
International Journal of Computer Applications (0975 – 8887) 

Volume 179 – No.35, April 2018 

26 

Mining Minimal Infrequent Intervals 

D. I. Mazumder  
Department of IT 

Ibri College of Technology 
Ibri, Oman 

D. K. Bhattacharyya 
Dept. of Computer Science 

Tezpur University  
Assam, india 

M. Dutta 
Dept. of CSE 
IIIT Guwahati 
Assam, india 

 

 

ABSTRACT 

Many real world data are closely associated with the interval 

of time and distance. Mining infrequent intervals from such 

data allows users to group transactions with less similarity 

while mining frequent interval allows user to group the 

transaction with a similarity above a certain measure. In [1], 

the notion of mining maximal frequent interval in either a 

discrete domain or continuous domain is introduced. This 

paper presents an effective minimal infrequent interval 

finding algorithm (MII) based on two maximal frequent 

interval finding techniques represented in [1] and [2] the 

proposed MII has been established to be effective both 

theoretically and experimentally.   

General Terms 

Data mining , I-Tree, Pre-Order Traversal (PT) algorithm. 

Keywords 

Data mining, maximal frequent interval, minimal infrequent 

interval, minimum support, discrete and continuous domain. 

1. INTRODUCTION 
Data mining has received considerable attention during the 

past few years due to the accumulation of large amounts of 

data evolving in time, and the need of utilizing these data for 

analysis. Many techniques and applications have been 

developed, and among them, mining frequent and infrequent 

patterns is often used to discover the patterns existing in the 

data. The most notable applications are association rules, 

sequential patterns etc. in [4], [5], [6], [7] and [8]. Most of the 

real world data however, are associated with duration events 

instead of point events. A record in such data typically 

consists of the starting time and the ending time. A transaction 

with starting time‘𝑠’ and ending time‘𝑒’ supports an interval 

[𝑎, 𝑏] only if 𝑠 ≤ 𝑎 and 𝑏 ≤ 𝑒. If the number of transactions 

supporting the interval [𝑎, 𝑏] exceeds a predefined threshold, 

then [𝑎, 𝑏] is called a frequent interval and  an interval is said 

to be infrequent if it is not frequent. Mining infrequent 

intervals can be applied to many areas. As for an example, a 

cellular phone company records the time and length of each 

phone call for billing purposes. Mining infrequent intervals 

from such data allows the company to discover the intervals 

during which very few numbers of users are making phone 

calls and provides information about the degree of 

accessibility of the network for the customers. As a result the 

cellular phone company can take a decision about the next 

status of the channel (ie. running / idle) for those particular 

periods or even can share the channel with some other 

networks. 

As another example, a web based learning system records the 

times at which each student logs on and off the system. 

Mining infrequent intervals enables the system to discover the 

intervals during which a very few number of students are 

online. The system may provide this information to the 

students especially to the research scholars for downloading 

and uploading their important documents to promote research 

in respective area of interest. In the examples above, mining 

infrequent intervals plays an important role on the overall data 

mining process.  

The rest of the paper is organized as follows. Section 2 

reviews related works. Section 3 defines the problem of MII. 

Section 4 includes some properties of maximal frequent 

intervals and minimal infrequent intervals. Section 5 proposes 

our MII algorithm. Section 6 represents the experimental 

result and section 7 concludes the paper.  

2. RELATED WORKS 
In [1] the notion of frequent and maximal frequent intervals 

for a given database of intervals is defined and an algorithm is 

presented for the determination of the maximal frequent 

interval. The algorithm consists of two stages. First the 

database is scanned once to count the frequency of each 

interval occurring in the database. These interval frequencies 

are stored in a so-called I-Tree. Second a Pre-Order Traversal 

(PT) algorithm is used to discover all maximal frequent 

intervals. The worst case complexity for constructing the I-

Tree is 𝑂(𝑛𝑥(|𝐿| + |𝑅|))and that for the PT algorithm is 

𝑂(𝑚𝑎𝑥{𝑛𝑥(|𝐿| + |𝑅|), |𝐿|𝑥|𝑅|}), where |𝐿| and |𝑅| are the 

number of distinct left, right end points of the given intervals 

respectively. The worst space complexity is 𝑂(|𝐿|𝑥|𝑅|). In [2] 

an improved method of constructing the I-Tree was given 

which has the worst case time complexity 𝑂(𝑛 log 𝑛). This 

was a considerable improvement since in general log 𝑛 is far 

less than |𝐿| + |𝑅|. In the tests with experimental data with 

synthetic dataset as mentioned in [1], the construction of I-

Tree has taken the most amount of time in the whole 

algorithm. Therefore the method in [2] leads to a considerable 

improvement in the amount of time taken in the execution of 

the entire algorithm.  

