, we 

give the following definition of Non-Delegatability. 

Definition 2 (Non-Delegatability). A data sharing protocol with 

an IBSDVS scheme is non-delegatable with (t; t0; "; "0) if for 

every algorithm F and its runtime is at most t, it exists a black-

box knowledge extractor K satisfying the following conditions: 

For every Setup(1 ) ! fmpk; mskg,

 every 

A; B 2  f0; 1g ,  every  KeyExtract(msk; A)  !  skA, 

KeyExtract(msk; B) ! skB, and

 every message 

M 2 f0; 1g , if F (can be denoted by FA;B;M ) generates a 

valid signature on M with respect to A, V with a probability ". 

And then K extracts secret key skA or skB on inputting M 

and on oracle access to FA;B;M in expected time (t0 < P1(t)) with a 

probability ("0 > P2(t)), where P1(t) and P2(t) are two polynomial 

functions. 

2) Non-transferability: Non-transferability is that a mes-

sage M and its IBSDVS signature are given and there is no 

possible for an adversary A with secret keys of signer or verifier 

to distinguish whether the signature is signed by singer or 

verifier. 

Definition 3 (Non-transferability). A data sharing protocol with 

an IBSDVS scheme is non-transferable if the signature signed 

by the signer is indistinguishable from 0 signed by the 

designated verifier, i.e. 

fDataSign(skA; A; B; mpk; M) 

Simulate(skB; B; A; mpk; M)g: 

If the two distributions are identical, we say that the data sharing 

protocol with an IBSDVS scheme is perfectly non-transferable. 

3) Unforgeability: Without getting a signer’s secret key 

skA or a designated verifier’s secret key skB, it is not 

computationally feasible to calculate the designated verifier 

signature with message M in a probabilistic polynomial-time. 

Hence, we can define it by playing the following game between 

a probabilistic polynomial-time adversary A and a challenger C. 

1) Challenger C produces a system master key pair (mpk; 

msk) by running the Setup algorithm, and in-vokes an adversary 

A on inputting mpk. 

2) Then A issues queries, for many times polynomially, 

to the following oracles adaptively: 

OK : The oracle takes as input a query identity ID, then it 

computes and returns KeyExtract(msk; ID) ! fskIDg to A. 

ODSign: A issues a query (A; B; M) to the oracle and it outputs a 

valid signature to A. 

OV er: A issues a query (A; B; M; ) to the oracle and it outputs 1 

if is valid or otherwise, outputs 0. 

3) Finally, A forms its forgery (A ; B ; M ; ). It wins the 

game if 

a. V erSign(A ; B ; skB ; mpk; M ;   ) ! 1; 

b. A did not issue a query to OK on inputting A and B ; 

c. A did not issue a query to ODSign on inputting(A ; B ; 

M ). 

Definition 4 (Unforgeability). A data sharing protocol with an 

IBSDVS scheme is unforgeable with (t; qK ; qDSign; qV er; ") if no 

adversary A can runs in time at t, issues at most qK queries to OK 

, qDSign queries to ODSign and qV er queries to OV er, and wins the 

game with probability at least ".  

4) Privacy: It is not computationally feasible for an ad-

versary A to determine the key pair of signature without 

knowing a designated verifier’s secret key skB or a signer’s 

secret key skA. Then we define PSI of a data sharing protocol 

with an IBSDVS scheme as follow by describing a game played 

between the challenger C and a distinguisher D. 

1) Challenger C produces a system master key pair (mpk; 

msk) by running the Setup algorithm, and in-vokes a 

distinguisher D on inputting mpk. 

2) D issues queries, for many times polynomially, to the 

same oracles adaptively in the unforgeability game. 

3) D takes A0, A1, which are two signer identities, and B 

of a verifier identity and a message M . Then C tosses a coin b 2 

f0; 1g and computes 

KeyExreact(mpk; A ) ! skA b b 

DataSign(sk ; A ; B ; mpk; M ) ! : 

Ab b 

4) D continues to issue queries. 

5) D outputs a bit b0, which is 1 or 0. It wins the game if 

a. b0 = b; 

b. D did not query OK on inputting B ; and 

c. For any d 2 f0; 1g, D did not query OV er on inputting 

(Ad; B ; M ; ). 

Definition 5 (Privacy of signers identity). A data shar-ing 

protocol with an IBSDVS scheme is PSI security with (t; qK ; 

qDSign; qV er; ") if no distinguisher D runs in time at most t, issues 

at most qK queries to OK , qDSign queries to ODSign, and qV er 

queries to OV er and wins the game with a probability that 

deviates from one-half by more than ". 

3.3  Preliminary knowledge 
1) Bilinear pairings: Let G1 and G2 are respectively a 

cycle additive group and a cycle multiplicative group, which has 

the same prime order q. Then let P is the generator of G1. 

