
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.39, May 2018

34

Evolutionary Memetic Models for Malware Intrusion

Detection: A Comparative Quest for Computational

Solution and Convergence

I. P. Okobah
Department of Computer Science Education,

Federal College of Education Technical
Asaba, Delta State,

Nigeria

A. A. Ojugo
Department of Computer Science, Federal

University of Petroleum Resources
Effurun, Delta State,

Nigeria

ABSTRACT

Data security is now a pertinent issue with advent of the

Internet. Methods like cryptography, firewalls and gateways

used to prevent attacks on data are becoming unsuccessful.

Thus, the need for Intrusion Detection System to enhance

security efforts. Varying machine learning models are

implemented for rule-based IDS using DARPA dataset to

train and generate rules for classification via support-

confidence framework and a common fitness function to

judge quality of each rule. This will help detect network

anomalies, new attack types via rules and allow their addition

into knowledgebase. Study presents results of the various

stochastic models used with an aim to improve data security

and integrity for networked resources.

Keywords

Intrusion, evolutionary, forensic, data security, adversaries,

hackers.

1 INTRODUCTION
TODAY’s society demands a great dependence on digitally

transmitted data as people seek to become more effective and

efficient in their daily dealing. Though, a current menace

ameliorating this need is also the drastic increase of hackers,

who illegally gain access to authentic data. Many systems and

studies have ensued in a bid to find means and methods that

will help desuade these adversaries from such act. This has

consequently, led to advances in digital forensics using many

existing data mining tools. Also, other means have been the

implementation of security tools such as firewalls, application

gateways etc – all of which seeks to ensure data integrity,

non-repudiation and privacy. This has become and is now a

herculean task as new direction now focuses on intrusion

detection systems to help administrators monitor network

data-traffic and thus, help them identify resource misuse,

unauthorized use and abuse on networks (Ojugo et al, 2012;

Ojugo et al, 2016).

Threats are initiated externally or internally (Gong et al, 2005;

Kandeeban and Rajesh, 2007) – to result in 2-types of

intruders: external (with no authorized access to resources;

But, attacks via penetration means) and internal intruder (with

authorized network access to resources). To ensure data

integrity, firewall’s demerit is its faulty packet filtering.

Application gateway’s demerit is its cost and bottleneck

caused as it slows down the network. Thus, IDS aims to

bridge existing network security technologies. Intrusions are a

set of action that attempts to compromise integrity,

confidentiality, privacy and availability of network resources.

The intruder (or adversary as often referred to) is any user or

group of users who initiates such intrusive action (Olusegun et

al, 2010). Thus, IDS is designed to generate alert as it

observes potentially malicious and abusive traffic (Kurose and

Ross, 2010). It monitors data packets from network

connections and determines if it is an intrusive activity or not.

If an intrusive action is detected, the IDS performs one of

these: (a) logs a message into the system audit file to be later

analyzed by a security expert, (b) emails an alert to a network

administrator, and (c) ends the adversary’s connection (that is

as provisioned under Intrusion Prevention System) amongst

other functions.

1.1 Intrusion Detection Systems
Diaz-Gomez and Hougen (2005) IDS has 3-main parts

namely: (a) sensors/network probes which tracks data traffic,

system behavior and log files by translating data into events

usable as the IDS monitors and taps in to access all network

connections, (b) analysis console which takes sensor output as

input in form of network connections, analyzes it for intrusive

acts (as critical component to decide whether or not, a

connection is intrusive), and (c) policy control which

generates reactions based on analysis’ outcome. If analysis

console flags a connection as intrusion, control performs

several actions depending on policies, set by the network

administrator. Such actions include simple logout of a

particular connection, alerting the administrator via e-mail etc.

It also handles action(s) to be taken when an intrusion is

detected as in Figure 1.

Ojugo et al (2012b) IDSs are basically classified into:

1.1.1 Anomaly-IDS
Creates profile statistics of unusual packet stream of Internet

Control Message Protocol, ping sweeps and port scan’s

sudden exponential growth. They do not rely on previous

knowledge to detect new, undocumented attacks; but, it is a
herculean task to distinguish normal from statistically unusual

traffic (Kurose et.al, 2010).

Figure 1: Framework of an IDS

SENSOR

ANALYSI

S

CONSOL

E

POLICY

CONTRO

L

IDS

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.39, May 2018

35

1.1.2 Signature/Rule-Based
Maintains an attack database of signatures using varying rule

set(s) or heuristics that include a list of feats about a packet.

They are normally created by security experts so that the IDS

can sniff each packet passing the system, compare them

against its database, and if packet(s) matches, it generates an

alert; else, it proceeds (Kurose et.al, 2010). Its demerits: (a) it

requires previous knowledge of known attacks to generate

accurate rules, (b) It’s completely blind to new unrecorded

attack, (c) false negative classification resulting from feats not

in the rulesand not an attack, (d) addition of new rules

enlarges knowledgebase and packets compared against this

may overwhelm the IDS processing so that it fails to detect

attacks and network anomalies.

1.1.3 Network IDS
They identify intrusive network connection acts via

monitoring traffic through network devices.

1.1.4 Host-IDS

Monitors file and process activities that are related to a

software environment, as associated with a specific host and

listens to network traffic to identify attacks to such host – as

data from a host is used to detect signs of intrusion as many

packets enters and/or exits a host machine (Li, 2004).

1.2 Intrusive Actions and Malware

Intrusive actions by hacker are achieved via use of malware. It

is a common technique used by adversaries (Ojugo et al,

2016). A computer malware (or virus) is a malicious program

that modifies a host machine by attaching its code and alters

behaviour of other files. As it infects, it also modifies itself to

include better and possibly, an evolved copy of the virus

(Daodu and Jebril, 2008; Dawkins, 1989; Zakorzhevsky,

2011). Malware self-replicates its codes onto a machine

without the user’s consent, and spreads by attaching a copy of

itself to some part of program file. It attacks system resources

and is designed to deliver a payload that aims to corrupt

program, delete files, reformat disks, crash network, destroy

critical data or embark on other damage to the host machine

(Szor, 2005).

Viruses have 3-modules namely: infect, trigger and payload.

Infect show its mechanism to modify its host and contain

copies of it. Trigger details when and how to deliver its

payload; while the payload details damage done. Trigger and

payload are optional (Desai, 2008). Figure 2a shows its

structure of the virus English-like pseudo-code; while Figure

2b shows its internal workings (Ye et al, 2008; Ojugo et al,

2016).

