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ABSTRACT
A single server Markovian queueing system with the system al-
ternates between regular busy state, repair state and working va-
cation state has been considered. The system is busy, it functions
as a single server Markovian queue. When it is on vacation, again
it functions as a single server Markovian queue but with different
arrival and service rates. The vacation policy is multiple vacation
policy and the vacation period follows negative exponential. In ad-
dition, during service the server may break down, the repair of the
server starts immediately. The repair period follows negative expo-
nential. The steady state probability vector of number of customers
in the queue and the stability condition are obtained using Matrix-
Geometric method. Some illustrative examples are also provided.
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1. INTRODUCTION
In many real life queueing situations , after service completion, if
no customer in the queue, it can be seen that the server leaves the
system for a random period of time such a system is called vaca-
tion queue. In the past Queueing systems with server vacations have
been investigated by many researchers. The readers may refer the
survey paper by Doshi(1986) and the monograph by Takagi(1991)
for a detailed analysis of vacation system. Recent decads have seen
an increasing interest in such a queueing systems due to their appli-
cations in telecommunication systems, manufacturing systems and
computer systems.

In day to day life, it can be seen that the server works during his va-
cation period, if the necessity occur, called working vacation queue.
In the working vacation queues, the server works with variable ser-
vice rate, in particular reduced service rate, rather than completely
stops the service during the vacation period. Servi and Finn(2002)
have first analyzed an M/M/1 queue with multiple working va-
cation, in which the vacation times are exponentially distributed.
Wu and Takagi(2006) extend the work to an M/G/1 queue. Kim
et al.(2003) analyzed the queue length distribution of the M/G/1
queue with working vacations. Liu et al.(2007), examined stochas-
tic decomposition structure of the queue length and waiting time in
an M/M/1 working vacation queue. Xu et al.(2009) extended the

M/M/1 working vacation queue to an M [X]/M/1 working vaca-
tion queue. Ke et al.(2010) have given a short survey on vacation
models in recent years.

In many real life situations, it can be observed that the arrival of
customers as well as service of a customer depends on the num-
ber of customers in the system, etc., Yechiali and Naor(1971) have
considered a single-server exponential queueing model with arrival
rate depending on operational state or breakdown state of the server.
Fond and Ross(1977) analyzed the same model with the assump-
tion that any arrival finding the server busy is lost, and they obtained
the steady-state proportion of customer’s lost. Shogan(1979) has
deals a single server queueing model with arrival rate dependent
on server state. Shanthikumar(1982) has analyzed a single server
Poisson queue with arrival rate depending on the state of the server.
Jayaraman et al.(1994) analyzed a general bulk service queue with
arrival rate dependent on server breakdowns. Tian and Yue(2002)
discussed the queueing system with variable arrival rate. The au-
thor studied the model by using the principle of quasi-birth and
death process(QBD). Furthermore, they calculated some perfor-
mance measures, such as the number of customers in the system
in steady-state, etc., Matrix-geometric method approach is a use-
ful tool for solving the more complex queueing problems. Matrix-
geometric method has been applied by many researchers to solve
various queueing problems in different frameworks. Neuts(1981)
explained various matrix geometric solutions of stochastic models.
Matrix-geometric approach is utilized to develop the computable
explicit formula for the probability distributions of the queue length
and other system characteristic. Li et al.(2009) used the matrix an-
alytic method to analyze an M/G/1 queue with exponential work-
ing vacation under a specific assumption.

