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ABSTRACT 

Data security is now a pertinent issue with advent of the 

Internet. Methods like cryptography, firewalls and gateways 

used to prevent attacks on data are becoming unsuccessful. 

Thus, the need for Intrusion Detection System to enhance 

security efforts. Varying machine learning models are 

implemented for rule-based IDS using DARPA dataset to 

train and generate rules for classification via support-

confidence framework and a common fitness function to 

judge quality of each rule. This will help detect network 

anomalies, new attack types via rules and allow their addition 

into knowledgebase. Study presents results of the various 

stochastic models used with an aim to improve data security 

and integrity for networked resources.   
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1 INTRODUCTION 
TODAY’s society demands a great dependence on digitally 

transmitted data as people seek to become more effective and 

efficient in their daily dealing. Though, a current menace 

ameliorating this need is also the drastic increase of hackers, 

who illegally gain access to authentic data. Many systems and 

studies have ensued in a bid to find means and methods that 

will help desuade these adversaries from such act. This has 

consequently, led to advances in digital forensics using many 

existing data mining tools. Also, other means have been the 

implementation of security tools such as firewalls, application 

gateways etc – all of which seeks to ensure data integrity, 

non-repudiation and privacy. This has become and is now a 

herculean task as new direction now focuses on intrusion 

detection systems to help administrators monitor network 

data-traffic and thus, help them identify resource misuse, 

unauthorized use and abuse on networks (Ojugo et al, 2012; 

Ojugo et al, 2016). 

Threats are initiated externally or internally (Gong et al, 2005; 

Kandeeban and Rajesh, 2007) – to result in 2-types of 

intruders: external (with no authorized access to resources; 

But, attacks via penetration means) and internal intruder (with 

authorized network access to resources). To ensure data 

integrity, firewall’s demerit is its faulty packet filtering. 

Application gateway’s demerit is its cost and bottleneck 

caused as it slows down the network. Thus, IDS aims to 

bridge existing network security technologies. Intrusions are a 

set of action that attempts to compromise integrity, 

confidentiality, privacy and availability of network resources. 

The intruder (or adversary as often referred to) is any user or 

group of users who initiates such intrusive action (Olusegun et 

al, 2010). Thus, IDS is designed to generate alert as it 

observes potentially malicious and abusive traffic (Kurose and 

Ross, 2010). It monitors data packets from network 

connections and determines if it is an intrusive activity or not. 

If an intrusive action is detected, the IDS performs one of 

these: (a) logs a message into the system audit file to be later 

analyzed by a security expert, (b) emails an alert to a network 

administrator, and (c) ends the adversary’s connection (that is 

as provisioned under Intrusion Prevention System) amongst 

other functions. 

1.1 Intrusion Detection Systems 
Diaz-Gomez and Hougen (2005) IDS has 3-main parts 

namely: (a) sensors/network probes which tracks data traffic, 

system behavior and log files by translating data into events 

usable as the IDS monitors and taps in to access all network 

connections, (b) analysis console which takes sensor output as 

input in form of network connections, analyzes it for intrusive 

acts (as critical component to decide whether or not, a 

connection is intrusive), and (c) policy control which 

generates reactions based on analysis’ outcome. If analysis 

console flags a connection as intrusion, control performs 

several actions depending on policies, set by the network 

administrator. Such actions include simple logout of a 

particular connection, alerting the administrator via e-mail etc. 

It also handles action(s) to be taken when an intrusion is 

detected as in Figure 1. 

 

 

 

 

 

 

 

 

Ojugo et al (2012b) IDSs are basically classified into: 

1.1.1 Anomaly-IDS  
Creates profile statistics of unusual packet stream of Internet 

Control Message Protocol, ping sweeps and port scan’s 

sudden exponential growth. They do not rely on previous 

knowledge to detect new, undocumented attacks; but, it is a 
herculean task to distinguish normal from statistically unusual 

traffic (Kurose et.al, 2010).  

Figure 1: Framework of an IDS 
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1.1.2 Signature/Rule-Based  
Maintains an attack database of signatures using varying rule 

set(s) or heuristics that include a list of feats about a packet. 