Mishra (2003), Orr (2006) and Ojugo et al (2016) Viruses (or

malware) are classified into:

1.2.1 Simple virus
Replicates itself if launched. It gains control of the system,

attaches copy of itself to another program as it spreads. After

which, it transfers control back to host program. It is easily

detected via search/scan for a defined sequence of bytes,

known as a signature to find the virus.

1.2.2 Encrypted viruses
Scramble their signature so as to make it unrecognizable

during execution. Its decryption routine transfers control to its

decrypted virus body so that each time it infects a new

program, it makes copy of both the decrypted body and its

related decryption routine. It then encrypts a copy and

attaches both to a target system. It uses an encryption key to

encrypt its body. As the key changes, it scrambles its body so

that virus appears different from one infection to another.

Such virus is difficult to detect via signature. Thus, antivirus

must scan for a constant decryption routine instead.

1.2.3 Polymorphics
Consists of a scrambled body, mutation engine and decryption

routine. The decryption routine gains control to decrypt both

its body and mutation engine. It then transfers control to the

scrambled body to locate a new file to infect. It copies its

body and mutation engine into RAM, and invokes its mutation

engine to randomly generate new decryption routine to

decrypt its body with little or no semblance to the previous

routine. It then appends this newly encrypted body, a mutation

engine and decryption routine to the newly infected file. Thus,

its encrypted body and decryption routine, varies from one

infection to another. With no fixed signature and decryption

routine, no two infections is alike.

1.2.4 Metamorphics
Avoids detection by rewriting completely, its code each time

it infects a new file. Its engine achieves code obfuscation and

metamorphism, which in most cases – is 90% of its assembly

language codes.

1.3 The Metamorphic Malware
As above, metamorphic viruses employs a mechanism that

helps them to change their code structure and appearance;

while, keeping its original functionality. It achieves this via

code obfuscation methods as in fig 3. Its engine reads in a

virus executable, locates code to be transformed using its

locate_own_code module. Each engine has its transformation

rule that defines how a particular opcode or a sequence of

opcodes is to be transformed. Decode module extracts these

rules by disassembling. Analyze module analyzes current

copy of virus and determines what transforms must be applied

to generate the next morphed copy. Mutate module performs

the actual transformations by replacing an instruction (set)

with the other its equivalent code; While, Attach module

attaches the mutated or transformed copy to a host (Cohen,

1987; Desai, 2008; Orr, 2007 and Sung et al, 2004).

Venkatesan (2008) note that a typical metamorphic engine

may consist of: (a) internal disassemble to disassemble binary

codes, (b) a shrinker replaces two or more codes with its

single equivalent, (c) an expander replaces an instruction with

many codes that performs same action, (d) a swapper reorders

codes by swapping two/more unrelated codes, (e) a relocator

assigns and relocates relative references such as jumps and

calls, (f) a garbager (constructor) inserts whitespaces (do-

nothing codes) to the program, and (g) cleaner (destructor)

Locate

own

code

Decod

e

Analyze Mutat

e

Attach

Figure 3: Distinct Signature of Metamorphic

Virus

Figure 2a: Virus

Pseudo-code

Def Virus():

 Infect()

 If Trigger() is TRUE then

 Payload is delivered()

Figure 2b: Infect Pseudo-

code

Def Infect():

 Repeat M times()

 Target = Select_target()

 If no target() THEN

 Return

 Infect code(target)

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.39, May 2018

36

undoes the actions of a garbager by removing whitespaces/do-

nothing instructions (Desai, 2008; Konstatinou, 2008).

Feats of an effective metamorphic engine includes: (i) must be

able to handle any assembly language opcode, (ii) shrinker

and swapper must be able to process more than one

instruction concurrently, (iii) garbager is used moderately, not

to affect actual instructions, and (iv) swapper analyzes each

instruction so as not to affect next instructions’ execution

(Orr, 2007; Sung et al, 2004; Walenstein et al, 2007).

1.4 Metamorphic Code Obfuscation

Methods
Metamorphic engine uses code obfuscation to yield morphed

copies of original program. Obfuscated code is more difficult

to understand and can generate different looking copies of a

parent file as it operates on both control flow and data section

of a program (Wong, 2006). Code obfuscation is achieved via

(Borello and Me, 2008; Desai, 2008 and Avcock, 2006):

a. Register Usage Exchange/Renaming – modifies the

register data of an instruction without changing the

codes itself, which remain constant across all

morphed copies. Thus, only the operands changes.

b. Dead Code inserts do-nothing (whitespace) codes

that do not affect execution via a block or single

instruction so as to change codes’ appearance while

retaining functionality.

c. Subroutine Permutation aims to reorder subroutines

so that a program of many subroutines can generate

(n-1)! varied routine permutations, whose addition

will not affect its functionality as this is not

important for its execution.

d. Equivalent Code Substitution replaces instruction

with its equivalent instruction (or blocks). A general

task can be achieved in different ways. Same feat is

used in equivalent code substitution.

e. Transposition/Permutation – modifies program

execution order only if there is no dependency

amongst instructions.

f. Code Reorder inserts unconditional and conditional

branch after each instruction (or block), and defines

branching instructions to be permuted so as to

change the programs’ control-flow. Conditional

branch is always preceded by a test instruction

which always forces the execution of the branching

instruction.

g. Subroutine Inline/Outline is similar to dead code

insertion in that subroutine call are replaced with its

equivalent code as Inline inserts arbitrary dead code

in a program; while outline converts block of code

into subroutine and replace the block with a call to

the subroutine. It essentially does not preserve any

logical code grouping.

1.5 Stochastic IDS Model
Axelson et al (2004) built IDS with unsupervised Kohonen

map. They proposed two enhancements that solved issue of

high value of false positive rate with Performance-Based

Ranking. It works by deleting an input from the dataset and

comparing the result before and after the deletion using KDD

dataset. To counter low detection and high false alarm rates,

they proposed interactive IDS based on Bayesian statistics

combined with a visualization component. Gong et al (2005)

Generated rules for optimality, to detect network anomalies.

Each agent monitors a network feat of audit data, and GA was

used to find a set of agents that collectively detect network

behavior anomalies. Its merit is application of many small

autonomous agents. Its demerits are its communication defect

and time consuming training if agents are not properly

initialized using 6-connection feats.