In [3] the notion of minimal infrequent interval was defined 

for multidimensional intervals. It was shown that the problem 

of generating all minimal infrequent multidimensional 

intervals can be solved in Quasi-Polynomial time. In this 

paper as shown in the following sections, we have given a 

method of obtaining the minimal infrequent intervals for a 

given database of intervals, after obtaining the maximal 

frequent intervals. The work in [1] and [2] are for databases of 

intervals in single dimension only. As mentioned in [1] 

extension to multi-dimensional intervals will be done in 

future. Therefore we have also used intervals in single 

dimension only which have large number of applications as 

discussed in section [1].  

3. PRELIMINARIES 
Let DB be a database of ‘𝑛’ transactions 𝑡𝑖  for 1 ≤ 𝑖 ≤ 𝑛, 
where each transaction ‘𝑡’ contains an interval [𝑙𝑡 , 𝑟𝑡] over a 

discrete domain. Let 𝑙𝑚𝑖𝑛    denote the smallest left end point 

and 𝑟𝑚𝑎𝑥   denote the largest right end point among all the 
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intervals occurring in the transactions in DB. For given a 

transaction ‘𝑡’ and an interval [𝑎, 𝑏] we introduce the 

following definitions. 

3.1 Definition 1:  
A transaction ’𝑡’ supports [𝑎, 𝑏] if [𝑎, 𝑏] ⊆ [𝑙𝑡 , 𝑟𝑡] ie if 

𝑙𝑡 ≤ 𝑎 ≤ 𝑏 ≤ 𝑟𝑡  . For a given interval [𝑎, 𝑏], 𝑠𝑢𝑝([𝑎, 𝑏]) will 

denote  the number of transactions in DB  that supports [𝑎, 𝑏]. 

3.2 Definition 2: 
For a given support threshold 𝑚𝑖𝑛_𝑠𝑢𝑝 with 0 < 𝑚𝑖𝑛_𝑠𝑢𝑝 <
𝑛 an interval is called frequent if its support is ≥  𝑚𝑖𝑛_𝑠𝑢𝑝. 

Obviously if [𝑙, 𝑟] is frequent, then 𝑙𝑚𝑖𝑛 ≤ 𝑙 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥 . It is 

also clear that if [𝑙, 𝑟] ⊆ [𝑙’, 𝑟′] then [𝑙, 𝑟] is frequent if [𝑙′, 𝑟′] 
is frequent. 

3.3 Definition 3:  
A maximal frequent interval is a frequent interval which is not 

properly contained in any frequent interval ie. if an interval 

[𝒍, 𝒓] is a maximal frequent interval  and [𝒍, 𝒓] ⊂ [𝒍′, 𝒓′] then 

[𝒍′, 𝒓′] is not frequent. 

3.4 Definition 4:  
An interval [𝒍, 𝒓] will be called infrequent if 𝒍𝒎𝒊𝒏 ≤ 𝒍 ≤ 𝒓 ≤
𝒓𝒎𝒂𝒙 and it is not frequent. 

3.5 Definition 5:  
A minimal infrequent interval is an infrequent interval which 

does not properly contain any infrequent interval ie. if an 

interval [𝑙, 𝑟] is minimal infrequent and [𝑙′, 𝑟′] ⊂ [𝑙, 𝑟] then 

[𝑙′, 𝑟′] is not infrequent.  

The problem of mining maximal frequent interval is to 

discover all the frequent intervals that are maximal and the 

problem of mining minimal infrequent intervals is to discover 

all the infrequent intervals that are minimal. Below is an 

example. 