In practice, it can be seen that, the service channel is subject to
breakdowns or some other kinds of service interruption, which
are beyond control of the server and the management. Many re-
searchers have contributed on queue with unreliable server [ Li
et al.(1997), Wang(1995,1997)]. Some more works on queue with
breakdown are Wang et al.(1999) and Ke(2005). Grey et al.(2000)
incorporated the server breakdown on vacation queuing model.
Haridass and Arumuganathan(2008) studied M [X]/G/1 queuing
system with unreliable server and with single vacation. Lin and
Ke(2009) consider a multi server queue with single working va-
cation. Jain and Jain(2010) investigated a single working vacation
model with server break down. Choudhury and Deka(2012) investi-
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gated an M/G/1 unreliable server, Bernoulli vacation queue with
two phases of service. Kalyanaraman and Nagarajan(2016), have
analyzed M [X]/GK/1 with vacation and unreliable server. Usu-
ally if the server break down the repair process starts immediately.
It is quite natural that the server may have to wait for the repairs
to start, this time is called delay time. In 2013, Choudhury and
Deka(2013) studied a batch arrival unreliable server, Bernoulli va-
cation queue with two phases of service and delayed repair. Ke et
al.(2012), analyzed M [X]/G/1 queuing system with an unreliable
server and repair, in which the server operates with a randomized
vacation policy with multiple vacation. Kalyanaraman and Nagara-
jan(2017) analyzed a bulk arrival fixed batch service queue with
unreliable server, compulsory vacation and delay time.

To the best of our knowledge, in the study of working vacation
queue, the existing literatures focus mainly on queueing system
with server state independent arrival rates, in this work we deviate
from these work by assuming server state dependent arrival rates.

In this paper, we consider an M/M/1 queue with multiple work-
ing vacation and with breakdown. The arrival rate dependents on
the server states. The model has been analyzed using matrix geo-
metric method. The rest of this paper is organized as follows: In
section 2, we give the model description. In section 3, we present
the steady state solution using matrix geometric method . In sec-
tion 4, we present some system performance measures. Section 5
gives some particular models. and In section 6, we carried out a
numerical study. Finally, a conclusion has been given.

2. THE MODEL
We consider a single-server queueing system with the following
characteristics:

(1) The system alternate between two states, up state and down
state. In the up state it is either in regular state or in working
vacation state. In the down state it is in the repair state.

(2) Arrival process follows Poisson.
(3) When the system is in regular busy period it serves customers

based on exponential distribution with rate µ.
(4) During the regular busy period the arrival parameter is λ.
(5) The server takes vacation, if there are no customer in the queue

at a service completion point.
(6) During vacation, the arrival rate is λ1 (λ1 < λ).
(7) Vacation period follows negative exponential with rate θ and

the vacation policy is multiple vacation policy.
(8) When the server is in vacation, if customer arrives, the server

serve the customers using exponential distribution with rate
µ1 (µ1 < µ). As this vacation period ends, the server instan-
taneously switches over to the normal service rate µ, if there is
at least one customer waiting for service. Upon completion of
a service at a vacation period, the server will (i) Continue the
current vacation if it is not finished and no customer is waiting
for service; (ii) Continue the service with rate µ1 if the vaca-
tion has not expired and if there is at least one customer waiting
for service.

(9) The server may break down during a service and the break
downs are assumed to occur according to a Poisson process
with rate α.

(10) Once the system break downs, the customer whose service
is interrupted goes to the head of the queue and the repair to
server starts immediately.

(11) Duration of repaired period follows negative exponential with
rate β.

(12) During repair period no service takes place but customers ar-
rive according to Poisson process with rate λ2 (λ2 < λ1).

(13) The first come first served (FCFS) service rule is followed to
select the customer for service.

2.1 The quasi-birth-and-death(QBD) process
The model defined in this article can be studied as a QBD process.
The following notations are necessary for the analysis:

Let L(t) be the number of customers in the queue at time t and let

J(t) =


0, if the server is on working vacation
1, if the server is busy
2, if the server is on repaired period

be the server state at time t.

Let X(t) = (L(t), J(t)), then {(X(t)) : t ≥ 0} is a Continuous
time Markov chain (CTMC) with state space S = {(i, j) : i =
0, 1, 2; j ≥ 0}, where j denotes the number of customer in the
queue and i denotes the server state.