Kayacık et al (2006) focused on behavioral models of known

attacks to help experts identify similarities between attacks.

Self-Organizing Map is used to model relationship between

known attacks and U-Matrix representation in 2D topological

map of known attacks evaluated on KDD dataset.

Results show attacks with similar behavior patterns were

placed together on map.

Zanero et al (2008) proposed a novel architecture for the

network-based anomaly detection system using unsupervised

learning to describe how pattern recognition feats of a Self-

Organizing Map are used on payload of TCP data-packets via

ULISSE, 2-tier architecture unsupervised learning to perform

intrusion and anomaly detection. Kandeeban et al (2010) had

its best rule of fitness close to 1 with 97% correctly detected

attacks and 0.69% of normal connections incorrectly

classified as attacks. Correlation between correct attack

detection and false positive rate – so that the more attacks are

correctly detected, more normal connections are incorrectly

classified. A major difficulty was in its establishing of its

threshold value that may lead to detect novel unknown

attacks.

Vollmer et al (2011) combined approaches to create rules and

retrieved packets for training. Rather than use audit data logs,

packets were originated from network traffic identified by

IDS as being anomalous. It yielded set of optimal rules for

anomalous-instance previously detected to bridge rule and

anomaly IDS. Its fitness function was defined as 3-part

function and demonstrated on anomalous ICMP network

packets (input) and Snort rules (output). Output rules are

sorted according to fitness value and duplicates removed. Out

of 33,804 test packets 3 produced false positives.

Ojugo et al (2012b) Applied GA to rule based IDS using 7-

feats from DARPA. Each agent was monitored a network

parameter from audit data with GA used to find set of agents

that collectively detect network behavior. It generated local

optimum rule(s) set with 97% correctly detected attacks and

2.39% connections were incorrectly classified as attacks. A

correlation between correct detection and false positive rate

notes that the more attacks are correctly detected, the more

normal connections are incorrectly classified as attacks.

2 MATERIALS AND METHODS

2.1 Dataset
The researcher for the purpose of this study will adopt the

Win95/Zperm as implemented in on the TCP network. The

DARPA 1990 dataset parameter is used as below.

2.2 Common Fitness Function
Each candidate is a solution in space with attributes over a

range as encoded via integer decimal with 57-genes. IPs are

HEX-coded for simplicity and quantitative representation

(Ojugo et al, 2012b). Candidates are randomly initialized for

selection via fitness function (weighted sum model) to

indicate significance of each feature. Seven network

connection feats were used (see table 1), and rules are as thus:

If {condition} then {act} listed as:

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.39, May 2018

37

if {connection exists thus}:

 (source IP; destination IP; source port; destination port,

time)

then {stop the connection}

Table 1: Individual Representation of a Rule
Feats Format No. of Genes

Duration H:M:S 3

Protocol Numeric 1

Source Port Numeric 1

Destination Port Numeric 1

Source IP a.b.c.d 4

Destination IP a.b.c.d 4

Attack Name and type String 1

If a connection request (source IP, destination IP, source port,

destination port, and connection time) exists, then stop

connection establishment. Thus, such IP is recognized as

blacklisted by IDS and the service request initiated from it, is

rejected. All rules are tested on historical connections, to filter

new connections and find suspicious traffics. DARPA dataset

1999 is used in training and differentiates normal from

intrusive connections as it contains analyzed logs with

apriority attack connections. Source IP originates intrusion;

while Destination IP is target whose port shows running apps.

Dataset contains 6-feats as some IP are more likely targets

than others and analysis prior to its use notes that normal

connection contains no attack name. Agents are rules with 7-

feats, encoded via decimal, fixed length vector. Each If-Then

clause has a condition and outcome part (see table 1) of 6-

feats connected via logical AND to form condition; while

attack name is outcome to show network classification (in

training), or connection (at detection) if a rule is matched

(Ojugo et al, 2012b). Example of a port scan attack is as

follows:

IF (time=“0:0:1” AND protocol=“telnet” AND source

port=89 AND destination port=23 AND source IP=“9.9.9.9”

AND destination IP=“172.16.12.50”) THEN (attack=“port-

scan”). If telnet/port-scan is represented by integers 1 and 2:

{0, 0, 1, 2, 18982, 79, 9, 9, 9, 9, 172, 16, 012, 50, 1}

Rules are evaluated via fitness function to determine its fit and

goodness with detecting attacks. A good rule correctly

classifies an attack; Else, it is bad. The support-confidence

fitness is used. Changing weights w1/w2 detect intrusions

(with w1=0 and w2=1); while to precisely classify intrusions

and detect behaviour anomalies (w1=1 and w2=0). Support-

confidence fitness is as thus:

If w1 = 0.2, w2 = 0.8, N = 10, |A| = 2, |A and B| = 1.

Support = | A & B | / N = 1 / 10 = 0.1:

Confidence = |A & B | / A = 1 /2 = 0.5

Fitness = w1 * support + w2 * confidence =0.42

Table 2: Fitness Value Framework

Time Prot
Sourc

Port

D

Port

Source IP Dest. IP Attac

k

0.0.11 ftp 1892 21 192.168.1.30 192.168.1.20 -

0 .0 .0 Smtp 1900 25 192.168.1.30 192.168.1.20 -

0.0.2 Rsh 1023 102 192.168.1.30 192.168.1.20 Rcp

0.0.23 telnet 1906 23 192.168.1.30 192.168.1.20 Guess

0.0.14 rlogin 1022 513 192.168.1.30 192.168.1.20 rlogin

0.0.2 Rsh 1022 102 192.168.1.30 192.168.1.20 Rsh

0.0. 15 ftp 4354 21 192.168.1.40 192.168.1.20 -

Table 2 is audit data with sample chromosomes as rules that

identifies attack. Chromosomes match are seen in lines 3 and

6, to match Rsh attack type.

2.3 Purpose of Study
The study aims to: (a) deploy rule-based IDS with malware

data, and (b) test generated rules on exsiting IDS in a bid to

detect the malware and its variants within. These will speed

up the process of rule generation to counters new attacks, and

proffer better security and potentially reduce and/or free

experts of rule creation and allows LAN administrators to

generate customized rules for specific attacks faced at that

level. These, will hopefully detect new attacks.