Example1: Consider the database shown in Table 1. Suppose 

that we only consider the intervals whose end points are in the 

discrete domain 𝐷 =  {𝑣|1 ≤ 𝑣 ≤ 13, and 𝑣 is an integer}. If 

𝑚𝑖𝑛_𝑠𝑢𝑝 is 4, then clearly the maximal frequent intervals are 

[2,4], [7,10] and [8,11] and the minimal infrequent intervals 

are [1,1], [5,5], [6,6], [7,11], [12,12] and [13,13].   

Table 1. Database for Example 1 

Tid 1 2 3 4 5 6 7 8 

[lti,rti] [1,5] [1,4] [2,6] [2,5] [6,10] [6,11] [7,12] [8,12] 

  

Based on these definitions we prove some properties using 

which the proposed minimal infrequent interval finding 

algorithm has been developed. Next we report those 

properties 

4. SOME PROPERTIES OF THE 

MAXIMAL FREQUENT AND MINIMAL 

FREQUENT INTERVALS 
In this section we prove certain properties of the minimal 

infrequent intervals in terms of the maximal frequent 

intervals. We first note that if [𝑙, 𝑟] and [𝑙’, 𝑟’] be two distinct 

maximal frequent intervals then either (i) 𝑙 < 𝑙′ and 𝑟 <  𝑟′ or 

(ii) 𝑙′ < 𝑙 and 𝑟′ < 𝑟. This is so because otherwise one of 

them will be properly contained in the other contradicting the 

fact that both are maximal frequent. The same kind of 

statement will be true for minimal infrequent intervals also. 

Because of this for any ′𝑎′ with 𝑙𝑚𝑖𝑛 ≤ 𝑎 ≤ 𝑟𝑚𝑎𝑥  there can be 

at most one maximal frequent or minimal infrequent interval 

with ‘𝑎’ as a left end point. Hence the maximal frequent 

intervals [𝑙1, 𝑟1],  𝑙2, 𝑟2 , … , [𝑙𝑘 , 𝑟𝑘] can be so arranged such 

that 𝑙1, < 𝑙2 < ⋯ < 𝑙𝑘  and 𝑟1 < 𝑟2 < ⋯ <  𝑟𝑘 . The following 

theorem gives an important connection between frequent and 

maximal frequent intervals. The result is stated and used in [1] 

without proof. 

4.1 Theorem 1: 
Every frequent interval is contained in some maximal frequent 

interval. 

Proof:  Let [𝑙, 𝑟] be a frequent interval. If [𝑙, 𝑟] is not maximal 

frequent then [𝑙, 𝑟] ⊂ [𝑙′, 𝑟′] where [𝑙′, 𝑟′] is frequent. If 

[𝑙′, 𝑟′] is not maximal frequent, [𝑙′, 𝑟′] ⊂ [𝑙′′, 𝑟′′] where 

[𝑙′′, 𝑟′′] is frequent. Since there are only a finite number 

of possible intervals with end points between 𝑙𝑚𝑖𝑛  and 

𝑟𝑚𝑎𝑥 , the above process cannot continue indefinitely and 

we will get some maximal frequent interval [𝑙𝑖 , 𝑟𝑖] such 

that [𝑙, 𝑟] ⊂  [𝑙𝑖 , 𝑟𝑖]. Hence every frequent interval is 

contained in some maximal frequent interval. 

We can now prove the following theorems. 

4.2 Theorem 2:  
For every ′𝒂′ such that  𝒍𝒎𝒊𝒏 ≤ 𝒂 ≤ 𝒍𝟏, [𝒂, 𝒂] is a minimal 

infrequent interval. 

Proof: Since [𝑎, 𝑎] is not contained in any maximal frequent 

interval [𝑙𝑖 , 𝑟𝑖] for 1 ≤ 𝑖 ≤ 𝑘, [𝑎, 𝑎] is not frequent. Also 

it does not properly contain any interval. Hence [𝑎, 𝑎] is 

a minimal infrequent interval 

The proof of the following theorem is similar. 

4.3 Theorem 3:  
 For every ′𝑎′ such that 𝑟𝑘 < 𝑎 ≤ 𝑟𝑚𝑎𝑥  [𝑎, 𝑎] is a minimal 

infrequent interval. 