Using lexicographical sequence for the states, the rate matrix Q, is
the infinitesimal generator of the Markov chain and is given by

Q =



B0 A0

A2 A1 A0

A2 A1 A0

A2 A1 A0

. . .
. . .
. . .


where the sub-matrices A0, A1, and A2 are of order 3× 3 and are
appearing as

A0 =

λ1 0 0
0 λ 0
0 0 λ2


A1 =

−(λ1 + µ1 + θ) θ 0
0 −(λ+ µ+ α) α
0 β −(λ2 + β)


A2 =

µ1 0 0
0 µ 0
0 0 0


and the boundary matrix is defined by

B0 =

−(λ1 + θ) θ 0
µ −(λ+ µ+ α) α
0 β −(λ2 + β)


We define the matrix A = A0 +A1 +A2. This matrix A is a 3× 3
matrix and it is of the form

A =

−θ θ 0
0 −α α
0 β −β
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3. THE STEADY STATE SOLUTION
Let P = (p0, p1, p2, . . .) be the stationary probability vector as-
sociated with Q, such that PQ = 0 and Pe = 1, where e is
a column vector of 1′s of appropriate dimension. The sub proba-
bility vector p0 and p1 are defined as, p0 = (p00, p10, p20) and
pi = (p0i, p1i, p2i) for i ≥ 1.

If the steady state condition is satisfied, then the sub vectors pi are
such that

p0B0 + p1A2 = 0 (1)

piA0 + pi+1A1 + pi+2A2 = 0, i ≥ 0 (2)

pi = p0R
i; i ≥ 1 (3)

where R is the rate matrix, is the minimal non-negative solution of
the matrix quadratic equation (see Neuts(1981)).

R2A2 +RA1 +A0 = 0 (4)

Substituting the equation (3) in (1), we have

p0(B0 +RA2) = 0 (5)

and the normalizing condition is

p0(I −R)−1e = 1 (6)

THEOREM 1. The queueing system described in section 2 is

stable if and only if ρ < 1, where ρ =
(λ2α+ λβ)

µβ

PROOF. Consider the infinitesimal generator

A =

−θ θ 0
0 −α α
0 β −β

, which is a square matrix of order 3. Let the

row vector π = (π1, π2, π3) satisfies the condition πA = 0 and
πe = 1.

Following Neuts(1981), the system is stable if and only if πA0e <
πA2e.

That is,

The system is stable if and only if
(λ2α+ λβ)

µβ
< 1

THEOREM 2. If ρ < 1, the matrix equation (4) has the minimal
non-negative solution

R =

r0 r01 r02
0 r1 r12
0 r21 r2


where

r01 =
−θr0[

µr0 + µr1 − (λ+ µ+ α) +
αµ

λ2 + β
r21 +

αβ

λ2 + β

]

r02 =
αr01

(λ2 + β)

r12 =
αr1

(λ2 + β)

r21 =
(λ2 + β)r2 − λ2

α

r0 =
1

2µ1

[
(λ1 + µ1 + θ)−

√
(λ1 + µ1 + θ)2 − 4λ1µ1

]

r1 =
−S1 −

√
S2
1 − 4λµ(λ2 + β)2

2µ(λ2 + β)

r2 =
S2 −

√
S2
2 − 4(λ2 + β)[λ2(λ+ µ+ α)− λ2µr1]

2(λ2 + β)

PROOF. Let

R =

r0 r01 r02
0 r1 r12
0 r21 r2

 (7)

R2A2 =

µ1r
2
0 µ(r01(r0 + r1) + r02r21) 0

0 µ(r21 + r12r21) 0
0 µ(r21(r1 + r2)) 0

 (8)

RA1 =

−V0r0 θr0 − V1r01 + βr02 αr01 − (λ2 + β)r02
0 −V1r1 + βr12 αr1 − (λ2 + β)r12
0 −V1r21 + βr2 αr21 − (λ2 + β)r2