2.4 Rationale for the Study
Metamorphics transform its codes as they propagate to avoid

detection by using obfuscation methods to alter its behaviour

when it detects its execution within virtual machine (sandbox)

as means to challenge a deeper analysis (Lakhotia et al, 2004).

Virus writer use weaknesses of AVs, as limited to static and

dynamic analysis, and attacks these: (a) data flow, (b) control

flow graph generations, (c) procedure abstract, (d) property

verification, and (e) disassembly – all means to counter scans,

to identify such metamorphic viruses (Konstantinou, 2008).

To mutate its code generation, metamorphics analyzes its

codes and re-evaluates the variant-codes generated (as

complexity of transformation in the previous generation has

direct impact on its current state, how a virus analyzes and

transforms code in current generation). Thus, the use of code

conversion algorithm that helps them detect their own

obfuscation and reordering (Allenotor 2016; Ojugo et al,

2016).

3 EXPERIMENTAL EVOLUTIONARY

FRAMEWORKS
Various search methods are used to find such tasks solution

such as depth search, breadth search, greedy search, iterative

deepening, steepest descent, etc. Some search maximizes an

objective function, must be feasible (achievable) and optimal

(close to best in space). CSTs with dynamic feats make such

search tedious and inexplicable to resolve – so that other

means are devised to resolve such task. These have yielded in

optimization models that search for optimal solution(s),

chosen from a set of space that relates data-input with

uncontrollable parameters and feats in system, modeled to

satisfy all constraints and yield output via a mathematical

structure and statistical pattern analysis to yield a new

discipline termed Machine learning or soft-computing (Dos

Passos, Ojugo et al, 2013b).

Machine learning is a branch of artificial intelligence (AI)

deals with design of models that evolves its behaviour based

on empirical (sensors and databases) data – dedicated to

resolve tasks via optimization. It exploits numeric data and

explores human knowledge via statistical pattern analysis,

mathematical models and symbolic reasoning (Ojugo et al,

2012a) – taking advantage to capture data feats of interest,

and its underlying probabilities to illustrate relationships in

observed values and learns to recognize complex patterns in

dataset to make intelligent decisions (Ojugo et al, 2013a).

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.39, May 2018

38

It aims at a model that when imprecision, partial truth,

uncertainty and noise is applied to its input, guarantees high

quality output void of over fitting. It has led to evolutionary

models that are capable of quantitative data processing to

ensure qualitative knowledge and experience. Inspired by

behavioural patterns in biological population and evolution

laws, its tuning explores 3-dynamic feats: (a) adaptation yield

agents void of local minima and high-diverse random factors

introduced to slow convergence, balance exploitation versus

exploration so that learning feats of change, biases its solution

accordingly, (b) robustness estimates a model’s effectiveness,

and (c) flexible decision as uncertainty feats can impact a

model’s future state in forecasts while focusing on its goal and

ease of blackbox integration (Ojugo, 2013b).

3.1 Genetic Algorithm Trained Neural

Network (GANN)
GA as inspired by Darwinian evolution consists of a dataset

chosen for natural selection with potential solutions.

Individuals with genes close to its optimal solution, is fit as

determined by fitness function (Perez and Marwala, 2011).

Based on laws of selection, GA generates better rules via 4-

operators: initialization, selection, crossover and mutation.

Cultural GA is one of the many variants of GA with 4-beliefs

thus: (a) Normative – specific range of values to which an

individual is bound, (b) Domain has information about task,

(c) Temporal has information about the search space

available, and (d) spatial has topographical data about the task

with time as a specific feat. In addition, CGA has an influence

function that ensures that individuals (altered or not) conforms

to a pool that does not violate its belief space and reduces

number of possible individuals generated till an optimum is

found (Reynolds, 1994; Hassan and Crossley, 2004). GA’s

strength is in parallel traversing with solutions from randomly

generated initial pool continuously evaluated via its fitness

function (Diaz-Gomez and Hougen, 2005).

For hybrid GANN, ANN initializes model via its fitness

function to select new pool for crossover/mutation as:

3.1.1 Crossover – adopts tournament selection (to

maintain diversity) in chromosomes randomly

chosen. With new offspring generated every

iteration, a lesser number is chosen and continues

till one is chosen as parents. The goal is not to

create best rule (global optimum), but set of rules

good enough to detect intrusion (many local

maxima). Model chooses two-random cross-over

points in chromosome (see table 3) between the

parents, to yield two new children in lines 3 and 4

respectively.

3.1.2 Mutation: Each gene chromosome may (or not)

change depending on probability of mutation rate.

Mutation improves population diversity needed.

Algorithm for Generation of ruleset

Input: Audit data, generations and population size.

Randomly initialize the created chromosome population.

Set w1 = 0.2, w2 = 0.8, MaxGenerations = 400 (epoch)

Set N = total number of record in training set

Set generationCounter = 0

For each chromosome in population: Set A = 0, AB = 0

 For Each record in training set

 If record matches chromosome

 AB = AB + 1 //AB++

 End If

 If record matches only condition part

 A = A+1 //A++

 End if

 End For Each record

End For Each Chromosome

Select 30-best fitted chromosome into new pool

For each chromosome in new pool/population

Apply Crossover as thus:

a. Randomly select 3-chromosomes from pool

b. Return best 2-chromosome based on fitness value

c. Apply Crossover |Select best chromosome to be parent

Apply Mutation to new offspring as thus

Set mutation threshold (between 0 and 1)

For each network attribute in chromosome

 Generate a random number between 0 and 1

 If random number > mutation threshold then

 Generate random value with respect to data feats

 Set chromosome with generated attribute value

End if: End For Each

Place newly created chromosome into population

End For each

Kill old pool, new pool now current pool

Increment generationCounter by 1

If generationCounter<MaxGeneration then goto 5

Else goto: Crossover / Mutation

End

Table 3: The 2-point Crossover for ANNGA

Time Prot
S

Port

D

Port

Source IP Destination

IP

Atta

ck

0.-1.-1 Rsh -1 1021 192.168.-1.-1 192.168.0.-1 Rsh

0.0.5 telnet 2020 23 9.9.9.9 172.16.12.50 Port

scan

0.-1.-1 Rsh -1 1021 192.9.9.9 172.16.112.-1 Rsh

0.0.5 telnet 2020 23 9.168.-1.-1 192.168.0.50 Port

scan

The generated rules are used to evaluate the remaining

dataset, and the aim of testing is to gather information of how

well the rules created, can detect attacks. Two methods are

used for testing namely: (a) use existing rules in rule-based

IDS, and (b) build tailored rule IDS. The proposed design

Crossover

Points

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.39, May 2018

39

requires tailored rules created from traffic and fed back for

detection. The rest part of the DARPA dataset are used as

incoming connection to see if generated rules can distinguish

between normal and intrusive connections.