Assume that the Discrete Logarithm Problem (DLP) in G1 and 

G2 is both hard problem. Let e^ : G1 G1 ! G2 is the bilinear 

pairings with following properties: 
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1) Bilinearity: For all P; P 0 2 G1 and a; b 2 Z, there is 

e^(aP; bP 0) = e^(P; P 0)ab. 

2) Non-degeneracy: If there is e^(P; P 0) = 1 for 8P 0 2 

G1, 

then P = 

3) Computability: For 8P; P 0 2 G1, there exists an 

effective algorithm to compute e^(P; P 0). 

Generally, we can use the Weil pairing or the reformed Tate 

pairing[19] to construct bilinear pairings. 

2) CBDH Assumption: The Computational Bilinear 

Diffie- 

Hellman (CBDH) assumption  is  that let  G(1k) !  

q; 

G1 

; 

G2 

; e^ (P; aP; bP; cP )  input, where P 

2 

 

h  i given  is asabc   

G1, a; b; c 2 Z. Then it computes e^(P; P )  2 G2 as output.  

The difficulty of CBDH problem is based on CBDH as-

sumption. Due k is big enough, an algorithm A has the 

advantage AdvG;A(k) to solve BDH problem if 

Pr[A(q; G1; G2; e;^ aP; bP; cP ) = e^(P; P )abc] AdvG;A(k) We 

definite CBDH assumption[?] that AdvG;A(k) can be negligible 

for all the PPT algorithm A with k. That is, 

Pr[CBDH] AdvG;A(k): 

3) Designated Verifier Signature: Designated verifier sig-

nature [30], [31], [32] refers that only the designated verifier B 

can verify the validity of the signature signed by A, while B 

can’t convince others that the legitimate signature is really 

signed by A. Because B can also construct a legitimate signa-

ture by himself. Even though an adversary get the private keys 

of the signer A and the designated verifier B, it is impossible for 

the adversary to decide whether the legitimate signature is 

signed by A or B. Strong designated verifier signature is a 

special designated verifier signature. In the verification process, 

it should be used the the designated verifier’s private key so that 

only the designated verifier has the capacity to verify the 

signature. 

4. ANALYSIS OF THE SECCLOUD 

PROTOCOL 
To achieve secure cloud computing, the basic SecCloud protocol 

relying on the identity-based cryptography. Here this paper 

review their proposed protocol which consists of two phases: 

system initialization, secure cloud storage. 

A. Review of the SecCloud protocol 

1) Initialization: The Initialization phase includes two 

 steps: 

Setup(1 ) ! params. In this step, Initialization System takes 1 as 

input and chooses a number s 2 Zq randomly as the system 

master secret key, then it computes Ppub = s P as the system 

public key. Finally, the outputs of this step is params = (G1; G2; 

q; e;^ P; Ppub; H; H1; H2; H3). 

UserReg(ID) ! (params; skID). In order to register to 

Initialization System, this step takes a cloud user’s identity ID as 

input to get the cloud services. Then Initialization System 

outputs params and a user secret key skID = s QID, and sends 

them to the cloud user(U), where QID = H1(ID). 

2) Cloud storage security: This Cloud storage security 

phase includes the following four steps: 

StorageApp(M) ! I. This step takes a message with n blocks M = 

m1; m2; :::; mn 2 Zq as input by U. Then it outputs the space list I 

= i1; i2; :::; in distributed by the cloud service provider(CSP) and 

sent to U. 

DataSign(M; I)  ! . This step takes n unsign data 

M = m1; m2; :::; mn 2 Zq and space list I = i1; i2; :::; in as 

input by U. Then it outputs with n signatures on these data. For 

each data block mi, U randomly picks up ri 2 Zq and computes a 

signature i on the basis of the designated verifier signature 

technology: 

Ui = ri  QID 

hi = H2(Uikmikii) 

Vi = (ri + hi) skID 

i = e^(Vi; QCS) 

where = f ig1;:::;n and i = (Ui;  i). 

DataEnca(M; ; kID;CS) ! EkID;CS (fM; g). This step takes the pairs 

of the message and corresponding signature 

fM; g and the session key kID;CS by U. Then it outputs EkID;CS 

(fM; g) encrypted by kID;CS and sent to CSP, where keyID;CS = 

H3(^e(skID; QCS)). 

Similarly, the session key between U and VA is kID;V A = 

H3(^e(skID; QV A)) and returns EkID;V A (fM; g) to VA. 

