
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.35, April 2018

26

Mining Minimal Infrequent Intervals

D. I. Mazumder
Department of IT

Ibri College of Technology
Ibri, Oman

D. K. Bhattacharyya
Dept. of Computer Science

Tezpur University
Assam, india

M. Dutta
Dept. of CSE
IIIT Guwahati
Assam, india

ABSTRACT

Many real world data are closely associated with the interval

of time and distance. Mining infrequent intervals from such

data allows users to group transactions with less similarity

while mining frequent interval allows user to group the

transaction with a similarity above a certain measure. In [1],

the notion of mining maximal frequent interval in either a

discrete domain or continuous domain is introduced. This

paper presents an effective minimal infrequent interval

finding algorithm (MII) based on two maximal frequent

interval finding techniques represented in [1] and [2] the

proposed MII has been established to be effective both

theoretically and experimentally.

General Terms

Data mining , I-Tree, Pre-Order Traversal (PT) algorithm.

Keywords

Data mining, maximal frequent interval, minimal infrequent

interval, minimum support, discrete and continuous domain.

1. INTRODUCTION
Data mining has received considerable attention during the

past few years due to the accumulation of large amounts of

data evolving in time, and the need of utilizing these data for

analysis. Many techniques and applications have been

developed, and among them, mining frequent and infrequent

patterns is often used to discover the patterns existing in the

data. The most notable applications are association rules,

sequential patterns etc. in [4], [5], [6], [7] and [8]. Most of the

real world data however, are associated with duration events

instead of point events. A record in such data typically

consists of the starting time and the ending time. A transaction

with starting time‘𝑠’ and ending time‘𝑒’ supports an interval

[𝑎, 𝑏] only if 𝑠 ≤ 𝑎 and 𝑏 ≤ 𝑒. If the number of transactions

supporting the interval [𝑎, 𝑏] exceeds a predefined threshold,

then [𝑎, 𝑏] is called a frequent interval and an interval is said

to be infrequent if it is not frequent. Mining infrequent

intervals can be applied to many areas. As for an example, a

cellular phone company records the time and length of each

phone call for billing purposes. Mining infrequent intervals

from such data allows the company to discover the intervals

during which very few numbers of users are making phone

calls and provides information about the degree of

accessibility of the network for the customers. As a result the

cellular phone company can take a decision about the next

status of the channel (ie. running / idle) for those particular

periods or even can share the channel with some other

networks.

As another example, a web based learning system records the

times at which each student logs on and off the system.

Mining infrequent intervals enables the system to discover the

intervals during which a very few number of students are

online. The system may provide this information to the

students especially to the research scholars for downloading

and uploading their important documents to promote research

in respective area of interest. In the examples above, mining

infrequent intervals plays an important role on the overall data

mining process.

The rest of the paper is organized as follows. Section 2

reviews related works. Section 3 defines the problem of MII.

Section 4 includes some properties of maximal frequent

intervals and minimal infrequent intervals. Section 5 proposes

our MII algorithm. Section 6 represents the experimental

result and section 7 concludes the paper.

2. RELATED WORKS
In [1] the notion of frequent and maximal frequent intervals

for a given database of intervals is defined and an algorithm is

presented for the determination of the maximal frequent

interval. The algorithm consists of two stages. First the

database is scanned once to count the frequency of each

interval occurring in the database. These interval frequencies

are stored in a so-called I-Tree. Second a Pre-Order Traversal

(PT) algorithm is used to discover all maximal frequent

intervals. The worst case complexity for constructing the I-

Tree is 𝑂(𝑛𝑥(|𝐿| + |𝑅|))and that for the PT algorithm is

𝑂(𝑚𝑎𝑥{𝑛𝑥(|𝐿| + |𝑅|), |𝐿|𝑥|𝑅|}), where |𝐿| and |𝑅| are the

number of distinct left, right end points of the given intervals

respectively. The worst space complexity is 𝑂(|𝐿|𝑥|𝑅|). In [2]

an improved method of constructing the I-Tree was given

which has the worst case time complexity 𝑂(𝑛 log 𝑛). This

was a considerable improvement since in general log 𝑛 is far

less than |𝐿| + |𝑅|. In the tests with experimental data with

synthetic dataset as mentioned in [1], the construction of I-

Tree has taken the most amount of time in the whole

algorithm. Therefore the method in [2] leads to a considerable

improvement in the amount of time taken in the execution of

the entire algorithm.