3.2 Simulated Annealing Trained Neural

Network (SANN)
SA as inspired by annealing, to strengthen glass and crystals –

so that it is heated until it liquefies. Then slowly cool so that

as molecules settles into low energy states, it tracks and alters

an individual’s state, constantly evaluating its energy via its

energy function. Its optimal point is found via a series of

Markov chain under different thermodynamic state (Perez and

Marwala, 2012). Its neighbouring state is determined by

randomly changing an individual’s current state via a

neighbourhood function. If state of lower energy is found,

individuals move to it. If neighbourhood has higher energy,

individuals move to that state only if an acceptance

probability condition is met. If not met, individual remains at

current state (Kitandis and Bras, 1980).

Acceptance probability is difference in energies between

current and neighbouring states. Temperature is initialized as

high, so that individuals incline towards higher energy state –

allowing individuals to explore a greater portion of space,

preventing its being trapped in local optimum. As model

progresses – temperature reduces with cooling and individuals

converge towards lowest energy states till an optimum point

(Ojugo et al, 2013). The algorithm is as thus:

Simulated Annealing Algorithm {}

Initialize individual state, energy and temperature

Loop until temperature is at minimum

 Loop until maximum number of iterations reached

 Find neighbourhood state via neighbourhood function

 If neighbourhood state has lower energy than current

 Then change current state to neighbouring state

 Else if the acceptance probability is fulfilled

 Then move to the neighbouring state

 Else retain the current state

 Keep track of state with lowest energy

End inner loop: End outer loop

ANN first yields candidates of low fitness in training, and if

better solutions are not found, best individuals are chosen

after a number of runs, until optima is found. ANN uses its

exploratory search of multiple individuals; while SA uses it

flexibility in finding a global optima (Ojugo et al, 2013c).

Factors to be defined: (1) ANN: number of runs, dataset for

calibration, population representation of dataset, size and

cross validation function; And (2) SA (with ANN complete),

what neighborhood size and energy function is employed to

choose fit candidates till solution is found. Temperature

schedule is applied that randomly re-initialize network for

series of Markov chain. Neighbourhood function is applied to

randomly changed individual energy. The fitness function is

recomputed to track individuals of low energy state but with

threshold value of 0.8 to enter SA early enough to apply

temperature schedule needed. Thus, a moderated Markov

chain is used that accepts the states with energies of lower or

equal to current state’s energy. It runs till state of energy 0 is

reached (solution is found). SA and ANN, shares the same

fitness function (Ojugo et al, 2013c).

3.3 Hybrid Gravitation Search Neural

Network (GSANN)
GSA is based on Newton’s laws of gravity and motion with

its main idea, being to consider isolated system of masses,

where every mass represents a solution to a certain problem.

Law states that particles attract each other with gravitational

force acting between particles that are directly proportional to

product of their masses and inversely proportional to the

distance between them (Rashedi et al, 2009a). Thus, agent’s

performance depends on its mass as they attract each other via

gravitational pull towards those of heavier mass. Agents are

randomly initialized with gravitational force defined as:

𝐺 𝑡 =
𝑀𝑖 𝑡 ∗ 𝑀𝑗 (𝑡)

𝑅𝑖𝑗 𝑡 + 𝜀
 𝑋𝑗 𝑡 − 𝑋𝑖 𝑡 (1)

Rij is Euclidean distance between masses for i and j, G(t) is

gravitation force at t with small constant ε – which decreases

at t, to control pool and search’s accuracy. Total force is:

𝐹𝑖
𝑑 = 𝑟𝑎𝑛𝑑 𝑖 ∗ 𝐹𝑖𝑗 2

𝑗∈𝑘𝑏𝑒𝑠𝑡 ,𝑗≠1

Acceleration at t, in d dimension is directly proportional to

force on agent i, and inversely proportional to agent’s mass:

𝐴𝑖
𝑑 𝑡 =

𝐹𝑖
𝑑(𝑡)

𝑀𝑖𝑗 𝑡
 (3)

Next agent velocity is a function of its current velocity plus

current acceleration – to update next position given by X as:

𝑉𝑖
𝑑 𝑡 + 1 = 𝑟𝑎𝑛𝑑 𝑖 ∗ 𝑉𝑖

𝑑 𝑡 + 𝐴𝑖
𝑑 𝑡 4

𝑋𝑖
𝑑 𝑡 + 1 = 𝑋𝑖

𝑑 ∗ 𝑉𝑖
𝑑(𝑡 + 1) 5

Mass is updated as fitness value of agent i at time t given as:

𝑀𝑖 𝑡 =
𝐹𝑖𝑡 𝑖 − 𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡 𝑡 − 𝑤𝑜𝑟𝑠𝑡(𝑡)
 (6)

Strongest agents from their fitness route for maximization task

is given as:

𝑤𝑜𝑟𝑠𝑡 𝑡 = Maximize
𝑗∈{1,2…𝑁}

𝐹𝑖𝑡 𝑡 7

𝑏𝑒𝑠𝑡 𝑡 = Minimize
𝑗 ∈{1,2…𝑁}

𝐹𝑖𝑡 𝑡 8

At start, agents are located as solution trained in ANN, and

passed over to GSA. With each cycle, velocity/position is

updated via Eqs. 4/5; while G/M is found via Eqs. 1/6. The

model stops if an optima is found or stops using its stop

criterion (computational expensive). GSA uses exploration

ability to navigate and guarantee its choice value for random

agents, and exploitation ability to allow agents of heavier

masses move slower in order to attract those of lesser mass as

well as locate optima, around a good solution in the shortest

time possible (Rashedi et al, 2009b and Ojugo, 2012a). Its

algorithm is as thus:

Input: Audit data, generations and population size.