(9)

where V0 = (λ1 + µ1 + θ), V1 = (λ+ µ+ α)
Substituting (8), (9) and A0 into (4), gives the following set of
equations

µ1r
2
0 − (λ1 + µ1 + θ)r0 + λ1 = 0 (10)

µ(r01(r0+r1)+r02r21)+θr0−(λ+µ+α)r01+βr02 = 0 (11)

αr01 − (λ2 + β)r02 = 0 (12)

µ(r21 + r12r21)− (λ+ µ+ α)r1 + βr12 + λ = 0 (13)

αr1 − (λ2 + β)r12 = 0 (14)

µr21(r1 + r2)− (λ+ µ+ α)r21 + βr2 = 0 (15)

αr21 − (λ2 + β)r2 + λ2 = 0 (16)

From equations (10)-(16), we get

r01 =
−θr0[

µr0 + µr1 − (λ+ µ+ α) +
αµ

λ2 + β
r21 +

αβ

λ2 + β

]
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r02 =
αr01

(λ2 + β)

r12 =
αr1

(λ2 + β)

r21 =
(λ2 + β)r2 − λ2

α

r0 =
1

2µ1

[
(λ1 + µ1 + θ)−

√
(λ1 + µ1 + θ)2 − 4λ1µ1

]

r1 =
−S1 −

√
S2
1 − 4λµ(λ2 + β)2

2µ(λ2 + β)

r2 =
S2 −

√
S2
2 − 4(λ2 + β)[λ2(λ+ µ+ α)− λ2µr1]

2(λ2 + β)

where,

S1 = [µ(λ2 + β)r2 − µλ2 − (λ+ µ+ α)(λ2 + β) + αβ]

S2 = [λ2 + (λ+ µ+ α)(λ2 + β)− µ(λ2 + β)r1 − αβ]
It is clear that the above equation have unique non-negative so-
lution. Therefore, this non-negative solution must be the mini-
mal.

THEOREM 3. If ρ < 1, the stationary probability vectors p0 =
(p00, p10, p20) and pi = (p0i, p1i, p2i) are

p00 =
µ(1− r0)(λ2 + β)[(1− r1)(1− r2)− r21r12]
µ(λ2 + β)S2 + (1− r0)(λ1 + θ − µ1r0)V2

p10 =
1

µ
[(λ1 + θ)− µ1r0]p00

p20 =
α[(λ1 + θ)− µ1r0]

µ(λ2 + β)
p00

and pi = p0R
i; i ≥ 1

where V2 = [(r21 − r2 + 1)(λ2 + β) + α(r21 + 1− r1)]

PROOF. p00, p10 and p20 follows from the equations (1), (5), (6)
and (7).

REMARK 1. Even though R in Theorem 2 has a nice struc-
ture which enables us to make use of the properties like

Rn=

rn0 r01
n−1∑
j=0

rj0r
n−j−1
1

0 rn1

, for n ≥ 1, due to the form of

r0 & r01, it may not be easy to cary out the computation required to
calculate the pi and the performance measures. Hence, we explore
the possibility of algorithmic computation of R. The computation
of R can be carried out using a number of well-known methods.
We use Theorem 1 of Latouche and Neuts(1980). The matrix R is
computed by successive substitutions in the recurrence relation:

R(0) = 0 (17)

R(n+ 1) = −A0A
−1
1 − [R(n)]2A2A

−1
1 forn ≥ 0 (18)

and is the limit of the monotonically increasing sequence of matri-
ces {R(n), n ≥ 0}.

