
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.35, April 2018

1

Proactive Detection of Higher- Order Software Code

Conflict’s System

Godswill U. Nwamuruamu
University of Port-Harcourt

Rivers State, Nigeria

Laeticia N. Onyejegbu
University of Port-Harcourt

Rivers State, Nigeria

ABSTRACT
Collaborative development can be hampered when conflicts

arise because developers have inconsistent copies of a shared

project. We present an approach to help developers identify

and resolve conflicts early, before those conflicts become

severe and before relevant changes fade away in the

developers' memories. A proactive high-order conflict

detector helps programmers in a collaborative environment to

detect conflicts and resolve same early to avoid malfunction

of the software after deployment. With this, system conflicts

are detected on time during design and resolved before they

become more difficult to handle or before the code becomes

too voluminous to debug. Using Java as a design tool the

system was developed to detect code errors earlier and faster

than already existing systems. The result obtained shows that

the system resolves and detects conflicts early enough to

avoid damage to the design in record time. The system

designed uses less memory space with highly effective

software activity which maximizes the host system resources.

The methodology adopted for this design is the object

oriented approach which gives a lot of avenues for conflict

resolution and encourages code flexibility.

Keywords
Proactive, Conflicts, FLAME, Conflict detection, Software

model high- order.

1. INTRODUCTION
Modern application techniques are often huge and

complicated, demanding several technological innovation

groups that include of a variety of members for their growth.

During the growth, numerous choices are created on various

elements of the program under growth such as the dwelling,

the features, as well as the non-functional qualities of the

program such as efficiency, security, etc. This essential

growth activity of selection is known as application style. A

key set of stakeholders who interact with in application style,

application designers, create style choices that determine the

dwelling of the program, reify those choices into application

designs and develop the designs together [1].

The groups of application designers, when they style a huge

application program, often split the program into flip

subsystems, at one time styles each of those, and combine

them later. A variety of style surroundings appeared to

support this collaborative procedure for application design

progress. There are the group publishers offering an allocated

whiteboard" or connect the designs in real-time but the

significant research attempt has been toward the

asynchronous, copy-edit-merge style application design

edition control techniques (VCSs). Those VCSs offer each

designer her individual workplace by generally syncing the

designs in an on-demand style to parallelize the architects'

work and increase their efficiency.

However, the reduce synchronization of the VCSs reveals

application designers to the chance of creating style choices

that issue with each other, known as style disputes. In general,

style disputes can be classified into two different types:

synchronization and higher-order disputes. A synchronization

issue is a set of contrary modeling changes by several

designers created to the same doll or to carefully related

relics, which means they cannot be combined together. A

higher-order issue is a set of modeling changes by several

designers that can be combined but together breach the body

reliability guidelines (e.g., cardinality based on the meta-

model). While both kinds cause similar threats, they vary in

that they require different sets of recognition techniques.

Design disputes are a significant task in collaborative

application style. Today's VCSs identify disputes only when

application designers connect their designs. As a result, the

designers often create changes to the design without fully

understanding what issues may occur when they combine

their own changes with the others' changes. It is also possible

that new changes created after an issue has been presented

need to be changed in the procedure for solving the issue,

which results in lost persistence. Moreover, the current pattern

of worldwide application technological innovation, in which

application technological innovation groups tend to be

allocated geographically due to economic advantages only

worsens the procedure by decreasing the possibilities for

direct interaction among the designer.

In application environment, there are some disputes that

surface and need to be fixed. These disputes are: Lack of

ability to identify issue at the start of a practical style, that is,

before an application professional syncs her design and lastly

becomes aware of them: This thesis will present a technique

that relieves the chance of having style disputes by

proactively discovering them and telling the application

professional of the issue information beginning.