Randomly initialize created agent (rule) for search space

identification

Compute fitness function of agents and created rules as thus

Set w1 = 0.2, w2 = 0.8, MaxGenerations = 60 (epoch)

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.39, May 2018

40

Set n =200, generationCounter = 0, created rule groups = 30

For ANNGSA Training, each rule set:

Set A = 0, AB = 0

AB = AB + 1 //AB++

If record matches only condition part

 A = A+1 //A++

End if

Select any 30-fitted rules, 1 for each group to form new pool

Apply G(t), best(t), worst(t) and Mi(t) for i=0

Update G(t), best(t), worst(t) and Mi(t) for i=1,2,3,…n:

Randomly select 3-fitted rules based best fitness value

Compute total force in all directions

Compute acceleration and velocity of rules in space

Update each rule’s M, G and Position

Select best chromosome to be parent

Repeat Process 14 until stop criterion is reached

End

ANN first yields candidates of low fitness in training, and if

better solutions are not found, best individuals are chosen

after a number of runs, until optima is found. ANN uses its

exploratory search of multiple individuals; while GSA uses it

flexibility in finding a better optimal point, even when local

maximas are present (Ojugo et al, 2013c). Factors that must

be defined: (1) ANN: number of runs, dataset for calibration,

pool representation of dataset, size and cross validation

function; candidates. The fitness function is recomputed to

track individuals of value 0.8 – though, ANN finds

individuals of low fitness with G, M and position of agents

(rules) updated to enter GSA early enough till state of energy

0 is reached – implying a solution is found (Ojugo et al,

2013c).

3.4 Experimental Model Validation
Figures 4-7 describes the accuracy with which each hybrid

model captures genuine malware attacks and its

corresponding false-positive (error rates in classifying of

malware signatures as emergent in each intrusive attack) and

true-negatives (error rates in not accurately classifying

malware signature emergent in the intrusive attack – which

can arise from code signature variation in the virus and due to

code obfuscation method used by the metamorphic engine).

Figure 4: Evolved Variants Malware IDS Using ANN

Figure 5: Evolved Variants Malware IDS Using GANN

Figure 6: Evolved Variants Malware IDS Using SANN

Figure 7: Evolved Variants Malware IDS Using GSANN

4 RESULT FINDINGS AND

DISCUSSION
Using a simple Python implementation of various matching

algorithms, algorithms were compared based these feats:

4.1 Classification Accuracy

Figure 8: Prediction Accuracy of Algorithms in

percentage

Win95.Zp

erm

21%

Zperm!n

13%

Zperm|k

14%

Zperm.A

15%

Unknown

37%

Malware Detection Using ANN

Win95.Zp

erm

32%

Zperm!n

16%

Zperm|k

12%

Zperm.A

21%

Unknown

19%

Malware Detection Using GANN

Win95.Zp

erm

28%

Zperm!n

15%
Zperm|k

13%

Zperm.A

14%

Unknown

30%

Malware Detection Using SANN

Win95.Zp
erm
21%

Zperm!n
2%

Zperm|k
22%Zperm.A

21%

Unknown
34%

Malware Detction Using GSANN

70

80

90

100

ANN GANN SANN GSANN

Prediction Accuracy in %

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.39, May 2018

41

4.2 Processing Speed

Figure 9: Processing time in Seconds

4.3 Convergence Time

Figure 10: Convergence time of matches

Figure 10 shows the convergence time of matches in which

the various algorithms took in finding the patterns within the

text.

4.4 Discussion of Findings
Top rules have same fitness range [0.8, 0.8065] and are

estimated 80% good to be used in detection – to imply the

achievement of generating a bunch of good rules, rather than a

single optimum rule – is better in intrusion detection. 10-out-

of-22 rules have destination port as -1, so that the rules looks

out for connections from any destination port. This increases

the chances of detecting intrusion, improves the generality of

rules, and provides for new attack types and its corresponding

rules to be added to knowledgebase. The rule generator used a

population of 400, w1 = 0.2, w2 = 0.8, 5000 epoch-evolutions

and 0.05 probability of a gene to be mutated respectively.

After training and testing models, the results are thus:

4.4.1 ANN was run 15 times (to eradicate biasness) and

took 102seconds to find optima after 329-iterations

(at best). It was able to generate each time, multiple

local maxima (good rules) and its time varied

between 102seconds and 70minutes. Convergence

time depends on how close initial population is to

solution and on mutation applied to individuals in

the pool.

4.4.2 GANN was run 15 times (to eradicate biasness)

and took 89seconds to find optima after 280

iterations (at best). It was able to generate each

time, multiple local maxima (good rules) and its

time varied between 102seconds and 70minutes.

Convergence time depends on how close initial

population is to solution and on mutation applied to

individuals in the pool.

4.4.3 SANN was run 15 times, took 62seconds to reach

optima after 380 iterations. It generated at

intermittently multiple local maxima (good rules)

and its time varied between 62 seconds and

40minutes. Convergence time depends on initial

population, the temperature schedule applied and

series of random walks applied to pool. It is to be

noted that SA is most useful in the generation of

best rule (and not set of better rules, goal of this

study).

4.4.4 GSANN was run 15 times (to eradicate biasness)

and took 102econds to find optima after 322

iterations (at best). It was able to generate each

time, multiple local maxima (good rules) and its

time varied between 89 seconds and 54minutes.

Convergence time depends on fitness function of

weights with G, M and position updates of rules and

individuals in the pool

4.5 Rationale for Choice of Algorithms
Most mathematical, machine learning models are inspired by

evolution, biological and behavioural population. They search

a space via hill-climbing method which is flexible, easily

adapts to changing states and suited for real-time app to

guarantee high global convergence in multimodal task.

Initialized with random pool, it allocates increasing trials to

regions of high fitness to find optima. Once a peak is found,

model restarts with another randomly chosen, starting point.

Its simplicity, well suited for dynamic feats/phenomena of

many local maxima – makes them appropriate. Each random

trial is done in isolation and as search progresses, it allocates

its trials evenly over space and still evaluates as many points

in regions found to be of low fitness as in regions found to be

of high fitness. Its demerit is its inadequacy for linear model

with small regions surrounded by low fitness – making such

functions/models, difficult to optimize.