4.4 Theorem 4:  
 If 𝑟𝑖 < 𝑙𝑖+1 − 1 then for any ‘𝑎’ with  𝑟𝑖 < 𝑎 < 𝑙𝑖+1, [𝑎, 𝑎] is 

a minimal infrequent interval.  

Proof: Since 𝑎 > 𝑟𝑖  , [𝑎, 𝑎] is not contained in any [𝑙𝑖 , 𝑟𝑗 ] for 

𝑗 ≤ 𝑖 and since 𝑎 < 𝑙𝑖 + 1, [𝑎, 𝑎] is not contained in any 

[𝑙𝑖 , 𝑟𝑗 ]  for 𝑗 ≥ 𝑖 + 1. Thus [𝑎, 𝑎] is not contained in any 

maximal frequent interval. Hence [𝑎, 𝑎] is not frequent 

and since it does not properly contain any interval, by 

Definition 5 it is a minimal infrequent interval 

4.5 Theorem 5:  
If 𝑟𝑖 ≥ 𝑙𝑖+1 − 1  then the interval [𝑙𝑖+1 − 1, 𝑟𝑖 + 1] is a 

minimal infrequent interval. 

Proof: Since  𝑟𝑖 + 1 >   𝑟𝑖  ,   𝑟𝑖 + 1 >   𝑟𝑗  for all 𝑗 ≤ 𝑖 and 

hence [𝑙𝑖+1 − 1, 𝑟𝑖 + 1]  cannot be contained in [𝑙𝑗 , 𝑟𝑗 ]  

for any 𝑗 ≤ 𝑖. Since 𝑙𝑖+1 − 1 < 𝑙𝑖 , 𝑙𝑖+1 − 1 < 𝑙𝑗  for any 

𝑗 ≥ 𝑖 and hence [𝑙𝑖+1 − 1, 𝑟𝑖 + 1] cannot be contained in 

[𝑙𝑖 , 𝑟𝑗 ]  for 𝑗 ≥ 𝑖. Thus [𝑙𝑖+1 − 1, 𝑟𝑖 + 1]   is not contained 

in any maximal frequent interval and hence it is not 

frequent. Suppose [𝑙𝑖+1 − 1, 𝑟𝑖 + 1] is not a minimal 

infrequent interval. Then it properly contains an 

infrequent interval [𝑎, 𝑏]. If 𝑎 > 𝑙𝑖+1 − 1, then [𝑎, 𝑏] ⊆
[𝑙𝑖+1, 𝑟𝑖 + 1]. But 𝑟𝑖 < 𝑟𝑖+1 and therefore 𝑟𝑖 + 1 ≤ 𝑟𝑖+1. 

Hence [𝑎, 𝑏] ⊆ [𝑙𝑖+1, 𝑟𝑖+1] and hence is frequent. This 

implies 𝑎 = 𝑙𝑖+1 − 1. But in this case we must have 

𝑏 < 𝑟𝑖 + 1 since [𝑎, 𝑏] is properly contained in [𝑙𝑖+1 −
1, 𝑟𝑖 + 1]  . Thus 𝑏 ≤ 𝑟𝑖  and since 𝑙𝑖 < 𝑙𝑖 + 1, we have 

𝑙𝑖 ≤ 𝑙𝑖+1 − 1 = 𝑎 . Therefore [𝑎, 𝑏] ⊆ [𝑙𝑖 , 𝑟𝑖] and hence 
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 MII(DB) 

 { 

M=empty. 

For 𝑎 = 𝑙𝑚𝑖𝑛  𝑡𝑜 𝑙1 − 1 

  M  M∪ {[𝑎, 𝑎]}    //by Theorem 2 

For  𝑖 = 1, to 𝑘 − 1 

   if  𝑟𝑖 < 𝑙𝑖+1 − 1   
     {  

        for 𝑎 =  𝑟𝑖 + 1 to 𝑙𝑖+1 − 1 

        M=M∪ {[𝑎, 𝑎]}          //by Theorem 4 

      } 

    else  

        M=M∪ { 𝑙𝑖+1 − 1, 𝑟𝑖 + 1 } //by Theorem 5 

 For 𝑎 = 𝑟𝑘 + 1 𝑡𝑜 𝑟𝑚𝑎𝑥  

      M=M∪ {[𝑎, 𝑎]}              //by Theorem 3   

return M 

 } 

 

 Fig: 1 Pseudo code of MII 

is frequent. This contradicts the fact that  𝑎, 𝑏 is 

infrequent. Hence [𝑙𝑖+1 − 1, 𝑟𝑖 + 1]   is  a minimal 

infrequent interval. 