The aim of this research is to develop a Proactive Detection of

Higher-order Software code Conflict‘s system that can

identify errors in codes. The specific objectives are to style an

enhanced design of Proactive Detection of Higher-order

Software Design Conflicts, to apply the design using free

coffee development language and to evaluate the design with

current practical design

2. REVIEW OF RELATED WORK
Software Technological innovation is a division of data

technology that is focused on how to build software

techniques that are good, useful and efficient. It is also a self-

discipline whose aim is to generate fault-free software that

meets the user‘s needs and is provided promptly within

budget. The objectives of implementing an engineering

technique are to build a program that is efficient, easy to

understand, affordable, convenient and recyclable [2]. A

software program is efficient if it works properly without

failing. The progress in software engineering is all about

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.35, April 2018

2

changes. Program engineering involves techniques, often

controlled by a program growth procedure, within the purpose

of helping the stability and maintainability of software

techniques [3]. Software engineering therefore is a critical

area in which nations must spend intensely on, to make their

economic growth a reality. [4] Wloka et al (2009) worked on

―Safe-Commit Analysis to Facilitate Team Software

Development,‖ which they used proactive conflict detection

tools to perform deeper analyses such as compilation, unit

testing, and so on. Safe-commit proactively identifies

―committable‖ changes that will not make test cases fail by

running them in the background. [5] Brun et al (2011)

worked on ―Crystal: Precise and Unobtrusive Conflict

Warnings, they used two tools in this group, Crystal and We-

Code , which are used proactively to perform merging,

compilation, and testing of new changes developers make to

source code in the background and notify the developers if

any of the steps fails. [6] Algert and Watson (2002) worked

on Conflict management and introduced it for individuals and

organizations to identify the danger involved when conflict

arises and the little solution to solve it in a modern way. [7]

Labib et al (2009), introduced a practice called Early User

Interface Development‘ (EUID) for agile software

methodologies. In the EUID model, a GUI is designed at an

early stage of agile iteration, developed and presented to the

customer for feedback before starting a new iteration with a

set of new requirements. This feedback mechanism is not only

for the look of the GUI design but also for the behavior of

using the GUI. In this way designers and customers can

communicate and produce the actual required user interface

(UI). [8] Leffingwell (2007) discusses which agile practices

scale to large systems development and report on his

experience of using an agile approach to develop a large

medical system with 300 developers working in

geographically distributed teams. Large software system

development is different from small system development in a

number of ways:

1. Large systems are usually collections of separate,

communicating systems, where separate teams develop each

system. Frequently, these teams are working in different

places, sometimes in different time zones. It is practically

impossible for each team to have a view of the whole system.

Consequently, their priorities are usually to complete their

part of the system without regard for wider systems issues.

2. Large systems are ‗brownfield systems‘; that is they include

and interact with a number of existing systems. Many of the

system requirements are concerned with this interaction and

so don‘t really lend themselves to flexibility and incremental

development. Political issues can also be significant here—

often the easiest solution to a problem is to change an existing

system. However, this requires negotiation with the managers

of that system to convince them that the changes can be

implemented without risk to the system‘s operation.

3. Where several systems are integrated to create a system, a

significant fraction of the development is concerned with

system configuration rather than original code development.

This is not necessarily compatible with incremental

development and frequent system integration.

4. Large systems and their development processes are often

constrained by external rules and regulations limiting the way

that they can be developed, that require certain types of

system documentation to be produced, etc.

5. Large systems have a long procurement and development

time. It is difficult to maintain coherent teams who know

about the system over that period as, inevitably, people move

on to other jobs and projects.

6. Large systems usually have a diverse set of stakeholders.

For example, nurses and administrators may be the end-users

of a medical system but senior medical staff, hospital

managers, etc. are also stakeholders in the system. It is

practically impossible to involve all of these different

stakeholders in the development process

[9] Guntamukkala et al (2006) were able to identify

canonical functions to help project manager select appropriate

software development model for each potential or planned

project. Their analysis of testing of data‘s led to three

categories of software life cycle models and canonical

functions that can be used by project managers to select the

most suitable model for a given project situation. Their

analysis also showed the perceptions of 74 participants –

project managers, aout their preference of six software life

cycle models varying in degree of flexibility, in different

situations in the sense that every software project has its

unique set of characteristics. A software life cycle model that

is suitable for one project situation may not be suitable for

another.

[10] Walia and Khalid (2014) worked on the ‖Impact of

interpersonal conflict on requirements‖, and identified the five

types of interpersonal conflicts which may lead to project

failure as shown in case study of Enterprise Resource

Planning system also identify the solution of attaining and

achieving the solution towards the conflict.