They are normally created by security experts so that the IDS 

can sniff each packet passing the system, compare them 

against its database, and if packet(s) matches, it generates an 

alert; else, it proceeds (Kurose et.al, 2010). Its demerits: (a) it 

requires previous knowledge of known attacks to generate 

accurate rules, (b) It’s completely blind to new unrecorded 

attack, (c) false negative classification resulting from feats not 

in the rulesand not an attack, (d) addition of new rules 

enlarges knowledgebase and packets compared against this 

may overwhelm the IDS processing so that it fails to detect 

attacks and network anomalies.  

1.1.3 Network IDS  
They identify intrusive network connection acts via 

monitoring traffic through network devices. 

1.1.4 Host-IDS  

Monitors file and process activities that are related to a 

software environment, as associated with a specific host and 

listens to network traffic to identify attacks to such host – as 

data from a host is used to detect signs of intrusion as many 

packets enters and/or exits a host machine (Li, 2004). 

1.2 Intrusive Actions and Malware 

Intrusive actions by hacker are achieved via use of malware. It 

is a common technique used by adversaries (Ojugo et al, 

2016). A computer malware (or virus) is a malicious program 

that modifies a host machine by attaching its code and alters 

behaviour of other files. As it infects, it also modifies itself to 

include better and possibly, an evolved copy of the virus 

(Daodu and Jebril, 2008; Dawkins, 1989; Zakorzhevsky, 

2011). Malware self-replicates its codes onto a machine 

without the user’s consent, and spreads by attaching a copy of 

itself to some part of program file. It attacks system resources 

and is designed to deliver a payload that aims to corrupt 

program, delete files, reformat disks, crash network, destroy 

critical data or embark on other damage to the host machine 

(Szor, 2005).  

Viruses have 3-modules namely: infect, trigger and payload. 

Infect show its mechanism to modify its host and contain 

copies of it. Trigger details when and how to deliver its 

payload; while the payload details damage done. Trigger and 

payload are optional (Desai, 2008). Figure 2a shows its 

structure of the virus English-like pseudo-code; while Figure 

2b shows its internal workings (Ye et al, 2008; Ojugo et al, 

2016). 

 

 

 

 

 

Mishra (2003), Orr (2006) and Ojugo et al (2016) Viruses (or 

malware) are classified into: 

1.2.1 Simple virus  
Replicates itself if launched. It gains control of the system, 

attaches copy of itself to another program as it spreads. After 

which, it transfers control back to host program. It is easily 

detected via search/scan for a defined sequence of bytes, 

known as a signature to find the virus. 

1.2.2 Encrypted viruses  
Scramble their signature so as to make it unrecognizable 

during execution. Its decryption routine transfers control to its 

decrypted virus body so that each time it infects a new 

program, it makes copy of both the decrypted body and its 

related decryption routine. It then encrypts a copy and 

attaches both to a target system. It uses an encryption key to 

encrypt its body. As the key changes, it scrambles its body so 

that virus appears different from one infection to another. 

Such virus is difficult to detect via signature. Thus, antivirus 

must scan for a constant decryption routine instead. 

1.2.3 Polymorphics  
Consists of a scrambled body, mutation engine and decryption 

routine. The decryption routine gains control to decrypt both 

its body and mutation engine. It then transfers control to the 

scrambled body to locate a new file to infect. It copies its 

body and mutation engine into RAM, and invokes its mutation 

engine to randomly generate new decryption routine to 

decrypt its body with little or no semblance to the previous 

routine. It then appends this newly encrypted body, a mutation 

engine and decryption routine to the newly infected file. Thus, 

its encrypted body and decryption routine, varies from one 

infection to another. With no fixed signature and decryption 

routine, no two infections is alike. 

1.2.4 Metamorphics  
Avoids detection by rewriting completely, its code each time 

it infects a new file. Its engine achieves code obfuscation and 

metamorphism, which in most cases – is 90% of its assembly 

language codes.  

1.3 The Metamorphic Malware 
As above, metamorphic viruses employs a mechanism that 

helps them to change their code structure and appearance; 

while, keeping its original functionality. It achieves this via 

code obfuscation methods as in fig 3. Its engine reads in a 

virus executable, locates code to be transformed using its 

locate_own_code module. Each engine has its transformation 

rule that defines how a particular opcode or a sequence of 

opcodes is to be transformed. Decode module extracts these 

rules by disassembling. Analyze module analyzes current 

copy of virus and determines what transforms must be applied 

to generate the next morphed copy. Mutate module performs 

the actual transformations by replacing an instruction (set) 

with the other its equivalent code; While, Attach module 

attaches the mutated or transformed copy to a host (Cohen, 

1987; Desai, 2008; Orr, 2007 and Sung et al, 2004).  