In the next section, we propose an algorithm for finding all the 

minimal infrequent intervals, which simply obtains the 

intervals as given by Theorem 2,3,4 and 5. For a proof of the 

completeness of this procedure, we introduce the following 

lemmas and completeness Theorem 6. 

4.6 Lemma1:  
If 𝑙𝑘 ≤ 𝑙 ≤ 𝑟𝑘 , there is no minimal infrequent interval with ‘𝑙’ 
as the left end-point. 

Proof: Suppose there is a minimal infrequent interval [𝑙, 𝑟] 
with 𝑙𝑘 ≤ 𝑙 ≤ 𝑟𝑘 . We cannot have 𝑟 ≤ 𝑟𝑘  because then 

[𝑙, 𝑟] ⊆ [𝑙𝑘 , 𝑟𝑘] and hence will be frequent. If 𝑟 > 𝑟𝑘  then 

[𝑙, 𝑟] will properly contain [𝑟, 𝑟] and by definition of 

infrequent interval 𝑟 ≤ 𝑟𝑚𝑎𝑥 . Hence [𝑟, 𝑟] is infrequent 

by Theorem2 and thus [𝑙, 𝑟] cannot be a minimal 

infrequent interval which is a contradiction. This proves 

the lemma, 

4.7 Lemma 2:  
If 𝑖 < 𝑘, 𝑟𝑖 < 𝑙𝑖+1 − 1 and 𝑙𝑖 ≤ 𝑙 ≤ 𝑟𝑖  then there is no minimal 

infrequent interval with left end point ‘l’. 

Proof: Here 𝑖 < 𝑘, 𝑟𝑖 < 𝑙𝑖+1 − 1  and 𝑙𝑖 ≤ 𝑙 ≤ 𝑟𝑖   and let [𝑙, 𝑟] 
be any minimal infrequent interval with left end point 𝑙. 
if 𝑟 ≤ 𝑟𝑖   then [𝑙, 𝑟] ⊆ [𝑙𝑖 , 𝑟𝑖] and hence is frequent. If 

𝑟 > 𝑟𝑖 , [𝑙, 𝑟] properly contains [𝑟𝑖 + 1, 𝑟𝑖 + 1]. But 𝑟𝑖 + 1 

satisfies 𝑟𝑖 < 𝑟𝑖 + 1 < 𝑙𝑖+1. Hence by Theorem 3 

[𝑟𝑖 + 1, 𝑟𝑖 + 1] is infrequent and therefore [𝑙, 𝑟] is not 

minimal infrequent. Thus there is no minimal infrequent 

interval with left end point ‘𝑙’. 

4.8 Lemma 3:  
If 𝑖 < 𝑘, 𝑟𝑖 ≥ 𝑙𝑖+1 − 1 and 𝑙𝑖 ≤ 𝑙 < 𝑙𝑖+1 − 1 then there is no 

minimal infrequent interval with left end point ‘𝑙’. 

Proof: Let [𝑙, 𝑟] be an interval with left end point 𝑙. If 𝑟 ≤
𝑟𝑖  then [𝑙, 𝑟] ⊆ [𝑙𝑖 , 𝑟𝑖] and hence frequent. If 𝑟 > 𝑟𝑖 , [𝑙, 𝑟] 
properly contains [𝑙𝑖+1 − 1, 𝑟𝑖 + 1] which is infrequent 

according to Theorem 4. Thus [𝑙, 𝑟] cannot be minimal 

infrequent and hence there is no minimal infrequent 

interval with left end point 𝑙. 

The following theorem now characterizes all the minimal 

infrequent intervals. 

4.9 Theorem 6:  
The minimal infrequent intervals given in Theorems 2, 3, 4 

and 5 completely determine all the minimal infrequent 

intervals. 