2.1 Program Technological innovation

Technique

All software growth techniques follows a venture schedule

and must go through different levels during the growth life-

cycle such as specifications collecting, research, style,

execution and examining. It is essential for most application

designers to follow some sort of software engineering

methodology. The methodology is an important tools to

control sources, product style and quality guarantee, in order

to generate ―well designed software‖. [11]

Software engineering strategies are essential frameworks that

guide application designers to reach their last goal of getting

the ultimate application, the choice of which methodology to

use in an improvement venture is carefully related to the size

of the applying program and the environment it ought to

function.

2.2 Software Conflicts
A "conflict" happens when more than one processer is trying

to connect to the same resource (a storage portion) at once. To

prevent crucial competitions and inconsistency, only one

processer (CPU) at a time is allowed to have access to a

particular information framework (a storage portion). While

other CPUs trying to have access at the same time are locked-

out. [6].

Three situations can be recognized why this nonproductive

wait around is necessary, practical, or not practical. The

nonproductive wait around is necessary when the accessibility

is to a prepared record for a low stage arranging function. The

nonproductive wait around is not necessary but practical in

the situation of an important area for synchronization/IPC

functions, which require shorter period than a perspective

switch (executing another procedure to avoid nonproductive

wait). Idle wait around is instead not practical in situation of a

kernel crucial area for device management, present in

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.35, April 2018

3

monolithic popcorn kernels only. A microkernel instead drops

on just the first two of the above situations.

In a multiprocessor program, most of the disputes are kernel-

level disputes, due to the having accessibility to the kernel

stage crucial sections, and thus the nonproductive wait around

periods generated by them have an important impact in

performance deterioration. This nonproductive wait around

time boosts the average variety of nonproductive processor

chips and thus reduces scalability and relative performance

[12].

Conceptually, the most legitimate solution is to break down

each kernel information framework in more compact separate

substructures, having each a shorter elaboration time. This

allows more than one CPU to connect to the original

information framework.

Many uniprocessor techniques with ordered protection

websites have been approximated to spend up to 50% of

plenty of your energy performing "supervisor mode"

functions. If such techniques were tailored for multiprocessing

by setting a lock at any having accessibility to "supervisor

state", L/E would easily be greater than 1, becoming a

program with the same data transfer usage of the uniprocessor

despite the quantity of CPUs.

3. METHODOLOGY
We will present situation study and a style that will create a

Practical Recognition of Higher-order Application Style

Disputes that can identify oblique issue in a development

requirements of a program . Ideal Options Growth and

Research (SODA) is a method for working on complicated

issues. It is an approach designed to help professionals help

their potential customers with unpleasant issues.

SoDA, is a general software methodology for creating

software whose outputted source rule is an argumentation

concept for the issue at hand. This system describes a

advanced level procedure demanding from the designer to

consider questions about the specifications of the issue at

various circumstances without the need to consider the actual

software rule that will be produced. Application is thus

designed in a principled way with high-level declarative exe

rule.

Using this methodology, our development techniques will

contains techniques and the perform group necessary at each

level of the work version and identify issue previously and

way to resolve them.

To relieve the risk, the proposed product is used to uncover

unnoticed higher-order style disputes, we have developed an

extensible, and function centered collaborative application

style structure, known as Framework for Signing and

Examining Modeling Events (FLAME) and IDE which

functions as resources for ongoing consolidating within the

IDE FLAME decreases the period of time during which the

disputes can be found but unknown to application designers

by proactively performing the issue recognition activity that

includes a trial consolidating of modeling changes and

performance of reliability checking resources in the. FLAME

consequently provides the issue details to the designers in

case the architects‘ attention is required.

FLAME has two features that differentiate it from the current

practical issue recognition resources.

1. FLAME and IDE is extensible. Software modeling

surroundings vary in their modeling resources, 'languages',

and the suitable reliability pieces. FLAME uses an event-

based structure in which highly-decoupled elements exchange

messages via implied invocation, allowing flexible program

structure and variation. FLAME uses this event-based

structure to provide precise expansion points for connecting a

variety of off-the-shelf resources, namely, modeling resources

and issue recognition engines that are most appropriate for the

given modeling atmosphere.