 

 

 

 

Venkatesan (2008) note that a typical metamorphic engine 

may consist of: (a) internal disassemble to disassemble binary 

codes, (b) a shrinker replaces two or more codes with its 

single equivalent, (c) an expander replaces an instruction with 

many codes that performs same action, (d) a swapper reorders 

codes by swapping two/more unrelated codes, (e) a relocator 

assigns and relocates relative references such as jumps and 

calls, (f) a garbager (constructor) inserts whitespaces (do-

nothing codes) to the program, and (g) cleaner (destructor) 
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Figure 3: Distinct Signature of Metamorphic 

Virus 

 

Figure 2a: Virus 

Pseudo-code 

Def Virus(): 

     Infect() 

     If Trigger() is TRUE then 

         Payload is delivered() 

 

Figure 2b: Infect Pseudo-

code 

Def Infect(): 

     Repeat M times() 

     Target = Select_target() 

        If no target() THEN 

                 Return 

 Infect code(target) 
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undoes the actions of a garbager by removing whitespaces/do-

nothing instructions (Desai, 2008; Konstatinou, 2008). 

Feats of an effective metamorphic engine includes: (i) must be 

able to handle any assembly language opcode, (ii) shrinker 

and swapper must be able to process more than one 

instruction concurrently, (iii) garbager is used moderately, not 

to affect actual instructions, and (iv) swapper analyzes each 

instruction so as not to affect next instructions’ execution 

(Orr, 2007; Sung et al, 2004; Walenstein et al, 2007). 

1.4 Metamorphic Code Obfuscation 

Methods 
Metamorphic engine uses code obfuscation to yield morphed 

copies of original program. Obfuscated code is more difficult 

to understand and can generate different looking copies of a 

parent file as it operates on both control flow and data section 

of a program (Wong, 2006). Code obfuscation is achieved via 

(Borello and Me, 2008; Desai, 2008 and Avcock, 2006): 

a. Register Usage Exchange/Renaming – modifies the 

register data of an instruction without changing the 

codes itself, which remain constant across all 

morphed copies. Thus, only the operands changes. 

b. Dead Code inserts do-nothing (whitespace) codes 

that do not affect execution via a block or single 

instruction so as to change codes’ appearance while 

retaining functionality.  

c. Subroutine Permutation aims to reorder subroutines 

so that a program of many subroutines can generate 

(n-1)! varied routine permutations, whose addition 

will not affect its functionality as this is not 

important for its execution.  

d. Equivalent Code Substitution replaces instruction 

with its equivalent instruction (or blocks). A general 

task can be achieved in different ways. Same feat is 

used in equivalent code substitution. 

e. Transposition/Permutation – modifies program 

execution order only if there is no dependency 

amongst instructions. 

f. Code Reorder inserts unconditional and conditional 

branch after each instruction (or block), and defines 

branching instructions to be permuted so as to 

change the programs’ control-flow. Conditional 

branch is always preceded by a test instruction 

which always forces the execution of the branching 

instruction. 

g. Subroutine Inline/Outline is similar to dead code 

insertion in that subroutine call are replaced with its 

equivalent code as Inline inserts arbitrary dead code 

in a program; while outline converts block of code 

into subroutine and replace the block with a call to 

the subroutine. It essentially does not preserve any 

logical code grouping. 

1.5 Stochastic IDS Model 
Axelson et al (2004) built IDS with unsupervised Kohonen 

map. They proposed two enhancements that solved issue of 

high value of false positive rate with Performance-Based 

Ranking. It works by deleting an input from the dataset and 

comparing the result before and after the deletion using KDD 

dataset. To counter low detection and high false alarm rates, 

they proposed interactive IDS based on Bayesian statistics 

combined with a visualization component. Gong et al (2005) 

Generated rules for optimality, to detect network anomalies. 

Each agent monitors a network feat of audit data, and GA was 

used to find a set of agents that collectively detect network 

behavior anomalies. Its merit is application of many small 

autonomous agents. Its demerits are its communication defect 

and time consuming training if agents are not properly 

initialized using 6-connection feats. 

Kayacık et al (2006) focused on behavioral models of known 

attacks to help experts identify similarities between attacks. 