Proof: We have already noted that for any ′𝑎′ with  𝑙𝑚𝑖𝑛 ≤
𝑎 ≤ 𝑟𝑚𝑎𝑥 , there is at most one minimal infrequent 

interval with left end-point ′𝑎′. If 𝑎 < 𝑙1 then there is one 

minimal infrequent interval given by Theorem 2. If 

𝑎 > 𝑟𝑘  then there is one minimal infrequent interval 

given by Theorem 3. If 𝑙𝑘 ≤ 𝑎 ≤ 𝑟𝑘  then there is no 

minimal infrequent interval with left end point ′𝑎′ as 

proved in Lemma 1. That leaves us to examine the case 

𝑙𝑖 ≤ 𝑎 < 𝑙𝑖+1 for 𝑖 = 1,2, …𝑘 − 1. For 𝑙𝑖 ≤ 𝑎 < 𝑙𝑖+1, if 

𝑟𝑖 < 𝑙𝑖+1 − 1, then there is no minimal infrequent 

interval with left end point ′𝑎′ for 𝑙𝑖 ≤ 𝑎 ≤ 𝑟𝑖  by Lemma 

2 and one minimal infrequent interval with left end point 

′𝑎′ for every ′𝑎′ satisfying 𝑟𝑖 < 𝑎 < 𝑙𝑖+1,  by Theorem 4. 

If on the other hand 𝑟𝑖 ≥ 𝑙𝑖+1 − 1 there is no minimal 

infrequent interval with left end point ′𝑎′ for 𝑙𝑖 ≤ 𝑎 <
𝑙𝑖+1 − 1 by Lemma 3 and one minimal infrequent 

interval with left end point 𝑙𝑖+1 − 1 by Theorem 5. This 

covers all the possible values for ′𝑎′ and hence provides 

the proof of completeness 

5.  THE PRPOSED MINIMAL 

INFREQUENT INTERVAL (MII) 

ALGORITHM  
At first in the first part of the algorithm the maximal frequent 

intervals are determined using algorithms given in [1] and [2].  
After that in the second part, the following algorithm 

determines the minimal infrequent intervals by scanning all 

the possible left end points of such intervals which range from 

𝑙𝑚𝑖𝑛  to 𝑟𝑚𝑎𝑥  and identifying those that are given by Theorems 

2,3,4 and 5. During the execution of the algorithm, a set of 

intervals M is maintained which is initially empty and the 

minimal infrequent intervals are inserted one by one into M as 

those are determined. In the first phase of the second part, for 

every value of ′𝑎′ such that 𝑙𝑚𝑖𝑛 ≤ 𝑎 < 𝑙1, we insert an 

interval [𝑎, 𝑎] (by Theorem 2).  

In the second phase of the second part, for 𝑖 =  1,2, . . . , 𝑘 − 1 

we insert intervals into M as follows  

  if 𝑟𝑖 < 𝑙𝑖+1 − 1 then for every ′𝑎′ such that 𝑟𝑖 < 𝑎 < 𝑙𝑖+1, 

the interval [𝑎, 𝑎] is inserted into M (by Theorem 4). 

else we insert  𝑙𝑖+1 − 1 , 𝑟𝑖 + 1  into M (by Theorem 5). 

In the last phase of the second part for every ′𝑎′ such that 

𝑟𝑘 < 𝑎 ≤ 𝑟𝑚𝑎𝑥  , we insert [𝑎, 𝑎] into M (by Theorem 3). 

The soundness of MII follows from Theorems 2, 3, 4 and 

5 and its completeness is established in Theorem  6. 