In [3] the notion of minimal infrequent interval was defined

for multidimensional intervals. It was shown that the problem

of generating all minimal infrequent multidimensional

intervals can be solved in Quasi-Polynomial time. In this

paper as shown in the following sections, we have given a

method of obtaining the minimal infrequent intervals for a

given database of intervals, after obtaining the maximal

frequent intervals. The work in [1] and [2] are for databases of

intervals in single dimension only. As mentioned in [1]

extension to multi-dimensional intervals will be done in

future. Therefore we have also used intervals in single

dimension only which have large number of applications as

discussed in section [1].

3. PRELIMINARIES
Let DB be a database of ‘𝑛’ transactions 𝑡𝑖 for 1 ≤ 𝑖 ≤ 𝑛,
where each transaction ‘𝑡’ contains an interval [𝑙𝑡 , 𝑟𝑡] over a

discrete domain. Let 𝑙𝑚𝑖𝑛 denote the smallest left end point

and 𝑟𝑚𝑎𝑥 denote the largest right end point among all the

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.35, April 2018

27

intervals occurring in the transactions in DB. For given a

transaction ‘𝑡’ and an interval [𝑎, 𝑏] we introduce the

following definitions.

3.1 Definition 1:
A transaction ’𝑡’ supports [𝑎, 𝑏] if [𝑎, 𝑏] ⊆ [𝑙𝑡 , 𝑟𝑡] ie if

𝑙𝑡 ≤ 𝑎 ≤ 𝑏 ≤ 𝑟𝑡 . For a given interval [𝑎, 𝑏], 𝑠𝑢𝑝([𝑎, 𝑏]) will

denote the number of transactions in DB that supports [𝑎, 𝑏].

3.2 Definition 2:
For a given support threshold 𝑚𝑖𝑛_𝑠𝑢𝑝 with 0 < 𝑚𝑖𝑛_𝑠𝑢𝑝 <
𝑛 an interval is called frequent if its support is ≥ 𝑚𝑖𝑛_𝑠𝑢𝑝.

Obviously if [𝑙, 𝑟] is frequent, then 𝑙𝑚𝑖𝑛 ≤ 𝑙 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥 . It is

also clear that if [𝑙, 𝑟] ⊆ [𝑙’, 𝑟′] then [𝑙, 𝑟] is frequent if [𝑙′, 𝑟′]
is frequent.

3.3 Definition 3:
A maximal frequent interval is a frequent interval which is not

properly contained in any frequent interval ie. if an interval

[𝒍, 𝒓] is a maximal frequent interval and [𝒍, 𝒓] ⊂ [𝒍′, 𝒓′] then

[𝒍′, 𝒓′] is not frequent.

3.4 Definition 4:
An interval [𝒍, 𝒓] will be called infrequent if 𝒍𝒎𝒊𝒏 ≤ 𝒍 ≤ 𝒓 ≤
𝒓𝒎𝒂𝒙 and it is not frequent.

3.5 Definition 5:
A minimal infrequent interval is an infrequent interval which

does not properly contain any infrequent interval ie. if an

interval [𝑙, 𝑟] is minimal infrequent and [𝑙′, 𝑟′] ⊂ [𝑙, 𝑟] then

[𝑙′, 𝑟′] is not infrequent.

The problem of mining maximal frequent interval is to

discover all the frequent intervals that are maximal and the

problem of mining minimal infrequent intervals is to discover

all the infrequent intervals that are minimal. Below is an

example.

Example1: Consider the database shown in Table 1. Suppose

that we only consider the intervals whose end points are in the

discrete domain 𝐷 = {𝑣|1 ≤ 𝑣 ≤ 13, and 𝑣 is an integer}. If

𝑚𝑖𝑛_𝑠𝑢𝑝 is 4, then clearly the maximal frequent intervals are

[2,4], [7,10] and [8,11] and the minimal infrequent intervals

are [1,1], [5,5], [6,6], [7,11], [12,12] and [13,13].