2. FLAME and IDE is operation-based. It syncs the

models at the granularity of a single modeling function such

as creation, upgrade, or removal of a modeling element.

The IDE using coffee development language is the better and

a novel way to provide an alternative that decreases the

amount of data designers have to process. The existing

remedy consistently combines uncommitted and committed

changes to create a background program that is examined,

collected, and examined to identify disputes with high

perfection and precision on part of designers, while they are

development, that is, before check-in. Recognized disputes are

then provided to the affected designers inside the IDE.

In evaluation to the current program this details the progress

of our solution, provides our full-fledged tool, and its

scientific assessment using managed user tests.

 Editor

 Building Automation tool

 Merge and synchronization

 Intelligent code compilation

 Debugger

Fig 1: Components of IDE

3.1 Explanation of IDE
IDE: is illustrated as integrated development environment

(IDE), it is a software application that provides

comprehensive facilities to computer programmers for

software development. An integrated development

environment normally consists of a source code editor, build

automation tools and a debugger. Most modern IDEs have

intelligent code completion. The IDEs, such as NetBeans and

Eclipse, contain a compiler, interpreter, or both; others, such

as Sharp Develop and Lazarus, do not. The boundary between

an integrated development environment and other parts of the

broader software development environment is not well-

defined.

IDE

https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Computer_programmer
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Source_code_editor
https://en.wikipedia.org/wiki/Build_automation
https://en.wikipedia.org/wiki/Build_automation
https://en.wikipedia.org/wiki/Build_automation
https://en.wikipedia.org/wiki/Debugger
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/NetBeans
https://en.wikipedia.org/wiki/Eclipse_%28software%29
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Interpreter_%28computing%29
https://en.wikipedia.org/wiki/SharpDevelop
https://en.wikipedia.org/wiki/Lazarus_%28IDE%29

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.35, April 2018

4

Fig 2: High-Level model of the Proposed System

3.2 System Requirement
The running of this method and the execution of the task

management software system demand effective pc with the

following minimum requirement: A processer machine of

Pentium IV standard with 1GHz speed it will have memory

(RAM) dimension 1GB or above and a video visual adaptor

(VGA) screen with 32bit high color or above with a Hard

Disk size of not less than 1GB.

For versatility it will use a Window operating system and will

be powered by a JavaScript Allowed Browser of Internet

Traveler 7 and above or Firefox 2 and above (JDK 8.01

version) and Net Beans 8.0 edition.

 3.3 Implementation plan
Proactive detection of high order code conflicts application

implementation plan:

Phase 1: Install software on the main drive

Phase 2: Link every fill directory on the system

Phase 3: always specify the coding language and environment

Phase 4: Run the Model on the growth code

Phase 4: Copy report and delete /resolve detected conflicts

Phase 5: Update the growth system code before deployment;.

Fig 3: Home page of the Design

Fig 4: searching for folders to scan

Fig 5: Conflicting files detected

3.4 Cost Benefit Analysis
With the implementation of this model the output of design

works will be with reduced error and this reduces cost in

diverse forms. Memory wise it will reduce the amount of

unuseable codes in the system since the incorrect and unusded

codes wil be detected in the system and deleted. It also rduces

the issue of developing a system that will be faulty and

therefore cannot perform effectively due to error. This often

leads to redesign or condemn of the prototype.

4. RESULTS AND DISCUSSION
The performance evaluation of an application package is

calculated with the matrices used. Several matrices can be

used in the evaluation of an application package ranging from

speed, time, efficiency, memory consumption amount of

energy consumed and so on. The proposed system was tested

alongside the existing prototype and the following results

were obtained.

Table 1 Through-put for software performance

Computers Existing System Proposed System

1 30min 10min

2 40min 25min

3 60min 30min

4 45min 30min

From the above table the proposed system was tested against

the existing systems in four different systems and the

proposed system evidently used less time for processing

saving time and energy.

IDE

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.35, April 2018

5

Also when the system usage was tested for other

functionalities like communication level with other programs,

amount of energy consumed number of operations perform

effectively the chart in (Fig. 6) clearly demonstrates that even

with the same time duration the proactive system runs more

operations , communicates better while consuming less energy

and memory.