DataVer(EkID;CS (fM; g); kCS;ID; skCS) ! f0; 1g. This step takes 

EkID;CS (fM; g), kCS;ID and skCS by CSP. It decrypts and obtains 

the pairs fM; g by its own session key 

kCS;ID, since 

kCS;ID = H3(^e(skCS; QID)) 

= H3(^e(s QCS; QID)) 

= H3(^e(QCS; s QID)) 

= H3(^e(QCS; skID)) = kID;CS 

Then CSP takes the secret key skCS to check the validity of the 

signatures by the following equation: 

? 

i = e^(Ui + H2(Uikmikii)QID; skCS) 

If the above equation holds, returns 1; Otherwise, returns 0. 

B. Insider attacks of the SecCloud protocol 

The SecCloud protocol described above enjoys the desirable 

features of secure storage in cloud computing and achieving 

privacy cheating discouragement by designated verifier sig-

nature. Regarding the security of the data storage protocol in 

cloud computing, three insider attacks should be extra 

considered in this protocol. 

1) An adversary, who is delegated some computational 

information rather than the private keys, may simulate to forge 

valid signatures to demonstrate the authenticity of the stored 

data to convince others. 

2) An adversary may break its confidentiality and then 

arbitrarily modify the stored data to compromise the data 

integrity or reveal the confidential data or in both of cases. 
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3) An adversary may obtain the private information such 

as a cloud user’s identity information. 

Therefore, stronger adversaries may exist in the real cloud 

environment. For example, suppose either a cloud user or 

a cloud storage service provider has revealed e^(QID; 

skCS) (both the cloud user, cloud storage service provider can 

compute) to an adversary C, then the following insider attacks 

are possible: 

Authentication attack: Assume that a cloud user (U) has sent an 

authenticated information fM;  g to the cloud storage service 

provider (CSSP) according to the designated verifier signature in 

the step of Data signing. However, if the value of e^(QID; skCS), 

obtained by an adversary C in the process of communication 

between U and CSSP, is insider leaked. After that, C possessed 

the value of e^(QID; skCS). For each data block mi with its 

signature i, there is 

i = e^(Ui + H2(Uikmikii)QID; skCS) 

= e^(U; skCS)^e(H2(Uikmikii)QID; skCS) 

= e^(QID; skCS)ri e^(QID; skCS)H2(Uikmikii) 

= e^(QID; skCS)
ri+H2(Uikmikii)

: 

Hence, the adversary C, disguising as a legitimate cloud user, 

can generate the valid signatures that are designated to CSSP on 

any message M = fm1; m2; :::; mng 2 Zq by the following 

algorithm: 

For each data block mi , C picks up a random number ri and 

computes 

Ui = ri QID; 

i = e^(QID; skCS)
ri +H2(Ui kmi kii ): 

Then the signature of each block mi is i = (Ui ; i ). Due to = f i g, 

the forgery of data-signature pairs are fM ; g. 

Therefore, no one, including a cloud user and CSSP, can 

distinguish this forged signature from the original signature 

produced by the cloud user U or the adversary C. 

Confidentiality attack: In this SecCloud protocol, a cloud user 

and a cloud storage service provider should pre-compute their 

own session keys kID;CS and kCS;ID in order to guaranteing the 

confidentiality of data trans-mission. However, similar to the 

Authentication attack above, an adversary C may obtain the 

insider leaked val-ues of e^(QID; skCS) or e^(skID; QCS) or both 

of them. Then C can break the confidentiality of data 

transmission to arbitrarily modify the stored data to compromise 

the data integrity or reveal the confidential data or in both of 

cases, since the session keys that 

kID;CS = H3(^e(skID; QCS)); kCS;ID = H3(^e(skCS; QID)) 

= H3(^e(s QCS; QID)) 

= H3(^e(QCS; s QID)) 

= H3(^e(QCS; skID)) = kID;CS: 

Therefore, if the adversary C obtains the value of e^(QID; skCS) 

or e^(skID; QCS) or both of them, C cloud easily calculates their 

session keys and launches confiden-tiality attack successfully to 

fetch the data-signature pairs of fM; g. 

 

 

4.1 The new secure data sharing protocol for 

cloud storage 
In this section, we propose a new secure data shared scheme for 

storage in cloud computing. Similar to the SecCloud scheme 

above, our scheme also involves a ID-based strong designated 

verifier signature (IDSDVS)[33]. However, our auditing 

protocol with the IDSDVS is more security than the SecCloud 

scheme, since it has the secure properties of non-delegatability, 

non-transferability, unforgeability and privacy of signers 

identity. A. System initialization 

The cloud storage system includes a number of cloud servers 

and cloud users. Cloud users outsource their data to cloud 

servers, which are controlled by one or more cloud service 

provider. Here, as figure Fig.1 shows, we consider a cloud 

service provider(CSP) and a cloud user to describe our secure 

data sharing scheme for storage in cloud computing with 

security and privacy considerations. (Table Notions) 