4. PERFORMANCE MEASURES
Using straightforward calculations the following performance mea-
sures have been obtained:

(i) Mean queue length E(L) = p0R(I −R)−2e
(ii) Second moment of queue length= p0R(I +R)(I −R)−3e
(iii) Variance of queue length= var(L)

=p0R{(I +R)− p0R(I −R)−1e}(I −R)−3e
(iv) Probability that the server is ideal =p0e
(v) Mean queue length when the server is an vacation period

=
∞∑
i=0

ip0i

(vi) Mean queue length when the server is in regular busy period

=
∞∑
i=0

ip1i

(vii) Probability that the server is in working vacation period=

pr{J = 0} =
∞∑
i=1

p0i

(viii) Probability that the server is in regular busy period

=pr{J = 1} =
∞∑
i=1

p1i

5. PARTICULAR MODEL
By taking particular values to the parameters, we have obtained a
particular model related to the system discussed in this article. In
the above model, we assume that λ1 = λ2 = λ, and µ1 = µ. We
get

R =

r0 r01 r02
0 r1 r12
0 r21 r2


p00 =

µ(1− r0)(λ+ β)[(1− r1)(1− r2)− r21r12]
µ(λ+ β)S5 + (1− r0)(λ+ θ − µr0)V3

p10 =
1

µ
[(λ+ θ)− µr0]p00

p20 =
α[(λ+ θ)− µr0]

µ(λ+ β)
p00

and pi = p0R
i; i ≥ 1

where

r01 =
−θr0[

µr0 + µr1 − (λ+ µ+ α) +
αµ

λ+ β
r21 +

αβ

λ+ β

]

r02 =
αr01

(λ+ β)

r12 =
αr1

(λ+ β)

r21 =
(λ+ β)r2 − λ

α

r0 =
1

2µ

[
(λ+ µ+ θ)−

√
(λ+ µ+ θ)2 − 4λµ

]
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r1 =
−S4 −

√
S2
4 − 4λµ(λ+ β)2

2µ(λ+ β)

r2 =
S5 −

√
S2
5 − 4(λ+ β)[λ(λ+ µ+ α)− λµr1]

2(λ+ β)

S4 = [(λ+ β)(µr2 − λ+ µ+ α)− µλ+ αβ]

S5 = [λ+ (λ+ β)(λ+ µ+ α− µr1)− αβ]

V3 = [(r21 − r2 + 1)(λ+ β) + α(r21 + 1− r1)]

6. NUMERICAL STUDY
In this section, some numerical examples are given to show the
effect of the parameters λ, λ1, λ2, µ, µ1, θ, α and β on the per-
formance measures: mean queue length, second moment of queue
length, variance of queue length, probability that the server is idle,
mean queue length when the server is an vacation period, mean
queue length when the server is in regular busy period, probability
that the server is in working vacation period and probability that the
server is in regular busy period for the model analyzed in this paper.
The corresponding results are presented as case(1) and case(2).

Case(1): Ifλ1 = λ2 = λ = 0.3, µ1 = µ = 2, θ = 4.2, α = 0.3
and β = 0.6, the matrix R is obtained using the equations (17) &
(18)

R =

0.046829 0.103172 0.034391
0 0.15 0.05
0 0.15 0.383334


and the invariant probability vector is
P = (p0, p1, p2, . . .) where
p0=(0.147429, 0.324811, 0.200750)
and the remaining vectors p′is are evaluated using the relation
pi = p0R

i, for i ≥ 1
p1=(0.0069039529189, 0.0940446928143, 0.0982650816440)
p2=(0.0003233051975, 0.0295587610453, 0.0426080152392)
p3=(0.0000151400590, 0.0108583727851, 0.0178221575915)
p4=(0.0000007089938, 0.0043036416172, 0.0073752785101)
p5=(0.0000000332014, 0.0017519112443, 0.0030424015130)
p6=(0.0000000015547, 0.0007191503536, 0.0012538527371)
p7=(0.0000000000728, 0.0002959506236, 0.0005166019545)
p8=(0.0000000000034, 0.0001218828983, 0.0002128286287)
p9=(0.0000000000001, 0.0000502067305, 0.0000876785998)
p10=(0.000000000000007, 0.0000206828008, 0.0000361205275)
p11=(0.000000000000001, 0.0000085204992, 0.0000148803665)
p12=(0, 0.0000035101300, 0.0000061301757)
p13=(0, 0.0000014460458, 0.0000025254114)
p14=(0, 0.0000005957186, 0.0000010403783)
For the chosen parameters p14 → 0, and the sum of the steady state
probabilities is found to be 0.993217
The performance measures are