Table 1. Database for Example 1

Tid 1 2 3 4 5 6 7 8

[lti,rti] [1,5] [1,4] [2,6] [2,5] [6,10] [6,11] [7,12] [8,12]

Based on these definitions we prove some properties using

which the proposed minimal infrequent interval finding

algorithm has been developed. Next we report those

properties

4. SOME PROPERTIES OF THE

MAXIMAL FREQUENT AND MINIMAL

FREQUENT INTERVALS
In this section we prove certain properties of the minimal

infrequent intervals in terms of the maximal frequent

intervals. We first note that if [𝑙, 𝑟] and [𝑙’, 𝑟’] be two distinct

maximal frequent intervals then either (i) 𝑙 < 𝑙′ and 𝑟 < 𝑟′ or

(ii) 𝑙′ < 𝑙 and 𝑟′ < 𝑟. This is so because otherwise one of

them will be properly contained in the other contradicting the

fact that both are maximal frequent. The same kind of

statement will be true for minimal infrequent intervals also.

Because of this for any ′𝑎′ with 𝑙𝑚𝑖𝑛 ≤ 𝑎 ≤ 𝑟𝑚𝑎𝑥 there can be

at most one maximal frequent or minimal infrequent interval

with ‘𝑎’ as a left end point. Hence the maximal frequent

intervals [𝑙1, 𝑟1], 𝑙2, 𝑟2 , … , [𝑙𝑘 , 𝑟𝑘] can be so arranged such

that 𝑙1, < 𝑙2 < ⋯ < 𝑙𝑘 and 𝑟1 < 𝑟2 < ⋯ < 𝑟𝑘 . The following

theorem gives an important connection between frequent and

maximal frequent intervals. The result is stated and used in [1]

without proof.

4.1 Theorem 1:
Every frequent interval is contained in some maximal frequent

interval.

Proof: Let [𝑙, 𝑟] be a frequent interval. If [𝑙, 𝑟] is not maximal

frequent then [𝑙, 𝑟] ⊂ [𝑙′, 𝑟′] where [𝑙′, 𝑟′] is frequent. If

[𝑙′, 𝑟′] is not maximal frequent, [𝑙′, 𝑟′] ⊂ [𝑙′′, 𝑟′′] where

[𝑙′′, 𝑟′′] is frequent. Since there are only a finite number

of possible intervals with end points between 𝑙𝑚𝑖𝑛 and

𝑟𝑚𝑎𝑥 , the above process cannot continue indefinitely and

we will get some maximal frequent interval [𝑙𝑖 , 𝑟𝑖] such

that [𝑙, 𝑟] ⊂ [𝑙𝑖 , 𝑟𝑖]. Hence every frequent interval is

contained in some maximal frequent interval.

We can now prove the following theorems.

4.2 Theorem 2:
For every ′𝒂′ such that 𝒍𝒎𝒊𝒏 ≤ 𝒂 ≤ 𝒍𝟏, [𝒂, 𝒂] is a minimal

infrequent interval.

Proof: Since [𝑎, 𝑎] is not contained in any maximal frequent

interval [𝑙𝑖 , 𝑟𝑖] for 1 ≤ 𝑖 ≤ 𝑘, [𝑎, 𝑎] is not frequent. Also

it does not properly contain any interval. Hence [𝑎, 𝑎] is

a minimal infrequent interval

The proof of the following theorem is similar.

4.3 Theorem 3:
 For every ′𝑎′ such that 𝑟𝑘 < 𝑎 ≤ 𝑟𝑚𝑎𝑥 [𝑎, 𝑎] is a minimal

infrequent interval.

4.4 Theorem 4:
 If 𝑟𝑖 < 𝑙𝑖+1 − 1 then for any ‘𝑎’ with 𝑟𝑖 < 𝑎 < 𝑙𝑖+1, [𝑎, 𝑎] is

a minimal infrequent interval.