Setup( ): The Initialization Procedure, which is a trusted third-

party, takes a security parameter    as input to generate the 

system parameters and master secret keys. Let G and GT be two 

cyclic groups and the orders of both are q. Then Initialization 

Procedure makes a bilinear mapping e^ : G  G ! GT , which is 

admissible. There are some secure hash functions chosen as 

follow, H1  : f0; 1g ! G, H2 : f0; 1g   GT ! G, H3 : G ! Zq, H4  : GT  

! Zq. Furthermore, Initialization Procedure randomly chooses a 

number s 2 Zq as the system master secret keys and selects g  2 

G, which is a random generator. It computes its public key g1 = 

gs. Finally, the Initialization Procedure outputs a system master 

public 

key mpk = (G; GT ; e;^ q; g; g1; H1; H2; H3; H4). The system 

master secret key msk = s is safely kept. 

B. Cloud user’s secure data storage 

In order to obtain the cloud storage service from CSP, in the 

first, a cloud user should interact with Initialization Procedure in 

a secure way to extract the system master public key mpk and its 

secret key. Then the cloud user will transmit its messages to the 

cloud servers. We consider that the cloud user and the cloud 

service provider’s identities are U, CS and the messages are M = 

fm1; m2; :::; mn g 2 Zq. And assume that CSP has allocated 

storage spaces for the messages M with space index set X = fx1; 

x2; :::xng. 

KeyExtract(msk; U): The cloud user submits its identity U to 

Initialization Procedure. It takes msk and U as input and 

computes 

skU = Qs
U ; 

where QU = H1(U) is a public key of the cloud user and skU is its 

secret key. Then Initialization Procedure returns the secret key 

skU and the system master public key mpk. 

Similarly, the Initialization Procedure takes msk and CSP’s 

identity CS as input. Then it returns mpk and the secret keys 

skCS = Qs
CS to the the cloud service provider, where QCS = 

H1(CS). 

Note that the two steps of Setup and KeyExtract can be executed 

off-line. 

To verify the integrity of stored data, the cloud user should 

generate authentication blocks by signing every data block mi of 

M. Moreover, the cloud user signs each block with a designated 

verifier signature as follow, which is only verified by the 

designated CSP. 
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DataSign(skU ; U; CS; mpk; M; X): This algorithm takes the 

secret key skU , the identities U andCS, the sys-tem master 

public key mpk and the n unsigned da-ta  Mfm1; m2; :::; mng 

with  space  index  set  X  =  

fx1; x2; :::xng as input by the cloud user. A cloud user with an 

identity U sign the messages M for a CSP with an identity CS. 

For each data block mi with the space index xi, the cloud user 

randomly chooses ri; li 2 Zq and computes 

a = e^(g; gli ); 

i 1 

ci2 = H2(mijjUjjxi; ai); 

ci = ci1 
ci2 

; 

zi = g
li =skU

H3(ci)
; 

i = H4(^e(QCS; g1)
ri ); 

i = (ci; zi; i): 

Then the cloud user securely transmits = fM; g to CSP by its 

session key keyU;CS, where = f ig(i = 1; 2; :::; n). 

In order to guarantee the data confidentiality and ensure data 

transmission securely, the cloud user performs DataTran 

algorithm. 

DataTran(M;  ; keyU;CS) ! fEkeyU;CS (M;  )g: This algorithm takes 

the message M, its signature   and the section key keyU;CS as 

input. It outputs the ciphertext message EkeyU;CS (M;  ). After 

identifying the cloud storage server, the cloud user randomly 

chooses y 2 Zq 

and calculates the session key keyU;CS as following. 

Y = gy, 

keyU;CS = H4(^e(QCS; g1)
y), 

where g1  = gs. Then the cloud user securely encrypts 

= fM; g by its session key keyU;CS and transmits the ciphertext 

EkeyU;CS (M; ) and the secure parameter Y to CSP, where = f ig(i 

= 1; 2; :::; n). 

At the cloud side, when the cloud storage service provider 

receives the encrypted packets and secure parameter Y = 

gy, it decrypts EkeyU;CS (M; ) to extract fM; g by its own session 

key keyCS;U as following. 

keyCS;U = H4(^e(skCS; Y )): 

The cloud user and CSP are sharing a pair of symmetrical keys, 

since 

keyCS;U = H4(^e(skCS; Y )) 

= H4(^e(Qs
CS; gy)) 

= H4(^e(Qy
CS; gs)) 

= H4(^e(QCS; g1)
y): 

Due to the hardness of Bilinear DiffieCHellman (BDH) 

problem, the session key is secure against the insider attacks. 

Then CSP further needs to verify the valid of fM; g by the 

VerSign algorithm. 

