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ABSTRACT
This paper demonstrates the observer design for large class
of nonlinear discrete time systems. The use of the differential
mean value theorem (DMVT) allows transforming the nonlin-
ear error dynamics into a linear parameter varying (LPV) sys-
tem. This has the advantage of introducing a general condition
on the nonlinear functions. To ensure asymptotic stability, suf-
ficient conditions are expressed in terms of linear matrix in-
equalities (LMIs). For comparison, an observer based on the use
of the one-sided Lipschitz condition is introduced. High per-
formances are shown through real time implementation of the
one-link flexible joint robot to ARDUINO MEGA 2560 device.
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1. INTRODUCTION
The design of observer for nonlinear systems satisfying a Lip-

schitz continuity condition have been important topics in nonlin-
ear system theory for over three decades, resulting in a substantial
amount of literature; see [8]-[17]-[9]-[3]-[1]-[7] and the references
inside.

The most existing results concern continuous time systems with
few extensions to discrete-time ones [10]. As no universal ap-
proach exists, state observers, in particular for nonlinear systems,
are still a challenging and open problem. Beside the famous ex-
tended Kalman filter [14] [4] [5] (and its real time application with
DSP device [15]), we distinguish a simple and useful nonlinear
state observer based on the solution of a Riccati-like equation and
the Lipschitz condition [12] [20] [11].

Stability analysis is based on the convergence of the estimation
error. This has been studied by using both Lyapunov functions and
functionals where stability conditions are expressed using Linear
matrix inequalities (LMIs). However, for large values of the Lips-
chitz constant, the stability conditions seem difficult to be satisfied
[19] [18].

The basic idea of this work is to use the differential mean value
theorem (DMVT) which allows writing the dynamics of the estima-
tion error using the nonlinear function as a class of Linear param-
eter varying (LPV) systems [18]. Stability of the estimation error
is analyzed using the convexity principle and the Lyapunov stabil-
ity theory. The observer convergence of the proposed scheme is
computed by LMI. The idea behind the DMVT is to provide a non
restrictive sufficient conditions on nonlinear function. The aim is
to ensure asymptotic convergence for a class of nonlinear discrete-
time systems.

This work is organized as follows. In Section 2, we introduce
the problem formulation. Next, the synthesis method of the ob-
server gain will be detailed. This method consists in LMIs feasi-
bility conditions. The last section is devoted to the performance of
the proposed approach through a real time implementation (with
ARDUINO MEGA 2560 device) with a comparison between the
works of [19] and [3].

Notations : The following notations will be used throughout this
paper.

- AT represents the transposed matrix of A ;
- For a square matrix S, S > 0 (S < 0) means that this matrix is

positive definite (negative definite) ;
- The set Co(x, y) = {λx+ (1− λ)y, 0 ≤ λ ≤ 1} is the convex

hull of x, y ;

- es(i) =

 ith

0, ..., 0,
︷︸︸︷

1 , 0, ..., 0︸ ︷︷ ︸
s− components


T

∈ Rs , s ≥ 1, is a vector

of the canonical basis of Rs ;
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- In a matrix, the notation (?) is used for the blocks induced by
symmetry ;

- < x, y >= xT y is the scalar product ;

- ‖x‖ =
√
< x, x > =

√
xTx is the Euclidean vector norm.

2. PROBLEM STATEMENT
Consider the class of nonlinear systems described by the following
set of equations :{

x(k + 1) = Ax(k) + f(x(k), u(k))
y(k) = Cx(k)

(1)

where x(k) ∈ Rn, u(k) ∈ Rm and y(k) ∈ Rp denote respectively
the state, the input and the linear output. A and C are constant ma-
trices of adequate dimensions. f : Rn × Rm −→ Rn is a real
nonlinear vector field.
We consider now the standard state observer :{

x̂(k + 1) = Ax̂(k) + f(x̂(k), u(k)) + L(y(k)− ŷ(k))
ŷ(k) = Cx̂(k)

(2)

where x̂(k) denotes the estimate of the state x(k).
The estimation problem consists in determining a gain L where the
estimation error ε(k) = x(k) − x̂(k) converges asymptotically to
zero. The dynamic of the estimation error is expressed as follows :

ε(k + 1) = (A− LC)ε(k) + ∆f(k) (3)

where ∆fk = f(x(k), u(k))− f(x̂(k), u(k)).
Note that all the approaches developed by now attempt to dominate
the term ∆fk by using directly the Lipschitz property. In the next
section, we will present a recent method given by [3] based on one-
sided Lipschitz condition.