4.6 Implementation Tradeoffs
Result trade-offs are as follows (Ojugo et al, 2013):

4.6.1 Result Presentation: Researchers often display

flawed and unfounded results, to validate new/modified

model rather than re-test limitations, insufficiency, biasness

and inabilities of existing ones. This is because negative

results are less valuable and most of such models aim to curb

the non-linearity and dynamism in the phenomena they are

predicting alongside discovering feats and underlying

properties of the historic datasets used, to train, cross validate

and test such models.

4.6.2 Efficiency: modeler sand researchers can often

use figure to show how well their prediction is quite

in agreement with observed values (even with their

limited dataset used for training the model that is

often times squeezed). Some plot for observed and

predicted values are often not easily distinguishable

– as such modelers do not even provide numerical

data to support their claim for their system (though

their model is in good agreement with observed

values). Some measure of goodness does not

provide the relevant data.

4.6.3 Insufficient Testing: Validation compares

observed on predicted values. Many studies suffer

0

0.5

1

1.5

2

2.5

ANN GANN SANN GSANN

Ti
m

e
 in

 M
in

s

Mean Processing Time in Secs

0

1

2

3

4

1 3 5 7 9 11 13C
o
n

v
er

g
en

ce
 T

im
e
 i

n
 S

ec
s

Convergence Time

ANN

GANN

SANN

GSANN

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.39, May 2018

42

from inadequate dataset. If model aims to predict

dynamic state, such ability should not be

demonstrated with misleading results of limited

dataset; and inconclusive and unclear contributions.

Model must be adequately tested with methods laid

bare so that process can be repeated to validate the

usefulness and authenticity of such models.

4.6.4 Model validation: is not an undertaking to be

carried out by a researcher or research group; but

rather, a scientific dialogue. Improper model

applications and ambiguous results often impede

such dialogue. This study aims to greatly minimize

confusion in study of model as well as their

corresponding implementation in IDS.

5 CONCLUSION AND

RECOMMENDATION
Models serve as educational, predictive tools to compile all

existing data about a task, serve as a vehicle to communicate

hypotheses, a means to investigate parameters crucial in

estimation and help us better understand a problem domain.

Simple models may not provide enough new data, whereas

very complex models may not be fully understood. A model’s

use and application as an intellectual tool requires less

accurate numerical agreement in prediction. But rather

requires feedback mechanisms, as more important – as only

models that are understandable and manageable, can be fully

explored. A balance of complexity and simplicity is crucial to

studying the relevant processes of how the model works.

Study implements ruled-based IDS used to generate a set of

classification rules from DARPA audit data used for training.

The support-confidence fitness function is used to evaluate

goodness of each rule. Based on weight selection (fitness

values w1/w2), generated rules can detect network intrusions,

detect anomalies and classify attack types.

The research frameworks are divided: training and testing.

Study implements IDS with Java and C# on Linux platform

(due to program interaction, simplicity, code execution, speed

and connection ease). All critical factors in IDS, as a system

must go through millions of network connection – inspecting

each to determine intrusive and non-intrusive connections.

Study limitations include: (a) generated rules were biased to

training data. This was resolved by carefully selecting the

number of generations at training to avoid overtraining or the

number of top best-fit rules so as not to over fit model, and (b)

support-confidence framework may be simple to implement

and provide improved accuracy to final rules, but it requires

the whole training data to be loaded into memory before any

computation. For very large training datasets, it is neither

efficient nor feasible, and system requires enough cache

memory to hold the data to be processed.

6 REFERENCES
[1] Aarts, E.H., Korst, J and Van Laarhoven., (1997).

Simulated annealing” as in Aarts, E.H and Lenstra, J.K.,

(eds.) Local Search in combinatorial optimization, John

Wiley and Sons.

[2] Abramson, D., Dang, H and Krishnamoorthy, M.,

(1996). Simulated annealing cooling schedules for

school timetabling problem, Asian Operation Research,

3(5), p11-24.

[3] Alpaydin, E., (2010). Introduction to Machine Learning,

McGraw Hill publications, ISBN: 0070428077, New

Jersey

[4] Al-Anni, M. K. and Sundararajan, V., (2009): Detecting

a denial of service via AI tools and GSA, Indian J. of

Science, 2(2), p16-21.

[5] Axelsson, S., (2004). Combining a Bayesian Classifier

with Visualization: Understanding IDS,

VizSEC/DMSEC’04, ACM-1581139748/04/0010.

[6] Bacchus, F., (2010). Constraint satisfaction problem”,

Computer Lecture notes, cs.toronto.edu/~ fbacchus/. Last

access Feb. 13, 2013.

[7] Bashir, H.A and Neville, R.S., (2013). Hybrid

evolutionary computation for continuous optimization,

arxiv: 1303.3469, http://arxiv.org>cs

[8] Bayram, H and Sahin, R., (2013). A new simulated

annealing approach for the traveling salesman problem,

Mathematical and Computational Applications, 18(3), pp

313 – 322.

[9] Brailsford, S., Potts, C.N and Smith, B.M, (1998).

Constraint satisfaction problem: algorithms and

applications, European J. of Operation Research, 119,

p557-581.

[10] Chittur, A., (2001): Model generation for an intrusion

detection system via GA,

hacktory.cs.columbia.edu/sites/default/files/gaids-

thesis01.pdf.

[11] Chou, T.S., Yen K.K and Lou, J., (2008): Network

intrusion detection design using feature selection of soft

computing paradigms, World Academy of Science,

Engineering and Technology 47.

[12] Coddington, P., (2012). Constraint satisfaction problems,

Computer Lecture notes, cs.adelaide.edu.au Last

accessed Feb 13, 2013.

[13] Crosbie, M., and Spafford, G., (1995): Applying genetic

programming to intrusion

detection,www.aaai.org/Papers/Symposia/Fall/1995/FS-

95-01/FS95-01-001.pdf.

[14] Darrall, H., Jacobson, S.H and Johnson, A.W., (2003).

Theory and practice of simulated annealing, Handbook

of Metaheuristics, Springer, ISBN: 978-1-4020-7263-5,

p287-319.

[15] Diaz-Gomez, P. and Hougen, D., (2005): Improved off-

line intrusion detection using a GA, cameron.edu/~pdiaz-

go/Art_ICEIS.pdf

[16] Dos Passos, W., (2013). Numerical methods, algorithms

and tools in C#, Taylor and Francis Inc., ISBN:

9780849374791.