VerSign(U; CS; skCS; mpk; ): The cloud service provider CS 

executes this algorithm and takes its own secret key skCS, the 

system master public key mpk and the message-signature pairs = 

fM; g from the cloud 

user U as input. For each message block mi with its signature i = 

(ci; zi; i), it behaves as follow: 

a0
i = e^(zi; g)^e(QU ; g1)

H3(ci); 

c0 = H 

2 

(m U x ; a0);  

i2   ijj jj i i  

ci
0
1 = ci=ci

0
2 :    

Finally, CSP checks       

 ?     
; ci

0
1 

)); 

 

 i = H4(e(skCS  

where returns true if correct for all blocks, and otherwise, 

returns false. 

After verifying the valid of fM; g, if the verifying result is true, 

it means that the messages M are securely and correctly 

transmitted to CSP. And CSP would store the messages M 

according the storage space index set X = fx1; x2; :::xng. 

Otherwise, CSP broadcasts an “error message” to the cloud user 

to alert the invalid of fM; g. 

5 ANALYSIS OF THE PROPOSED 

SCHEME 
In Section 4, we proposed a new secure data sharing protocol 

with a ID-based strong designated verifier signa-ture (IBSDVS) 

scheme, which has secure properties of non-delegatability, non-

transferability, unforgeability and privacy of signer’s identity. 

Then in this section we provide a detailed analysis of security 

and performance. 

A. Security analysis 

1) Against insider attack: Our protocol can resist the 

insid-er attack due to the fact that the designated verifier 

signature adopted in our protocol with a non-delegatability 

property []. The cloud user as a signer implements DataSign 

algorithm and the cloud storage service provider (CSSP) as a 

verifier implements Verify algorithm, which both may launch 

the insider attack by leaking some effective information rather 

than the secret keys skU , skCS. Hence, an adversary gotten the 

leaking information may forge a valid signature without the 

secret keys of the cloud user’s skU and the CSSP’s skCS. 

However, DataSign algorithm produced the signature is i = (ci; 

zi; i), where 

ci = ci1 
ci2 

= gri  H2(mijjUjjxi; e^(g; gsli )); 

zi = g
li =skU

H3(ci)
; 

i = H4(^e(QCS; g1)
ri ) 

= H4(^e(Qs
CS; gri ) = H4(^e(skCS; gri ): 

Our protocol is non-delegatability. On the one hand, even if an 

adversary has known e^(g; g1) and e^(QCS; g1), ri; li 2 Zq can not 

be obtained and are chosen randomly for each data block mi. 

Furthermore, the key component is zi = gli =skU
H3(ci), due skU is 

unknown unless it can be delegated directly by the signer. 

Otherwise, it is impossible to compute a valid signature. On the 

other hand, the simulate algorithm produces 

the signature is i = (ci; zi; i), where ci; zi 2 G are selected 

randomly and 

i = H4(^e(skCS; ci1 )) 

= H4(^e(skCS; ci=H2(mijjUjjxi; ai))) 
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= H4(^e(skCS; ci=H2(mijjUjjxi; e^(zi; g)^e(skCS; 

g)H3(ci)))): 

Even though a simulator has delegated e^(skCS; g) rather than 

skCS, it can not simulate a valid signature due ci ; zi 2 G chosen 

randomly by the simulator for each data block mi are different 

from ci; zi 2 G randomly selected by the CSSP as a verifier. 

Hence, it must obtain the secret key skCS, e^(skCS; ci1 ) can be 

simulated successfully. 

In summary, unless knowing the secret keys skU or skCS, can it 

produce the valid signature by a third-party. Com-paring with 

Wei’s scheme[28], our protocol can resist the insider attack by 

adopting a designated verifier signature that is non-

delegatability. Moreover, we show proof of non-delegatability 

as follow and other secure properties such as non-transferability, 

unforgeability and privacy in our protocol. 

2) Proofs of secure properties in our protocol: Let g, e, t 

respectively on behalf of the runtime of a multiplication in group 

G, the runtime of a bilinear pairing evaluating, the runtime of a 

exponential operation. 

Property 1. (Non-delegatability) Imaging that the KEA-BDH 

assumption holds with a probability (1 "00). Then the our data 

sharing protocol adopted the IBSDVS scheme is non- 

delegatable with (t; t0; "; "0) in the context of Definition 4, in 

which "0 > (1 "00)=("=qH2 1=q) and t0 < t+(qH1 +qH2 ) g. 

Proof. Assuming that mpk = (G; GT ; e;^ q; g; g1), where g1 = g , 

and QCS = g . An extractor K existed that extracts the secret key 

of either a signer or a designated verifier by inputting the 

signature i and accessing a black-box oracle of an algorithm F. 