2.1 One-sided Lipschitz Observer
The observer synthesis [3] [1] is based on the following two
assumptions :

- Assumption 1
f is one-sided Lipschitz with respect to x(k).i.e,

〈f(x, u)− f(x̂, u), x− x̂〉 ≤ ρ‖x− x̂‖2 (4)

for any x, x̂ ∈ Rn;u ∈ Rm; y ∈ Rp

where ρ is the so-called one-sided Lipschitz constant which can
be positive or negative.

- Assumption 2
f is quadratically inner-bounded with respect to x(k).i.e,

‖f(x, u, y)− f(x̂, u)‖2 ≤ β‖x− x̂‖2
+γ〈x− x̂, f(x, u)− f(x̂, u)〉 (5)

where β and γ are real scalars.

Unlike the well-known Lipschitz condition, the constants ρ, β and
γ can be positive, negative or zero. In addition, if the function f
is Lipschitz, then it is also both one-sided Lipschitz and quadrati-
cally inner-bounded (β > 0 and γ). The concept of quadratic inner-
boundedness (5), is very useful to provide tractable LMI stability
conditions.
Using the above assumption, the following theorem provides suffi-
cient conditions so that (2) is an asymptotic full-order observer for
system (1).

THEOREM 1. Under Assumption 1, system (2) is an asymptotic
observer for system (1) if there exist scalars α > 0, µ1 > 0, µ2 >
0, ρ, β, γ and ε > 0 and matrices P = PT > αIn, Q = QT > 0,
S and X that solve the following LMI :[

P S
ST Q

]
> 0 (6)

and

N < 0 (7)

where N is given by :

vN =


N11 N12 0 N14 N14 0
? N22 N23 0 0 0
? ? N33 0 0 NT

23

? ? ? −η−1P 0 0
? ? ? ? −εIn 0
? ? ? ? ? −ε−1α2In

 (8)

with 

η = 1 + 2(|β|+ |ρ|)
S = S − (µ1γ − µ2)In
N11 = −P + 2(µ1β + µ2ρ)In
N12 = ηATP − ηCTX − S
N14 = ATP − CTX
N22 = ηP −Q− 2µ1In
N23 = S + α(γ − 1)In
N33 = Q− 2αIn.

(9)

Then, the gain for observer is given by L = P−1XT .

PROOF. In this section we present some guiding steps.
Let us consider the quadratic Lyapunov function :

V (k) =

[
ε(k)
∆fk

]T [
P S
ST Q

] [
ε(k)
∆fk

]
(10)

The variation ∆V = V (k + 1)− V (k) of this Lyapunov function
is given by :

∆V = εT (k + 1)Pε(k + 1)− εT (k)Pε(k)−∆fTk Q∆fk
+∆fTk+1Q∆fk+1 + 2εT (k + 1)S∆fk+1 − 2εT (k)S∆fk

(11)
The one-sided Lipschitz and the quadratically inner-bounded con-
ditions (4) and (5) give the following inequality :{

µ2ρε
T (k)ε(k)− µ2ε

T (k)∆fk ≥ 0
µ1βε

T (k)ε(k) + µ1γε
T (k)∆fk − µ1∆fT

k ∆fk ≥ 0
(12)

where µ1 and µ2 are arbitrary strictly positive scalars.
With the fact that P > αIn and using (12) in (11), it follows that :

∆V ≤ ηεT (k + 1)Pε(k + 1) + εT (k)(−P + 2(µ2ρ+ µ1β)I)ε(k)

−∆fTk (Q+ 2µ1I)∆fk − 2εT (k)(S + (µ2 − µ1γ)I)∆fk
+2εT (k + 1)(S + α(γ − 1)I)∆fk+1

+∆fTk+1(Q− 2αI)∆fk+1

(13)
On the other hand, using the dynamics of the estimation error (3)
and based on the Lyapunov stablity theory, the convergence of the
estimation error is guaranteed, as soon as ∆V < 0 is negative
definite, which holds true if