Proof: Since 𝑎 > 𝑟𝑖 , [𝑎, 𝑎] is not contained in any [𝑙𝑖 , 𝑟𝑗] for

𝑗 ≤ 𝑖 and since 𝑎 < 𝑙𝑖 + 1, [𝑎, 𝑎] is not contained in any

[𝑙𝑖 , 𝑟𝑗] for 𝑗 ≥ 𝑖 + 1. Thus [𝑎, 𝑎] is not contained in any

maximal frequent interval. Hence [𝑎, 𝑎] is not frequent

and since it does not properly contain any interval, by

Definition 5 it is a minimal infrequent interval

4.5 Theorem 5:
If 𝑟𝑖 ≥ 𝑙𝑖+1 − 1 then the interval [𝑙𝑖+1 − 1, 𝑟𝑖 + 1] is a

minimal infrequent interval.

Proof: Since 𝑟𝑖 + 1 > 𝑟𝑖 , 𝑟𝑖 + 1 > 𝑟𝑗 for all 𝑗 ≤ 𝑖 and

hence [𝑙𝑖+1 − 1, 𝑟𝑖 + 1] cannot be contained in [𝑙𝑗 , 𝑟𝑗]

for any 𝑗 ≤ 𝑖. Since 𝑙𝑖+1 − 1 < 𝑙𝑖 , 𝑙𝑖+1 − 1 < 𝑙𝑗 for any

𝑗 ≥ 𝑖 and hence [𝑙𝑖+1 − 1, 𝑟𝑖 + 1] cannot be contained in

[𝑙𝑖 , 𝑟𝑗] for 𝑗 ≥ 𝑖. Thus [𝑙𝑖+1 − 1, 𝑟𝑖 + 1] is not contained

in any maximal frequent interval and hence it is not

frequent. Suppose [𝑙𝑖+1 − 1, 𝑟𝑖 + 1] is not a minimal

infrequent interval. Then it properly contains an

infrequent interval [𝑎, 𝑏]. If 𝑎 > 𝑙𝑖+1 − 1, then [𝑎, 𝑏] ⊆
[𝑙𝑖+1, 𝑟𝑖 + 1]. But 𝑟𝑖 < 𝑟𝑖+1 and therefore 𝑟𝑖 + 1 ≤ 𝑟𝑖+1.

Hence [𝑎, 𝑏] ⊆ [𝑙𝑖+1, 𝑟𝑖+1] and hence is frequent. This

implies 𝑎 = 𝑙𝑖+1 − 1. But in this case we must have

𝑏 < 𝑟𝑖 + 1 since [𝑎, 𝑏] is properly contained in [𝑙𝑖+1 −
1, 𝑟𝑖 + 1] . Thus 𝑏 ≤ 𝑟𝑖 and since 𝑙𝑖 < 𝑙𝑖 + 1, we have

𝑙𝑖 ≤ 𝑙𝑖+1 − 1 = 𝑎 . Therefore [𝑎, 𝑏] ⊆ [𝑙𝑖 , 𝑟𝑖] and hence

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.35, April 2018

28

 MII(DB)

 {

M=empty.

For 𝑎 = 𝑙𝑚𝑖𝑛 𝑡𝑜 𝑙1 − 1

 M M∪ {[𝑎, 𝑎]} //by Theorem 2

For 𝑖 = 1, to 𝑘 − 1

 if 𝑟𝑖 < 𝑙𝑖+1 − 1
 {

 for 𝑎 = 𝑟𝑖 + 1 to 𝑙𝑖+1 − 1

 M=M∪ {[𝑎, 𝑎]} //by Theorem 4

 }

 else

 M=M∪ { 𝑙𝑖+1 − 1, 𝑟𝑖 + 1 } //by Theorem 5

 For 𝑎 = 𝑟𝑘 + 1 𝑡𝑜 𝑟𝑚𝑎𝑥

 M=M∪ {[𝑎, 𝑎]} //by Theorem 3

return M

 }

 Fig: 1 Pseudo code of MII

is frequent. This contradicts the fact that 𝑎, 𝑏 is

infrequent. Hence [𝑙𝑖+1 − 1, 𝑟𝑖 + 1] is a minimal

infrequent interval.

In the next section, we propose an algorithm for finding all the

minimal infrequent intervals, which simply obtains the

intervals as given by Theorem 2,3,4 and 5. For a proof of the

completeness of this procedure, we introduce the following

lemmas and completeness Theorem 6.