Let FU;CS;M be a simulator token (U; CS; M) as input. For each 

data block mi, K supplies hash oracles H2, H3 and H4 and 

maintains tables of T H1; T H2; T H3; T H4 to avoid issuing 

repeated queries to the oracles. 

H1  Query:  Given  a  query  ID,  K selects  randomly !ID 2 Zq. If 

!ID has been in the table T H1, choosing an another number. 

Then it tosses a coin bID so that 

Pr[bID  = 1] =  , which is to be determined later. 

If bID  = 0, K sets QID  = (g )!ID ; otherwise, it 

sets QID  = g!ID . In either case, K stores the tuple 

(ID; QID; bID; !ID) into table T H1  and returns QID 

to FU;CS;M .    

H2 Query: Given a query (mijjUjjxi; ai), K randomly chooses di 2 

Zq. If d has been in the table T H2, choosing an another number. 

Then it returns Qi = gdi and stores (mijjUjjxi; ai; di; Qi) into T H2. 

H3 Query: Given a query ci, K randomly chooses cl 2 Zq. If cl 

has been in the table T H3, choosing an another number and 

storing (ci; cl) into T H3. Then it returns cl. 

H4 Query: Given a query Ti, K randomly chooses  i 2 Zq. If   has 

been in the table T H4, choosing an another number and storing 

(Ti; ) into T H4. Then it returns  i. 

KeyExtract Query: Given an identity ID, K retrieves the tuple 

(ID; QID; bID; !ID) from table T H1. If bID = 

1, K calculates the cloud user’s secret key skID = (g )!ID and 

returns to FU;CS;M . Otherwise, bID = 0, K aborts. 

K implements FU;CS;M to generate a signature i = (ci; zi; i). Then 

K implements FU;CS;M again to gener-ate a forgery i
0 = (c0

i; zi
0; 

i
0) with fixed coins. When (mijjUjjxi; ai), where ai = e^(zi; 

g)^e(QU ; g )H3(ci), is issued to oracle H2. The answers of the 

oracle H2 for the first and the second run of FU;CS;M are different. 

Q0
i = ci=g ! is the answer and ! is chosen by K. 

There are further two cases: 

If (H3(c
0

i); zi
0) 6= (H3(ci); zi), K produces the cloud user’s secret 

key skU as in the simulation of Extract oracle. 

Otherwise, K recovers Ti
0 = (^e(QCS; Ri

0)) from hash table H4, 

where Ri
0 = c0

i=Q0
i = ci=Q0

i = g !. Then we regard FU;CS;M as a 

function by inputting (g1; QCS), and it outputs (Ri
0; e^(g; g) 2!). 

Furthermore, we take the KEACBDH assumption to claim that 

the event happens with a probability (1 "00) 

that there is an algorithm FU;CS;M on the same random coins, 

which produces an output ( !; R0; e^(g; g) 2!). With the value !, K 

computes and skCS = g1 . Then the private key of the cloud 

storage service provider is skCS. 

Assume that (H3(c
0

i); zi
0) 6= (H3(ci); zi) with a probability 

2 [0; 1]. Then the probability of a successful extraction of a 

cloud users private key is "0 = "("=qH2 1=q) according to the 

general forking lemma [26], Then the prob-ability of a 

successful extraction of a CSSPs private key is "1 = (1 )(1 

"00)"("=qH2 1=q). Hence, the probability of a successful 

extraction of a private key is 

" = "0 + "1 > (1 "00)"("=qH2 1=q): 

And the runtime is about 

t0 < t + (qH1 + qH2 ) g: 

Property 2. (Non-transferable) Our proposed data sharing 

protocol with an IBSDVS scheme is satisfying the Definition 3 

and non-transferable perfectly. 

Proof. The designated verifier cloud storage service provider 

(CSSP) can simulate to generate a signature on the original 

message M as follow: For every data block mi, CSSP ran-domly 

chooses c0
i; zi

0 2 G and computes 

a0
i = e^(zi

0; g)^e(QU ; g1)
H3(c0i); 

c0
i2 = H2(mijjUjjxi; a

0
i); 

c0
i1 = c0

i=c0
i2 ; 

i
0 = H4(^e(skS; c0

i1 )); 

i
0 = (c0

i; zi
0; i

0): 

Then the simulate signature is= f i
0gi2(1;2;:::;n). 

signature i = (ci; zi; i) on mi is determined by the random 

numbers ri; li 2 Zq, while the simulate signature of mi is i = (c0
i; 

zi
0; i

0), which is determined by the random numbers ci; zi 2 G. So 

a random pair (ri; li) maps a random pair (ci; zi) and for any pair 

(ci; zi), there is a corresponding pair (ri; li). Because of both (ri; 

li) and (ci; zi) randomly 

chosen, the signatures i = (ci; zi; i) and i = (c0
i; zi

0; i
0) are 

indistinguishable. Hence, even if an adversary A has secret 

keys of the cloud user, the CSSP or both, it is impossible to 

distinguish signatures from 0. 