χTNχ < 0 (14)

where

?χT (k) =
[
εT (k) ∆fT

k ∆fT
k+1

]
(15)
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and

N =

 N11 + ηN12P
−1N T

12 ηN12 − S N12P
−1N23

? N22 N23

? ? N33

 (16)

with N12 = (A− LC)TP .
The BMI problem of (14)-(16) is not convex (the term T1 =
N12P

−1N23). To linearize this problem, [3] proposes a three-step
procedure. This procedure is based on rewriting (16) as :

N = N̄ + ψφT + φψT (17)

where N̄ is a linear part.
ψφT + φψT will compensate the term T1 with ψT = [N T

12 0 0]
and φT = [0 0 P−1N23].
Now, using the well-known matrix inequality :

ψφT + φψT ≤ εφφT +
1

ε
ψψT (18)

with ε > 0.
The BMI can be linearized to give the LMI (7). All the details and
procedures are given in [3].

The subject of the next section is to exploit the Lipschitz condition
to obtain non restrictive synthesis conditions.

2.2 Observer based on DMVT
This section is dedicated to present some steps to the proposed ap-
proach. First, we assume that the Jacobian matrix of f satisfies the
following condition [19] :

aij ≤
∂fi(x, u, y)

∂xj
≤ bij (19)

where

aij = min
Z∈Rn×Rm×Rp

(
∂fi
∂xj

(Z)

)
(20)

bij = max
Z∈Rn×Rm×Rp

(
∂fi
∂xj

(Z)

)
(21)

Now, we present some synthesis conditions to ensure asymptotic
convergence, in particular, we provide a non-restrictive suf?cient
condition to assure the feasibility of a LMI [2], easily tractable by
convex optimization algorithms.
First, we need to define the setH as follows :

Hn,n = {v = (v11, ..., v1n, ..., vnn)
: aij ≤ vij ≤ bij , i = 1, ..., n; j = 1, ..., n} (22)

The set Hn,n is a bounded convex domain of which the set of ver-
tices is defined by :

VHn,n = {α = (α11, ..., α1n, ...αnn) : αij ∈ {aij , bij}} (23)

Secondly, the affine matrix function is given by :

Υ(v) = A+

n,n∑
i,j=1

vijen(i)eTn (j) (24)

where : v ∈ Hn,n.
Now, state the theorem below to synthesis a useful observer for
Lipschitz nonlinear systems.

THEOREM 2. The estimation error ε(k) is asymptotically sta-
ble if there exist matrices P = PT > 0 and R of appropriate
dimensions such that the following LMI is feasible :

Block − diag(Γ(α1),Γ(α2), ...,Γ(α2nn
)) < 0,

αj ∈ VHn,n ; for j = 1, ..., 2nn.
(25)

where

Γ(αj) =

[
−P ΥT (αj)P − CTR
? −P

]
(26)

Then, the gain observer is L = P−1RT .

PROOF. Now, Considering the proposition below :
Proposition. (The DMVT for vector valued function [18]). Let ϕ :
Rn → Rn. Let a, b ∈ Rn. We assume that ϕ is differentiable on
Co(a, b). Then, there are constant vectors z1, ..., zn ∈ Co(a, b),
zi 6= a, zi 6= b for i = 1, ..., n such that

ϕ(a)− ϕ(b) =

(
n,n∑

i,j=1

en(i)eTn (j)
∂ϕi

∂xj
(zi)

)
(a− b). (27)

In analogy with the approach of [3] [19] [18], and by applying the
Proposition on the function f , we deduce that there exist zi ∈
Co(x, x̂), for all i = 1, ..., n, as follows :

∆fk = f(x, u, y)− f(x̂, u, ŷ)

=
(∑n,n

i,j=1 en(i)eTn (j) ∂fi
∂xj

(zi, u, y)
)
ε(k)

(28)

For simplicity, we consider the notation

Ξzi =

n,n∑
i,j=1

en(i)eTn (j)
∂fi
∂xj

(zi, u, y) (29)

and

wij(k) =
∂fi
∂xj

(zi(k), u(k), y(k)) (30)

with

w(k) = (w11(k), ..,w1n(k), ...wnn(k)) (31)