[17] Fausett, L., (1994):Fundamentals of Neural Networks,

Prentice Hall: USA, ISBN: 0133341860.

[18] Gong, R.,Zulkernine, M. and Abolmaesumi, P., (2005):A

software implementation of GA based approach to

network intrusion detection,

www.cse.msu.edu/~cse848/Studentpapers/Tavon_Pourbo

ghrat.pdf

[19] Harrington, P., (2012). Machine Learning in action,

Manning publications, ISBN: 9781617290183, New

York

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.39, May 2018

43

[20] Johnson, D., Aragon, C, McGeoch, L and Schevon, C.,

(1991). Optimization by simulated annealing: an

experimental evaluation graph partitioning, Operation

Research, 39(3), p865-892

[21] Kandeeban, S. S. and Rajesh, R. S., (2007): GA for

framing rules for intrusion detection, J. Comp. Sci and

Security, 7(11), p285-290.

[22] Kandeeban, S. S. and Rajesh, R. S., (2010): Integrated

intrusion detection system via soft computing, J. Network

Security, 10(2), p87

[23] Kayacik, H., Zincir-Heywood, A and Heywood M.,

(2005): Selecting features for IDS: a feature relevance

analysis on KDD 99 dataset,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.66.7574&rep=rep1&type=pdf

[24] Kirkpatrick, S., (1983). Optimization by simulated

annealing, Science, 220, p671-680.

[25] Kitanidis, P and Bras, R., (1980). Real-time forecasting

with a conceptual hydrologic model, applications and

results, Water Resources, 16(6), pp.1034–1044.

[26] Kurose, J. F. and Ross, K. N., (2010): Computer network

a top down approach, Pearson publisher, ISBN-10: 0-13-

136548-7.

[27] Lassig, J and Sudholt, D., (2011). Adaptive population

model for offspring population and parallel evolutionary

algorithms, arxiv: 1102.0588

[28] Lavender, B., (2010): Implementation of GA into IDS

and integration into nprobe,

http://brie.com/brian/netga/Lavender_Report.pdf.

[29] Li, W, (2004).GA approach to network

IDS,security.cse.msstate.edu/docs/Publication/wli/DOEC

SG2004.pdf

[30] Mitchell, T.M., (1997). Machine Learning, McGraw Hill

publications, ISBN: 0070428077, New Jersey.

[31] Newman, M.E, (2003). The structure and function of

complex networks. SIAM Reviews, 45(2), p167.

[32] Nikolaev, A.G., Jacobson, S.H., Hall, S.N and

Henderson, D., (2011). Framework for analyzing

suboptimal performance of local search algorithms,

Computation Optimization and Applications, 49(3),

p407.

[33] Ojugo, A.A., (2005). Comparative SA model to solving

optimization problem – case of virus propagation on time

varying networks", Unpublished MSc, Nnamdi Azikiwe

University Awka, Nigeria.

[34] Ojugo, A.A., Eboka, A.O and Yoro, R.E., (2007). Hybrid

simulated annealing neural network to solving Sudoku,

Proceedings of 4th IRDI Conf. on Science Tech, p78,

Uyo: Nigeria.

[35] Ojugo, A.A., (2012a). Hybrid artificial neural network

gravitational search algorithm for rainfall runoff,

Unpublished PhD Thesis, Dept. Computer Science,

Ebonyi State University Abakiliki, Nigeria.

[36] Ojugo, A., Eboka, A., Okonta, E., Yoro, R and Aghware,

F., (2012b). GA rule-based intrusion detection system, J.

of Computing and Information Systems, 3(8), p1182.

[37] Ojugo, A.A., (2013a). Virus propagation on time varying

graphs, Technical-Report, Centre for High Performance

and Dynamic Computing (CHPDYC), TRON-03-2013-

01, Federal University of Petroleum Resources, Nigeria,

p24-37.

[38] Ojugo, A.A., and Yoro, R., (2013b). Computational

intelligence in stochastic solution for Toroidal Queen

task, Progress in Intelligence Computing Applications,

2(1), doi: 10.4156/pica.vol2.issue1.4, p46

[39] Ojugo, A.A., Emudianughe, J., Yoro, R.E., Okonta, E.O

and Eboka, A.O., (2013c). Hybrid artificial neural

network gravitational search algorithm for rainfall

runoff, Progress in Intelligence Computing and

Applications, 2(1), doi: 10.4156/pica.vol2.issue1.2, p22.

[40] Olusegun, F., Oluwatobi, O. A. and Adewale O. O.,

(2010): ID-SOMGA: self organising migrating GA-based

solution for Intrusion Detection, Computer and

Information Science, 3(4), p80

[41] Perez, M and Marwala, T., (2011). Stochastic

optimization for solving Sudoku, Proceeding of IEEE on

Evolutionary Computing, p256 – 279.

[42] Perez, M and Marwala, T., (2012). Microarray data

feature selection using hybrid genetic algorithm

simulated annealing, IEEE conference on Electrical and

Electronics Engineers, doi: 10.1109/EEEI.2010.6377146,

pp 1 – 5

[43] SalehElmohamed, M.A, Fox. G and Coddington, P.,

(1998). “A comparison of annealing techniques for

academic course scheduling”, Notes on Intelligence

Computing, DHCP-045, p1-20.

www.dhpc.adelaide.edu.au.

[44] Schafer, J.D., (1985): Multiple objective optimization

with vector evaluated Genetic Algorithm,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.122.5689&rep=rep1&type=pdf.

[45] Shanmugam, B. and Idris, N. B., (2011): Hybrid

intrusion detection systems using fuzzy logic,

www.intechopen.com/download/pdf/14361.

[46] Sontag, E.D., (1998). “Learning for continuous-time

recurrent neural networks”, Systems and Control Letters,

34, pp. 151-158.

[47] Sorkin, G., (1991). Theory and practices of SA on special

landscape, PhD thesis, Dept. of Electrical Engineering

and Computer Science, University of California,

Berkeley.

[48] Thomson, J and Dowsland, K., (1995). General cooling

schedules for SA based timetable problems, Proceeding

of Practice and Theory of automated timetabling,

Edinburg: Napier University, pp421–444 Vollmer, T.,

Alves-Foss, J. and Manic, M., (2011). Autonomous rule

creation for intrusion detection,

inl.gov/technicalpublications/Documents/5025964.pdf

IJCATM : www.ijcaonline.org