Property 3. (Unforgeability) If the weak GBDH assumption (t; 

") holds, the data sharing protocol with an IBSDVS scheme is 

unforgeable with (t0; qH1 ; qH2 ; qK ; qDSign; qV er; qSim; "0), where 

t < 2t0 + 2(qH1 + qH2 + qK + 2qDSign) g + 2(2qDSign + 

3qSim + 3qV er) e + 2(qDSign + qSim + qV er) t, and 
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" > "0=[2(qK )2]("0=[2(qK )2qH2 ]  1=q): 

Proof. Given the data sharing protocol with an IBSDVS scheme 

is unforgeability, then by using it an algorithm B is built to solve 

the weak GBDH problem. Given (g; g ; g ; g ) and the oracle O , 

that a random instance of the weak GB-DH problem, the 

algorithm B purposes to obtain e^(g; g) . Furthermore, it works 

as follow: 

Setup: B invokes an adversary A on inputting mkp = (G; GT ; 

e;^ q; g; g1), where g1 = g . Note that the master secret key is 

msk = that is unknown to B. It then simulates oracles for A as 

below. 

Query: B simulates and issues random oracles H1; H2; H3; H4; 

KeyExtract in the same way as K dose in Property 1 and also 

including data signing oracle and verification oracle. 

DataSign Query: Given a query (U; CS; M), B retrieves the 

tuple (U; QU ; bU ; !U ) from T H1. Here we need to distinguish 

two cases: 

1) If bU = 1, produces the cloud user’s private key skU as 

in the simulation of KeyExtract oracle in Property 1 and then 

calculates the signature i by taking the DataSign algorithm for 

each data block with inputting (skU ; U; CS; mpk; mi) by 

accessing to random oracles H2; H3 and H4. 

2) If bU  = 0, B chooses randomly zi  2 G and 

cij   2  Z, then  computes  ci = g
cij ,  ai  =  

e^(zi; g)^e(QU ; g1)
H3(ci), Qi  = H2(mijjUjjxi; ai),  

R = ci=Qi 

^  cij di 

, where di 

 

and  i = H4((QV ; g1))    

is in the entry (mijjUjjxi; ai; di; Qi) of table T H2 for the query 

(mijjUjjxi; ai). B asks random oracles H2; H3 and H4 for related 

hashing operations. 

Note that since the scheme is perfectly non-transferable 

(Property 2), the Sign oracle is per-fectly simulated. 

Simulate Query: This can be answered by B in a similar way 

with the simulation of DataSign oracle. The differ-ence is that 

now B generates the signature from the point of a designated 

verifier. 

Verify Query: Given a query (mi; U; CS; i), where i = (ci; zi; i), B 

retrieves the tuple (CS; QCS; bCS; !CS) from T H1. Again, there 

are two cases: 

1) If bCS = 1, B generates the user secret key skCS as in 

the simulation of KeyExtract oracle, and then 

verifies the signature i by running the Verify algorithm on 

inputting (mi; U; CS; skCS; mpk; i). 

B looks up hash tables H2; H3 and H4 for the cor-

responding hashing operation. If there is no match, 

B simply returns 0 indicating that the signature is 

invalid. As we assume that A would not use a value before 

asking the corresponding random oracle on the input, the event 

will not happen that the signature is valid but B returns 0 when 

A luckily guesses a hashing result before the hashing query is 

issued. 

2) If  such a tuple is not  found,  B looks  up  

 the hash table T H4 indexed by   i.  If there  

 is  no  match,  it  simply  returns  0.  Else  B re-  

 trieves the match tuple (Ti; i) in T H4. It com-  

 putes ai
0 =  e^(zi; g)^e(QU ; g1)

H3(ci), and Qi
0  =  

 H 

2 

(m U x ; a0), R0 = c =Q0 . It looks up  hash  

   ijj jj i i i i i       

 tables T H2 and T H3 for the corresponding hashing  

 operation. If there is no match, it simply returns 0.  

            0!CS 

; Ti) 

 

 Else B asks the oracle O  on inputting (Ri!    

 to obtain a decision bit. If Ti 6= e^(g; Ri
0 CS )  ,  

 B returns 0 indicating that the signature is invalid;  

 otherwise it returns 1.         