From (24) and (28), the dynamic of the global estimation error (3)
becomes

ε(k + 1) = (Υ(w(k))− LC)ε(k) (32)

where Υ(w(k)) = A+ Ξzi .
Then, the observer design problem of the class of nonlinear systems
(2) is transformed to the problem of stability of a class of LPV
systems (32).
Let us consider the standard Lyapunov function :

V (k) = ε(k)TPε(k) (33)

where P = PT is a positive-definite matrix.
The variation of this function is

∆V = V (k + 1)− V (k)

= εT (k){(Υ(w(k))− LC)TP (Υ(w(k))− LC)− P}ε(k)

Using the Schur complement [6] and the notation R = LTP , we
deduce that ∆V < 0 for all ε(k) 6= 0 if

F :=

[
−P ΥT (w(k))P − CTR
? −P

]
< 0 (34)
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for all w(k) ∈ Hn,n.
We deduce that ∆V < 0 if F is negative-definite on VHn,n .
Since P is positive-definite, then we can compute the gain L as
P−1RT .

3. SIMULATION RESULTS
Studies are carried out on the one-link flexible joint robot [7]-[13]
to evaluate the performance of the proposed observers.

θ̇m = ωm

ω̇m = k
Jm

(θl − θm)− b
Jm
ωm + KT

Jm
u

θ̇l = ωl

ω̇l = k
Jl

(θl − θm)− mgh
Jl

sin(θl)

where θm and θl are, respectively, the angles of rotations of the
motor and link. ωm and ωl are their angular velocities. Jm and Jl
are, respectively, the inertia of the motor and link. KT , k,m, g and
h are positive constants.
This system can be described by these nonlinear continuous equa-
tions : {

ẋ(t) = Acx(t) +Bcu(t) + fc(x(t))
y(t) = Ccx(t)

where:

x = [θm ωm θl ωl]
T ;

Ac =


−10 1 0 0
−48.6 −1.26 48.6 0

0 0 −22 1
1.95 0 −19.5 −6

 ; Bc =


1
0
2

0.5

 ;

Cc =

[
1 0 0 0
0 1 0 0

]
;

The nonlinear function : fc(x(t)) =


0
0
0

λ sin(x3)



with λ ∈ R.
After the discretization (with Euler method), the discrete time sys-
tems becomes :{

x(k + 1) = Ax(k) +Bu(k) + g(x(k))
y(k) = Cx(k)

where A = I4 + TeAc , B = TeBc , C = Cc et g(x(k)) =
Tegc(x(t)).
with Te = 0.01s.
Using THEOREM 1, it is easy to verify that f(x(k), y(k)) satis-
fies condition (4) with one-sided Lipschitz constant ρ = λTe. In
addition, f(x(k)) is a Lipschitz function, and is also quadratically
inner-bounded with β = λTe and γ = 0.
Applying THEOREM 2, we obtain wij = 0 for all (i, j) 6= (4, 3)
and w43 = λTecos(z3(k)). Then, the set of vertices VH4,4

can be
reduced to VH4,4

= {−λTe,+λTe}.
In the next section, we note :

- L1: observer gain matrix using the property of one sided-
Lipschitz (O.S.L).

- L2:observer gain matrix using the DMVT theorem.

For comparison, we introduce two values of λ. First, with λ = 3
and by solving LMIs of THEOREM 1 and THEOREM 2, we
obtain

L1 =


0.5813 0.01
−0.486 0.9132

0 0.2357
0.0195 −0.1916

 ;L2 =


0.9 0.01

0.486 1.1318
0 0.2365

0.0195 −0.1517


The initial conditions for the system and for the observers have
been chosen as: x(0) = [0.5 0.5 0.5 0.5]T ,
x̂(0) = [−0.5 − 0.5 − 0.5 − 0.5]T .
For the real time implementation on the ”Arduino MEGA 2560”
card, we have chosen two modes of application. The diagram illus-
trating the implementation is given by Figure 1.