4.6 Lemma1:
If 𝑙𝑘 ≤ 𝑙 ≤ 𝑟𝑘 , there is no minimal infrequent interval with ‘𝑙’
as the left end-point.

Proof: Suppose there is a minimal infrequent interval [𝑙, 𝑟]
with 𝑙𝑘 ≤ 𝑙 ≤ 𝑟𝑘 . We cannot have 𝑟 ≤ 𝑟𝑘 because then

[𝑙, 𝑟] ⊆ [𝑙𝑘 , 𝑟𝑘] and hence will be frequent. If 𝑟 > 𝑟𝑘 then

[𝑙, 𝑟] will properly contain [𝑟, 𝑟] and by definition of

infrequent interval 𝑟 ≤ 𝑟𝑚𝑎𝑥 . Hence [𝑟, 𝑟] is infrequent

by Theorem2 and thus [𝑙, 𝑟] cannot be a minimal

infrequent interval which is a contradiction. This proves

the lemma,

4.7 Lemma 2:
If 𝑖 < 𝑘, 𝑟𝑖 < 𝑙𝑖+1 − 1 and 𝑙𝑖 ≤ 𝑙 ≤ 𝑟𝑖 then there is no minimal

infrequent interval with left end point ‘l’.

Proof: Here 𝑖 < 𝑘, 𝑟𝑖 < 𝑙𝑖+1 − 1 and 𝑙𝑖 ≤ 𝑙 ≤ 𝑟𝑖 and let [𝑙, 𝑟]
be any minimal infrequent interval with left end point 𝑙.
if 𝑟 ≤ 𝑟𝑖 then [𝑙, 𝑟] ⊆ [𝑙𝑖 , 𝑟𝑖] and hence is frequent. If

𝑟 > 𝑟𝑖 , [𝑙, 𝑟] properly contains [𝑟𝑖 + 1, 𝑟𝑖 + 1]. But 𝑟𝑖 + 1

satisfies 𝑟𝑖 < 𝑟𝑖 + 1 < 𝑙𝑖+1. Hence by Theorem 3

[𝑟𝑖 + 1, 𝑟𝑖 + 1] is infrequent and therefore [𝑙, 𝑟] is not

minimal infrequent. Thus there is no minimal infrequent

interval with left end point ‘𝑙’.

4.8 Lemma 3:
If 𝑖 < 𝑘, 𝑟𝑖 ≥ 𝑙𝑖+1 − 1 and 𝑙𝑖 ≤ 𝑙 < 𝑙𝑖+1 − 1 then there is no

minimal infrequent interval with left end point ‘𝑙’.

Proof: Let [𝑙, 𝑟] be an interval with left end point 𝑙. If 𝑟 ≤
𝑟𝑖 then [𝑙, 𝑟] ⊆ [𝑙𝑖 , 𝑟𝑖] and hence frequent. If 𝑟 > 𝑟𝑖 , [𝑙, 𝑟]
properly contains [𝑙𝑖+1 − 1, 𝑟𝑖 + 1] which is infrequent

according to Theorem 4. Thus [𝑙, 𝑟] cannot be minimal

infrequent and hence there is no minimal infrequent

interval with left end point 𝑙.

The following theorem now characterizes all the minimal

infrequent intervals.

4.9 Theorem 6:
The minimal infrequent intervals given in Theorems 2, 3, 4

and 5 completely determine all the minimal infrequent

intervals.

Proof: We have already noted that for any ′𝑎′ with 𝑙𝑚𝑖𝑛 ≤
𝑎 ≤ 𝑟𝑚𝑎𝑥 , there is at most one minimal infrequent

interval with left end-point ′𝑎′. If 𝑎 < 𝑙1 then there is one

minimal infrequent interval given by Theorem 2. If

𝑎 > 𝑟𝑘 then there is one minimal infrequent interval

given by Theorem 3. If 𝑙𝑘 ≤ 𝑎 ≤ 𝑟𝑘 then there is no

minimal infrequent interval with left end point ′𝑎′ as

proved in Lemma 1. That leaves us to examine the case

𝑙𝑖 ≤ 𝑎 < 𝑙𝑖+1 for 𝑖 = 1,2, …𝑘 − 1. For 𝑙𝑖 ≤ 𝑎 < 𝑙𝑖+1, if

𝑟𝑖 < 𝑙𝑖+1 − 1, then there is no minimal infrequent

interval with left end point ′𝑎′ for 𝑙𝑖 ≤ 𝑎 ≤ 𝑟𝑖 by Lemma

2 and one minimal infrequent interval with left end point

′𝑎′ for every ′𝑎′ satisfying 𝑟𝑖 < 𝑎 < 𝑙𝑖+1, by Theorem 4.