Fig 6: Comparison of Existing and Proposed System

5. CONCLUSION
Speculative analysis over version control operations provides

precise information about pending conflicts between

collaborating team members. These pending conflicts —

including textual, build, and test — are guaranteed to occur

(unless a developer modifies a committed change). Learning

about them earlier allows developers to make better-informed

decisions about how to proceed, whether it be to perform a

safe merge, to publish a safe change, to quickly address a new

conflict, to interact with another developer etc.

Our retrospective, quantitative study of over 550,000

development versions of nine open-source systems, spanning

3.4 million distinct (and a total of over 500 billion, over all

versions) NCSL, confirms that:

a. Conflicts are the norm rather than the exception,

b. That 16% of all merges required human effort to

resolve textual conflicts,

c. That 33% of merges that were reported to contain

no textual conflicts by the VCS in fact contained

higher-order conflicts, and

d. Those conflicts persist, on average, for 10 days

(with a median conflict persisting 1.6 days).

Although there is a significant amount of qualitative and

anecdotal evidence consistent with our findings, the only

previous quantitative research we could find was

Zimmermann‘s work. We expanded on his work in several

dimensions.

The essence of this study is to reduce software code error

which has derided our society of good and effective software

usage and development. To do that we had to create a means

to reduce one of the most evident tools that causes

ineffectiveness which is conflicts and further more we looked

into those conflicts that surfaces after the design has been

concluded ―high-order‖. By this study developers can freely

develop an error free software by resolving conflicts in codes

even before they become evident.

With this software collaborative design can easily be

synchronized and error detected if any, reducing time wastage

on troubleshooting and debugging.

6. RECOMMENDATION
It is recommended that program designers from all around the

world should eliminate code errors and application mistakes

before implementation and release to the general public.

7. REFERENCES
[1] Gilb, T., ―(1998): Evolutionary Development. ACM.

Software Engineering, (1), 17-23.

[2] Highsmith, J. A. (2002). Adaptive Software

Development: A Collaborative Approach to Managing

Complex Systems. New York: Dorset House. 1(1), 5-8.

[3] Nwachukwu, E.O. and Eke, B.O.(2008). Critical

Analysis of Software Development Strategies. Journal of

Science and Technology. 7(4), 1-7

[4] Wloka J., B. Ryder, F. Tip, and X. Ren, (2009) ―Safe-

Commit Analysis to Facilitate Team Software

Development,‖ in Proceedings of the 31st International

Conference on Software Engineering (ICSE) IEEE

Computer Society. (7),507–517

[5] Brun, R. Holmes, M. D. Ernst, and D. Notkin (2011):

―Crystal: Precise and Unobtrusive Conflict Warnings,‖ in

Proceedings of the 8th Joint Meeting of the European

Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software

Engineering (ESEC/FSE). ACM, (12), 444–447.

[6] Algert, N.E., and Watson, K. (2002): Conflict

management: introductions for individuals and

organizations. Bryan, TX: (97)775-870

[7] Labib, C., Hasanein, E., And Hegazy, O., (2009).Early

Development Of Graphical User Interface (GUI) In Agile

Methodologies. Journal Of Computation Methods In

Sciences And Engineering. (9), 239-249.

[8] Leffingwell, D. (2007). Scaling Software Agility: Best

Practices for Large Enterprises. Boston: Addison-

Wesley. 37 (12), 26–34.

[9] Guntamukala, V., Wen, H. J and Tarn, J.M. (2006).An

empirical study of selecting software development life

cycle models. Human systems management. 25(1), 265-

278.

[10] Walia, Khalid Shergil, (2014): ‖Impact of interpersonal

conflict on requirements‖, A Research Review‖,

University of westernontario , 1(2), 10-19.

[11] Royce, W.W. (1970). Managing the Development Of

Large Software Systems: Concept And Techniques,

Proceeding WESCON. (2), 23-55

[12] Madnick, Stuart Elliot (1968) Multi-processor software

lockout Proceedings of the 1968 23rd ACM national

conference, (1), 19 – 24.

0
10
20
30
40
50
60
70

Series 1

Series 2

IJCATM : www.ijcaonline.org