Fig. 1: Diagram of Real Time Implementation

3.1 ARDUINO I/O interface mode
The first mode is the one to use the ARDUINO card as an I/O
interface with MATLAB Simulinkr. After loading the firmware
”adioserv.pde” into the Arduino card, we install Arduino I/O li-
brary to Simulink Libraries.
This implementation mode is used as a real-time emulator of robot.
The robot model is developed in Simulink using the embedded
MATLAB function and then it is transferred to the Arduino device
as DSP target [16].
In this phase of implementation, a noise was added to the output of
the system. The added signal is a sinusoidal signal with frequency
equal to 140Hz and amplitude ±10% of y .
First, we present in Figs. 2-3, respectively, the real x1-x2 and its
estimates (x̂1-x̂2).
As shown in Figs. 2 and 3, the states are very well estimated.

3.2 ARDUINO Target interface mode
In this mode of programming, Arduino card becomes a target of the
Simulink code compiled with the tool ”Run on Target Hardware”.
The Arduino kit operate completely in an autonomous way. It can
also be managed online via the USB port of the PC (External Mode
Enable) [16].
In this second phase of implementation, two noises are added. The
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Iterations (k)

Fig. 2: Response of x1(k) (black line) and its estimates with O.S.L (red
line) and DMVT (blue line)
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−0.2

0
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0.4

0.6

Iterations (k)

Fig. 3: Response of x2(k) (black line) and its estimates with O.S.L (red
line) and DMVT (blue line)

first is applied to the output of the system and the second is intro-
duced on the nonlinear function. The added signals are sinusoidal
signals with variable frequencies (between 40Hz and 3800Hz)
and amplitude ±25% of y and f .
The reconstruction of output signals is provided by the sending of
the desired data on the PWM outputs. These PWM outputs are then
connected to low pass filters (with R = 3.9KΩ and C = 33µF ).
Note : The choice of low pass filter parameters is based on the fre-
quency of the PWM signal (on most pins of Arduino the frequency
is approximately 490Hz).
We present in Figs. 4-5 respectively the real x2-x3 and its estimates
(x̂2-x̂3).
As shown in Figs. 4, 5 , for a small value of λ (λ = 3), the state is
very well estimated using the property of one sided-Lipschitz and
also using the DMVT theorem. In the next part, the value of λ will
be increased to test the performance of the two observers.
Consider now λ = 500, with the same approach, we obtain :

0 5 10 15 20 25 30 35 40 45 50 55

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Iterations (k)

26 27 28 29
−0.4

−0.2

0

0.2
Zoom

Fig. 4: Response of x2(k) (black line) and its estimates with O.S.L (red
line) and DMVT (blue line)

0 5 10 15 20 25 30

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Iterations (k)

11 12 13 14 15 16
−0.6
−0.4
−0.2

0
0.2
0.4

Fig. 5: Response of x3(k) (black line) and its estimates with O.S.L (red
line) and DMVT (blue line)

L1 =


0.4610 0.01
−0.486 0.3662

0 −0.2006
0.0195 0.0462

 ;L2 =


0.9 0.01
−0.486 1.1077

0 0.6035
0.0195 8.6082

 (35)

The state and its estimates are represented below in Fig. 6, keeping
the same initial conditions given previously.
Remarks.

(1) it is remarkable that the estimated states by the DMVT-
Observer, compared to those estimated by the One-sided-
Observer, are more reliable especially with a very large Lip-
schitz constant. The results given by O.S.O are biased (Fig 6).

(2) Another advantage is that they are related to the computation
time. Indeed, when solving the LMIs, it is quite clear that the
DMVT-Observer allocates less memory and computing time
compared to the One-sided-Observer (Only three variables are
to search with DMVT, while with the One-Sided-Observer
more than 12 parameters have to be determined).
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Fig. 6: Response of x1(k) (black line) and its estimates with O.S.L (red
line) and DMVT (blue line)

4. CONCLUSION
Efficient design of two observers for a class of nonlinear discrete
systems are presented.
The two methods are then applied to real time state estimation of
the one-link flexible joint robot using ARDUINO MEGA 2560 de-
vice in two modes. The results have confirmed the high quality of
estimation offered by the DMVT design method with: the presence
of noises whose the amplitudes and frequencies are variable and
with a large value of Lipschitz constant. The use of the DMVT had
ensured a performed stability analysis with non restrictive sufficient
condition based on LMI.
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