If on the other hand 𝑟𝑖 ≥ 𝑙𝑖+1 − 1 there is no minimal

infrequent interval with left end point ′𝑎′ for 𝑙𝑖 ≤ 𝑎 <
𝑙𝑖+1 − 1 by Lemma 3 and one minimal infrequent

interval with left end point 𝑙𝑖+1 − 1 by Theorem 5. This

covers all the possible values for ′𝑎′ and hence provides

the proof of completeness

5. THE PRPOSED MINIMAL

INFREQUENT INTERVAL (MII)

ALGORITHM
At first in the first part of the algorithm the maximal frequent

intervals are determined using algorithms given in [1] and [2].
After that in the second part, the following algorithm

determines the minimal infrequent intervals by scanning all

the possible left end points of such intervals which range from

𝑙𝑚𝑖𝑛 to 𝑟𝑚𝑎𝑥 and identifying those that are given by Theorems

2,3,4 and 5. During the execution of the algorithm, a set of

intervals M is maintained which is initially empty and the

minimal infrequent intervals are inserted one by one into M as

those are determined. In the first phase of the second part, for

every value of ′𝑎′ such that 𝑙𝑚𝑖𝑛 ≤ 𝑎 < 𝑙1, we insert an

interval [𝑎, 𝑎] (by Theorem 2).

In the second phase of the second part, for 𝑖 = 1,2, . . . , 𝑘 − 1

we insert intervals into M as follows

 if 𝑟𝑖 < 𝑙𝑖+1 − 1 then for every ′𝑎′ such that 𝑟𝑖 < 𝑎 < 𝑙𝑖+1,

the interval [𝑎, 𝑎] is inserted into M (by Theorem 4).

else we insert 𝑙𝑖+1 − 1 , 𝑟𝑖 + 1 into M (by Theorem 5).

In the last phase of the second part for every ′𝑎′ such that

𝑟𝑘 < 𝑎 ≤ 𝑟𝑚𝑎𝑥 , we insert [𝑎, 𝑎] into M (by Theorem 3).

The soundness of MII follows from Theorems 2, 3, 4 and

5 and its completeness is established in Theorem 6.

5.1 MII algorithm
MII is executed in the second part, which accepts the maximal

frequent intervals [𝑙1, 𝑟1], 𝑙2, 𝑟2 , … , [𝑙𝑘 , 𝑟𝑘] with 𝑙1, < 𝑙2 <
⋯ < 𝑙𝑘 determined in first part by the algorithms given in

[1] and [2] based on the data set DB. Next we report the

pseudo code of MII.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.35, April 2018

29

5.2 Complexity analysis of the algorithm of

MII
After the maximal frequent intervals are determined, the

minimal infrequent intervals are determined one by one, each

in 𝑂(1) time. Since each minimal infrequent interval must

have a distinct left end point, there cannot be more than

𝑟𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛 + 1 of them. Without loss of generality using a

translation of the intervals we can take 𝑙𝑚𝑖𝑛 = 1. Hence the

complexity for the determination of the minimal infrequent

intervals is 𝑂(𝑟𝑚𝑎𝑥) which is 𝑂(𝑛) when 𝑟𝑚𝑎𝑥 is 𝑂(𝑛). This is

in addition to the time required to determine the maximal

frequent intervals. Once the maximal frequent intervals are

determined, the rest of the work can be completed in the

memory since 𝑟𝑚𝑎𝑥 is usually quite small and no further

database scan is required.

The space complexity for this additional work is 𝑂(𝑟𝑚𝑎𝑥)

since we simply need the space for the arrays containing the

maximal frequent and minimal infrequent intervals which are

at most 𝑟𝑚𝑎𝑥 in number.