Self-Organizing Map is used to model relationship between 

known attacks and U-Matrix representation in 2D topological 

map of known attacks evaluated on KDD dataset.  

Results show attacks with similar behavior patterns were 

placed together on map. 

Zanero et al (2008) proposed a novel architecture for the 

network-based anomaly detection system using unsupervised 

learning to describe how pattern recognition feats of a Self-

Organizing Map are used on payload of TCP data-packets via 

ULISSE, 2-tier architecture unsupervised learning to perform 

intrusion and anomaly detection. Kandeeban et al (2010) had 

its best rule of fitness close to 1 with 97% correctly detected 

attacks and 0.69% of normal connections incorrectly 

classified as attacks. Correlation between correct attack 

detection and false positive rate – so that the more attacks are 

correctly detected, more normal connections are incorrectly 

classified. A major difficulty was in its establishing of its 

threshold value that may lead to detect novel unknown 

attacks. 

Vollmer et al (2011) combined approaches to create rules and 

retrieved packets for training. Rather than use audit data logs, 

packets were originated from network traffic identified by 

IDS as being anomalous. It yielded set of optimal rules for 

anomalous-instance previously detected to bridge rule and 

anomaly IDS. Its fitness function was defined as 3-part 

function and demonstrated on anomalous ICMP network 

packets (input) and Snort rules (output). Output rules are 

sorted according to fitness value and duplicates removed. Out 

of 33,804 test packets 3 produced false positives. 

Ojugo et al (2012b) Applied GA to rule based IDS using 7-

feats from DARPA. Each agent was monitored a network 

parameter from audit data with GA used to find set of agents 

that collectively detect network behavior. It generated local 

optimum rule(s) set with 97% correctly detected attacks and 

2.39% connections were incorrectly classified as attacks. A 

correlation between correct detection and false positive rate 

notes that the more attacks are correctly detected, the more 

normal connections are incorrectly classified as attacks. 

2 MATERIALS AND METHODS 

2.1 Dataset 
The researcher for the purpose of this study will adopt the 

Win95/Zperm as implemented in on the TCP network. The 

DARPA 1990 dataset parameter is used as below. 

2.2 Common Fitness Function 
Each candidate is a solution in space with attributes over a 

range as encoded via integer decimal with 57-genes. IPs are 

HEX-coded for simplicity and quantitative representation 

(Ojugo et al, 2012b). Candidates are randomly initialized for 

selection via fitness function (weighted sum model) to 

indicate significance of each feature. Seven network 

connection feats were used (see table 1), and rules are as thus: 

If {condition} then {act} listed as: 
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if {connection exists thus}: 

   (source IP; destination IP; source port; destination port, 

time) 

then {stop the connection}  

Table 1: Individual Representation of a Rule 
Feats  Format No. of Genes 

Duration   H:M:S 3 

Protocol   Numeric  1 

Source Port  Numeric  1 

Destination Port  Numeric  1 

Source IP  a.b.c.d 4 

Destination IP  a.b.c.d 4 

Attack Name and type  String  1 

If a connection request (source IP, destination IP, source port, 

destination port, and connection time) exists, then stop 

connection establishment. Thus, such IP is recognized as 

blacklisted by IDS and the service request initiated from it, is 

rejected. All rules are tested on historical connections, to filter 

new connections and find suspicious traffics. DARPA dataset 

1999 is used in training and differentiates normal from 

intrusive connections as it contains analyzed logs with 

apriority attack connections. Source IP originates intrusion; 

while Destination IP is target whose port shows running apps. 

Dataset contains 6-feats as some IP are more likely targets 

than others and analysis prior to its use notes that normal 

connection contains no attack name. Agents are rules with 7-

feats, encoded via decimal, fixed length vector. Each If-Then 

clause has a condition and outcome part (see table 1) of 6-

feats connected via logical AND to form condition; while 

attack name is outcome to show network classification (in 

training), or connection (at detection) if a rule is matched 

(Ojugo et al, 2012b). Example of a port scan attack is as 

follows: 

IF (time=“0:0:1” AND protocol=“telnet” AND source 

port=89 AND destination port=23 AND source IP=“9.9.9.9” 

AND destination IP=“172.16.12.50”) THEN (attack=“port-

scan”). If telnet/port-scan is represented by integers 1 and 2:  

{0, 0, 1, 2, 18982, 79, 9, 9, 9, 9, 172, 16, 012, 50, 1} 

Rules are evaluated via fitness function to determine its fit and 

goodness with detecting attacks. A good rule correctly 

classifies an attack; Else, it is bad. The support-confidence 

fitness is used. Changing weights w1/w2 detect intrusions 

(with w1=0 and w2=1); while to precisely classify intrusions 

and detect behaviour anomalies (w1=1 and w2=0). Support-

confidence fitness is as thus: 

If w1 = 0.2, w2 = 0.8, N = 10, |A| = 2, |A and B| = 1. 