Forge: 

A 

generates its forgery, 

  i i     

 (U ; CS ; m ;  ) for each  

data block mi , where i = (ci ; zi ; i ). B then checks the va-lidity 

of the forgery as in the simulation of Verify. If invalid, it aborts; 

otherwise, it retrieves the two tuples (U ; QU ; bU ; !U ) and (CS ; 

QCS; bCS; !CS) from table T H1. If bU = 1 or bCS = 1, B aborts. 

The validity of guarantees that there is a tuple (Ti ; i ) in T H4, a 

tuple (ci ; cij ) in T H3 and a tuple (mi ; ai ; di ; Qi ) in T H2 under 

our assumptions about random 

oracles. B rewinds A to the status of querying oracle H2 on 

inputting (mi ; ai ). It sets Q0 
i = ci =g , and answers A with 

Q0 
i. It then continues to simulate oracles for A as in the Query 

phase. Suppose that, A produces a successful forgery once 

again, say (U0 ; CS0 ; m0 
i; i

0 ) where i
0  = (c0 

i; zi
0 ; i

0 ). If (U0 ; 

CS0 ; m0 
i; i

0 ) 6= (U ; CS ; mi ; i ), B aborts. Other- 

wise, there are two cases: 

1) If  (H 

3 

(c0 ); z0 ) = (H 

3 

(c ); z ), we have that  

 i  i 6  i i    0   

zi   skU
H3(ci )  =  g

li =  gli
0  =  zi0    skU

H3(ci ).  

Hence, 

B 

recovers  sk  by computing sk  =  

  0  

)  H3 

 1U      U   

(zi =zi
0 

)
(H3(ci  (ci )) .         

Note  that skU = ((g )!U ) .  B can compute  

1 

e^(g; g) = e^(skU
!U ; g ). 

2) If (H3(c
0 

i); zi
0 ) = (H3(ci ); zi ), we have that Ri

0  = c0 

i=Q0 
i = ci =Q0 

i = g . B retrieves the tuple (Ti
0 ; i

0 ) from table T 

H4. Note that Ti
0  = e^(QCS ; Ri

0 ) and QCS = (g )!CS . Hence, B 

can compute e^(g; g) = (Ti
0 

)
!
CS

1 . 

In either case, B solves the given instance of the weak GBDH 

problem. 

Therefore, the probability of a successful forgery of (U ; CS ; mi 

; i ) is 

> "0=[2(qK )2]("0=[2(qK )2qH2 ]  1=q): 

Fig. 1. Performance comparison. 

And the runtime is about 
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t < 2t0 + 2(qH1 + qH2 + qK + 2qDSign) g 

+ 2(2qDSign + 3qSim + 3qV er) e 

+ 2(qDSign + qSim + qV er) t 

considering only the runtime of g,  e and  t. 

Property 4. (Privacy) Our proposed data sharing protocol with 

an IBSDVS scheme is satisfying the Definition 5 and privacy 

perfectly. 

Proof. In this paper, our protocol mainly achieves the privacy of 

the cloud user and the CSSP’s identities. In Property 1, without 

delegating the secret keys skU and skCS, an adversary can not 

produce a valid signature and also can not verify the signature 

successfully. And in Property 2, the signature i signed by the 

cloud user is indistinguishable from i signed by the designated 

verifier CSSP, even if given the secret keys skU and skCS. Hence, 

It is not computationally feasible for an adversary to determine 

the key pair of signature i without knowing a designated verifier 

CSSPs secret key skCS or a signer the cloud users secret key skU 

. 

B. Performance analysis 

1.1  
Let g, e, t respectively on behalf of the runtime of a 

multiplication in group G, the runtime of a bilinear pairing 

evaluating, the runtime of a exponential operation. 

To analyze the performance of our data sharing protocol, we 

compare our protocol with current IBSDVS schemes about 

computation cost and signature size in Table 1, where G Z2
q 

means that this signature algorithm contains three elements that 

one is an element in G and two are in Zq. Note that, for each data 

block mi, the computation of gli and gri in those signature 

algorithms is taken as one scalar multiplication since they can be 

computed sequentially when they are sorted. Finally, from the 

Table 1, we obtain the fact that the IBSDVS scheme adopted in 

our data sharing protocol for cloud storage is more efficient than 

other IBSDVS scheme on both signature size and computation 

cost.  

Table 1. Performance comparison. 

 

6 CONCLUSION 
In this paper, we construct a cloud storage environment to 

propose a novel secure data sharing protocol that can resist the 

insider attack due to the fact that the designated verifier 

signature adopted in our protocol with a non-delegatability 

property. We have defined the concepts of non-delegatability, 

unforgeability,non-transferable and privacy of signer’s identity 

and proposed a novel data sharing protocol to achieve the secu-

rity goals. By the extensive security analysis and performance 

analysis, our data sharing protocol is proved that not only can 

resist the insider attack with enjoying all secure properties, but 

also can be more efficient 
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