6. EXPERIMENTAL RESULTS
Following environment and datasets were used to test the

effectiveness of MII experimentally.

6.1 Environment Used
MII was implemented in a workstation having Intel(R)

Xeon(R) CPU X5470 of speed 3.33GHz, with a 4 GB RAM

in a Linux environment using C++.

6.2 Dataset Used
To test the correctness of MII we use synthetic data generator.

We developed a data generator based on [1] and generated

several data sets (as reported in the first column of Table 2) by

varying the number of records. For each data set, the number

of transactions is 𝑛, the left end points of the intervals are

distributed uniformly between 1 and 𝑙𝑚𝑎𝑥 , and the length of

these intervals is in Poisson distribution with mean 𝑚.

Minimum support is measured in percentage of 𝑛.

6.3 Results
The algorithm is experimentally tested with fixed values of

𝑙𝑚𝑎𝑥 and 𝑚. Size of the data set is varied and the

identification of number of frequent and infrequent intervals

are recorded. The running time of the algorithm also noted

with the variation of the size of the dataset. It is observed that

the running time of the algorithm is directly proportional to

the size of the dataset irrespective of the presence of number

of frequent and infrequent intervals. The observations are

listed in the Table 1.

The graphical representation of the results are shown in fig. 2

in which four different variations are considered as explained

below:

In fig. 2(a), the graph is drawn between number of

transactions and time taken in seconds. It is observed from the

graph that with increase of number of transactions, time

consumption also increased. Similarly, in fig. 2(b), the graph

is drawn by varying Imax with number of maximal frequent

and minimal infrequent intervals. The graph in fig. 2(c)

represents the effect of the algorithm by varying the values of

mean and in fig. 2(d), the graph signifying the behavior of the

algorithm by varying minimum support.

Table 1. Experimental results over synthetic dataset

Dataset Used Description
No. of

records

No. of maximal

frequent intervals

No. of minimal

frequent intervals
Time in seconds

100klmax_200m_100
lmax=200, Mean

m=100
1,00,000 169 296 0.000139s

200klmax_200m_100
lmax=200,Mean

m=100
2,00,000 175 302 0.000188s

300klmax_200m_100
lmax=200, Mean

m=100
3,00,000 173 309 0.000225s

400klmax_200m_100
lmax=200, Mean

m=100
4,00,000 172 307 0.000381s

500klmax_200m_100
lmax=200, Mean

m=100
5,00,000 173 309 0.000454s

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.35, April 2018

30

7. CONCLUSIONS AND FUTURE

WORK
An effective method of mining infrequent interval (MMI) is

reported in this paper. The effectiveness of MII is established

theoretically as well as experimentally. 𝑂(𝑛) time complexity

and 𝑂(𝑟𝑚𝑎𝑥) space complexity makes the algorithm more

effective. There is a possibility that the mining infrequent

interval can be extended for a continuous domain also. Work

is going on towards the extension of MII for handling

continuous valued data for finding minimal infrequent

intervals.

8. REFERENCES

[1] Lin, J. (2003). Mining Maximal Frequent Intervals. In

the Proceedings of ACM symposium on Applied

Computing, pp. 426-431. ACM, New York.

[2] Dutta, M. and Mahanta, A.K. 2010. An efficient method

for construction of I-tree. In: Proceedings of National

workshop on Design and Analysis of

Algorithm(NWDA).

[3] Elbassioni, Khaled M. Finding All Minimal Infrequent

 Multi-dimensionalIntervals:Max-Planck-Institutf¨ur

Informatik, Saarbr¨ucken, Germany.

[4] Agrawal, Rakesh and Srikant, Ramakrishnan 1994. Fast

Algorithms for Mining Association Rules in Large

Databases, Proceedings of the 20th International

Conference on Very Large Data Bases, p.487-499,

September 12-15.

 [5] Agrawal, Rakesh and Srikant, Ramakrishnan 1995.

Mining Sequential Patterns, Proceedings of the Eleventh

International Conference on Data Engineering, p.3-14,

March 06-10.