(i) Mean queue length E(L) = 0.523449

(ii) Second moment of queue length =1.208776
(iii) Variance of queue length=var(L) = 0.934778

(iv) Probability that the server is ideal =0.67299
(v) Mean queue length when the server is an vacation period

=0.007599
(vi) Mean queue length when the server is regular busy period

=0.219899

(vii) Probability that the server is in working vacation period =
pr{J = 0} = 0.007243

(viii) Probability that the server is in regular busy period
=pr{J = 1} = 0.141743

Case(2): In this case we fix the values λ = 0.5, λ1 = 0.3,
λ2 = 0.1, µ = 5, µ1 = 2, α = 0.4, β = 0.8 and we take
θ = 2.6 ans 3.0, the corresponding numerical results are generated.
The probabilities are presented in Table-1. In Table-2, the perfor-
mance measures are given.
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Table 1. Probabilities.
λ = 0.5, λ1 = 0.3, λ2 = 0.1, µ = 5, µ1 = 2, α = 0.4 and β = 0.8
θ = 2.6 θ = 3.0

p0 (0.152432, 0.084579, 0.618117) (0.150313, 0.095728, 0.531057)
p1 (0.009578, 0.026134, 0.080295) (0.008698, 0.025733, 0.070443)
p2 (0.000601, 0.004553, 0.010945) (0.000503, 0.004303, 0.009739)
p3 (0.000038, 0.000695, 0.001525) (0.000029, 0.000644, 0.001368)
p4 (0.000002, 0.000101, 0.000214) (0.000002, 0.000093, 0.000193)
p5 (0.000000149, 0.0000145, 0.000030280) (0.000000097, 0.000013207, 0.000027343)
p6 (0.000000009, 0.0000021, 0.000004281) (0.000000006, 0.000001871, 0.000003869)
p7 (0, 0.00000029209934, 0.000000605461) (0, 0.000000264725003, 0.000000547637)
p8 (0, 0.00000004133980, 0.000000085647) (0, 0.000000037437285, 0.000000077480)
p9 (0, 0.00000000584821, 0.000000012115) (0, 0.000000005294170, 0.000000010962)
p10 (0, 0.0000000008272, 0.000000001714) (0, 0.00000000174, 0.000000001553)
p11 (0, 0.0000000001171, 0.000000000242) (0, 0.000000000105, 0.000000000224)
p12 (0, 0.0000000000165, 0.000000000034) (0, 0.000000000015, 0.000000000031)
p13 (0, 0.0000000000023, 0.000000000005) (0, 0.0000000000021 0.000000000004)
p14 (0, 0.0000000000003, 0.000000000001) (0, 0.0000000000003, 0.000000000001)

Total probability 0.989865 0.898894

Table 2. Performance measures.
λ = 0.5, λ1 = 0.3, λ2 = 0.1, µ = 5,

µ1 = 2, α = 0.4 and β = 0.8
θ = 2.6 θ = 3.0

Mean queue length 0.156527 0.141484
Second moment of queue length 0.207232 0.187301

Variance of queue length 0.182731 0.167283
Probability that the server is ideal 0.855128 0.777098

Mean queue length when the server is an vacation period 0.010906 0.009801
Mean queue length when the server is in regular busy period 0.037819 0.036715

Probability that the server is in working vacation period 0.010221 0.009231
Probability that the server is in regular busy period 0.031502 0.159546

7. CONCLUSION
In this article a single unreliable server Markovian queue with
working vacation has been analyzed. The model can be extended
by assuming the repair time follows general distribution.
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