Support = | A & B | / N = 1 / 10 = 0.1:   

Confidence = |A & B | / A = 1 /2 = 0.5  

Fitness = w1 * support + w2 * confidence =0.42 

Table 2: Fitness Value Framework 

Time Prot 
Sourc 

Port 

D 

Port 

Source IP Dest. IP Attac

k 

0.0.11 ftp 1892 21 192.168.1.30 192.168.1.20 - 

0 .0 .0 Smtp 1900 25 192.168.1.30 192.168.1.20 - 

0.0.2 Rsh 1023 102 192.168.1.30 192.168.1.20 Rcp 

0.0.23 telnet 1906 23 192.168.1.30 192.168.1.20 Guess 

0.0.14 rlogin 1022 513 192.168.1.30 192.168.1.20 rlogin 

0.0.2 Rsh 1022 102 192.168.1.30 192.168.1.20 Rsh 

0.0. 15 ftp 4354 21 192.168.1.40 192.168.1.20 - 

Table 2 is audit data with sample chromosomes as rules that 

identifies attack. Chromosomes match are seen in lines 3 and 

6, to match Rsh attack type. 

2.3 Purpose of Study 
The study aims to: (a) deploy rule-based IDS with malware 

data, and (b) test generated rules on exsiting IDS in a bid to 

detect the malware and its variants within. These will speed 

up the process of rule generation to counters new attacks, and 

proffer better security and potentially reduce and/or free 

experts of rule creation and allows LAN administrators to 

generate customized rules for specific attacks faced at that 

level. These, will hopefully detect new attacks. 

2.4 Rationale for the Study 
Metamorphics transform its codes as they propagate to avoid 

detection by using obfuscation methods to alter its behaviour 

when it detects its execution within virtual machine (sandbox) 

as means to challenge a deeper analysis (Lakhotia et al, 2004). 

Virus writer use weaknesses of AVs, as limited to static and 

dynamic analysis, and attacks these: (a) data flow, (b) control 

flow graph generations, (c) procedure abstract, (d) property 

verification, and (e) disassembly – all means to counter scans, 

to identify such metamorphic viruses (Konstantinou, 2008). 

To mutate its code generation, metamorphics analyzes its 

codes and re-evaluates the variant-codes generated (as 

complexity of transformation in the previous generation has 

direct impact on its current state, how a virus analyzes and 

transforms code in current generation). Thus, the use of code 

conversion algorithm that helps them detect their own 

obfuscation and reordering (Allenotor 2016; Ojugo et al, 

2016).  

3 EXPERIMENTAL EVOLUTIONARY 

FRAMEWORKS  
Various search methods are used to find such tasks solution 

such as depth search, breadth search, greedy search, iterative 

deepening, steepest descent, etc. Some search maximizes an 

objective function, must be feasible (achievable) and optimal 

(close to best in space). CSTs with dynamic feats make such 

search tedious and inexplicable to resolve – so that other 

means are devised to resolve such task. These have yielded in 

optimization models that search for optimal solution(s), 

chosen from a set of space that relates data-input with 

uncontrollable parameters and feats in system, modeled to 

satisfy all constraints and yield output via a mathematical 

structure and statistical pattern analysis to yield a new 

discipline termed Machine learning or soft-computing (Dos 

Passos, Ojugo et al, 2013b). 