5.1  MII algorithm 
MII is executed in the second part, which accepts the maximal 

frequent intervals [𝑙1, 𝑟1],  𝑙2, 𝑟2 , … , [𝑙𝑘 , 𝑟𝑘] with 𝑙1, < 𝑙2 <
⋯ < 𝑙𝑘   determined in first part by the algorithms given in 

[1] and [2] based on the data set DB. Next we report the 

pseudo code of MII.   
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5.2 Complexity analysis of the algorithm of 

MII 
After the maximal frequent intervals are determined, the 

minimal infrequent intervals are determined one by one, each 

in 𝑂(1) time. Since each minimal infrequent interval must 

have a distinct left end point, there cannot be more than 

𝑟𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛 + 1 of them. Without loss of generality using a 

translation of the intervals we can take 𝑙𝑚𝑖𝑛 = 1. Hence the 

complexity for the determination of the minimal infrequent 

intervals is 𝑂(𝑟𝑚𝑎𝑥 ) which is 𝑂(𝑛) when 𝑟𝑚𝑎𝑥  is 𝑂(𝑛). This is 

in addition to the time required to determine the maximal 

frequent intervals. Once the maximal frequent intervals are 

determined, the rest of the work can be completed in the 

memory since 𝑟𝑚𝑎𝑥  is usually quite small and no further 

database scan is required. 

The space complexity for this additional work is 𝑂(𝑟𝑚𝑎𝑥 ) 

since we simply need the space for the arrays containing the 

maximal frequent and minimal infrequent intervals which are 

at most 𝑟𝑚𝑎𝑥  in number. 

6.  EXPERIMENTAL RESULTS 
Following environment and datasets were used to test the 

effectiveness of MII experimentally. 

6.1  Environment Used  
MII was implemented in a workstation having Intel(R) 

Xeon(R) CPU X5470 of speed 3.33GHz, with a 4 GB RAM 

in a Linux environment using C++.  

6.2 Dataset Used 
To test the correctness of MII we use synthetic data generator. 

We developed a data generator based on [1] and generated 

several data sets (as reported in the first column of Table 2) by 

varying the number of records. For each data set, the number 

of transactions is 𝑛, the left end points of the intervals are 

distributed uniformly between 1 and 𝑙𝑚𝑎𝑥 , and the length of 

these intervals is in Poisson distribution with mean 𝑚. 

Minimum support is measured in percentage of  𝑛.   

6.3 Results 
The algorithm is experimentally tested with fixed values of 

𝑙𝑚𝑎𝑥   and  𝑚. Size of the data set is varied and the 

identification of number of frequent and infrequent intervals 

are recorded. The running time of the algorithm also noted 

with the variation of the size of the dataset. It is observed that 

the running time of the algorithm is directly proportional to 

the size of the dataset irrespective of the presence of number 

of frequent and infrequent intervals. The observations are 

listed in the Table 1. 

The graphical representation of the results are shown in fig. 2 

in which four different variations are considered as explained 

below: 

In fig. 2(a), the graph is drawn between number of 

transactions and time taken in seconds. It is observed from the 

graph that with increase of number of transactions, time 

consumption also increased. Similarly, in fig. 2(b), the graph 

is drawn by varying Imax with number of maximal frequent 

and minimal infrequent intervals. The graph in fig. 2(c) 

represents the effect of the algorithm by varying the values of 

mean and in fig. 2(d), the graph signifying the behavior of the 

algorithm by varying minimum support. 

 

 

 

Table 1. Experimental results over synthetic dataset 

Dataset Used Description 
No. of          

records 

No. of maximal 

frequent intervals 

No. of minimal 

frequent intervals 
Time in seconds 

100klmax_200m_100 
lmax=200, Mean 

m=100 
1,00,000 169 296 0.000139s 

200klmax_200m_100 
lmax=200,Mean 

m=100 
2,00,000 175 302 0.000188s 

300klmax_200m_100 
lmax=200, Mean 

m=100 
3,00,000 173 309 0.000225s 

400klmax_200m_100 
lmax=200, Mean 

m=100 
4,00,000 172 307 0.000381s 

500klmax_200m_100 
lmax=200, Mean 

m=100 
5,00,000 173 309 0.000454s 
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7. CONCLUSIONS AND FUTURE 

WORK 
An effective method of mining infrequent interval (MMI) is 

reported in this paper. The effectiveness of MII is established 

theoretically as well as experimentally. 𝑂(𝑛) time complexity 

and 𝑂(𝑟𝑚𝑎𝑥 ) space complexity makes the algorithm more 

effective. There is a possibility that the mining infrequent 

interval can be extended for a continuous domain also. Work 

is going on towards the extension of MII for handling 

continuous valued data for finding minimal infrequent 

intervals.  
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