 [6] Lu, H., Han, J. and Feng, L 1998. Stock movement and

n-dimensional inter-transaction association rules. In

Proc. 1998 SIGMOD Workshop on Research Issues on

Data Mining and Knowledge Discovery (DMKD'98).

[7] Liu, B., Hsu, W., and Ma Y. 1998. Integrating

classification and association rule mining. In KDD p. 80-

86.

[8] Mannila, Heikki and Toivonen, Hannu 1997. Levelwise

Search and Borders of Theories in KnowledgeDiscovery,

Data Mining and Knowledge Discovery, v.1 n.3, p.241-

258, [doi>10.1023/A:1009796218281]

 Fig: 2 Graphical representations of the results of MII

http://portal.acm.org/citation.cfm?id=672836&dl=GUIDE&coll=GUIDE&CFID=88137397&CFTOKEN=78782920
http://portal.acm.org/citation.cfm?id=672836&dl=GUIDE&coll=GUIDE&CFID=88137397&CFTOKEN=78782920
http://portal.acm.org/citation.cfm?id=672836&dl=GUIDE&coll=GUIDE&CFID=88137397&CFTOKEN=78782920
http://portal.acm.org/citation.cfm?id=672836&dl=GUIDE&coll=GUIDE&CFID=88137397&CFTOKEN=78782920
http://portal.acm.org/citation.cfm?id=672836&dl=GUIDE&coll=GUIDE&CFID=88137397&CFTOKEN=78782920
http://portal.acm.org/citation.cfm?id=672836&dl=GUIDE&coll=GUIDE&CFID=88137397&CFTOKEN=78782920
http://portal.acm.org/citation.cfm?id=655281&dl=GUIDE&coll=GUIDE&CFID=88137397&CFTOKEN=78782920
http://portal.acm.org/citation.cfm?id=655281&dl=GUIDE&coll=GUIDE&CFID=88137397&CFTOKEN=78782920
http://portal.acm.org/citation.cfm?id=655281&dl=GUIDE&coll=GUIDE&CFID=88137397&CFTOKEN=78782920
http://portal.acm.org/citation.cfm?id=655281&dl=GUIDE&coll=GUIDE&CFID=88137397&CFTOKEN=78782920
http://portal.acm.org/citation.cfm?id=655281&dl=GUIDE&coll=GUIDE&CFID=88137397&CFTOKEN=78782920
http://portal.acm.org/citation.cfm?id=593448&dl=GUIDE&coll=GUIDE&CFID=88137397&CFTOKEN=78782920
http://portal.acm.org/citation.cfm?id=593448&dl=GUIDE&coll=GUIDE&CFID=88137397&CFTOKEN=78782920
http://portal.acm.org/citation.cfm?id=593448&dl=GUIDE&coll=GUIDE&CFID=88137397&CFTOKEN=78782920
http://portal.acm.org/citation.cfm?id=593448&dl=GUIDE&coll=GUIDE&CFID=88137397&CFTOKEN=78782920
http://dx.doi.org/10.1023/A:1009796218281

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.35, April 2018

31

Authors Biographies

D. I. Mazumder, received his Master Degree in Mathematics

from Gauhati University, India in 2003. He received his

M.Tech in Information Technology, from Tezpur University,

India in 2010. Currently He is working as a Lecturer of

Mathematics in the Dept. of Information Technology in IBRI

College of Technology, OMAN. His major Research interests

include Data mining and Cryptography.

D. k. Bhattacharyya, received his MCA from Dibrugarh

University, India in 1991. He received PhD Degree in

Computer Science from Tezpur University, India in 1999.

Presently he is working as a Professor in the Department of

Computer Science and Engg, Tezpur University, India. His

Major research interests include Cryptography, Error

correction/ detection, Content based image retrieval, Data

mining and Network Security.

M. Dutta, received his M.Sc. Degree in Physics from Delhi

University in 1972. He received PhD Degree in Mathematics

from IIT Kanpur in 1979. He also received M. S. in Computer

Science from University of Houston in1982. Presently he is

working as a professor in the Department of Computer

Science and Engineering, Tezpur university, India. His major

research area of interest are P=NP problem, Optimization and

Data mining.

IJCATM : www.ijcaonline.org