Machine learning is a branch of artificial intelligence (AI) 

deals with design of models that evolves its behaviour based 

on empirical (sensors and databases) data – dedicated to 

resolve tasks via optimization. It exploits numeric data and 

explores human knowledge via statistical pattern analysis, 

mathematical models and symbolic reasoning (Ojugo et al, 

2012a) – taking advantage to capture data feats of interest, 

and its underlying probabilities to illustrate relationships in 

observed values and learns to recognize complex patterns in 

dataset to make intelligent decisions (Ojugo et al, 2013a).  
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It aims at a model that when imprecision, partial truth, 

uncertainty and noise is applied to its input, guarantees high 

quality output void of over fitting. It has led to evolutionary 

models that are capable of quantitative data processing to 

ensure qualitative knowledge and experience. Inspired by 

behavioural patterns in biological population and evolution 

laws, its tuning explores 3-dynamic feats: (a) adaptation yield 

agents void of local minima and high-diverse random factors 

introduced to slow convergence, balance exploitation versus 

exploration so that learning feats of change, biases its solution 

accordingly, (b) robustness estimates a model’s effectiveness, 

and (c) flexible decision as uncertainty feats can impact a 

model’s future state in forecasts while focusing on its goal and 

ease of blackbox integration (Ojugo, 2013b). 

3.1 Genetic Algorithm Trained Neural 

Network (GANN) 
GA as inspired by Darwinian evolution consists of a dataset 

chosen for natural selection with potential solutions. 

Individuals with genes close to its optimal solution, is fit as 

determined by fitness function (Perez and Marwala, 2011). 

Based on laws of selection, GA generates better rules via 4-

operators: initialization, selection, crossover and mutation. 

Cultural GA is one of the many variants of GA with 4-beliefs 

thus: (a) Normative – specific range of values to which an 

individual is bound, (b) Domain has information about task, 

(c) Temporal has information about the search space 

available, and (d) spatial has topographical data about the task 

with time as a specific feat. In addition, CGA has an influence 

function that ensures that individuals (altered or not) conforms 

to a pool that does not violate its belief space and reduces 

number of possible individuals generated till an optimum is 

found (Reynolds, 1994; Hassan and Crossley, 2004). GA’s 

strength is in parallel traversing with solutions from randomly 

generated initial pool continuously evaluated via its fitness 

function (Diaz-Gomez and Hougen, 2005). 

For hybrid GANN, ANN initializes model via its fitness 

function to select new pool for crossover/mutation as: 

3.1.1 Crossover – adopts tournament selection (to 

maintain diversity) in chromosomes randomly 

chosen. With new offspring generated every 

iteration, a lesser number is chosen and continues 

till one is chosen as parents. The goal is not to 

create best rule (global optimum), but set of rules 

good enough to detect intrusion (many local 

maxima). Model chooses two-random cross-over 

points in chromosome (see table 3) between the 

parents, to yield two new children in lines 3 and 4 

respectively.  

3.1.2 Mutation: Each gene chromosome may (or not) 

change depending on probability of mutation rate. 

Mutation improves population diversity needed. 

Algorithm for Generation of ruleset  

Input: Audit data, generations and population size.  

Randomly initialize the created chromosome population. 

Set w1 = 0.2, w2 = 0.8, MaxGenerations = 400 (epoch) 

Set N = total number of record in training set 

Set generationCounter = 0 

For each chromosome in population: Set A = 0, AB = 0 

   For Each record in training set 

     If record matches chromosome 

      AB = AB + 1   //AB++ 

  End If 

  If record matches only condition part 

    A = A+1  //A++ 

  End if 

 End For Each record 

End For Each Chromosome 

Select 30-best fitted chromosome into new pool 

For each chromosome in new pool/population 

Apply Crossover as thus: 

a. Randomly select 3-chromosomes from pool 

b. Return best 2-chromosome based on fitness value 

c. Apply Crossover |Select best chromosome to be parent 

Apply Mutation to new offspring as thus 

Set mutation threshold (between 0 and 1) 

For each network attribute in chromosome 

   Generate a random number between 0 and 1 

   If random number > mutation threshold then 

     Generate random value with respect to data feats 

   Set chromosome with generated attribute value 

End if: End For Each 

Place newly created chromosome into population 

End For each 

Kill old pool, new pool now current pool 

Increment generationCounter by 1 

If generationCounter<MaxGeneration then goto 5 

Else goto: Crossover / Mutation 

End 

Table 3: The 2-point Crossover for ANNGA 

Time  Prot 
S 

Port 

D 

Port 

Source IP Destination 

IP 

Atta

ck 

0.-1.-1 Rsh -1 1021 192.168.-1.-1 192.168.0.-1 Rsh 

0.0.5 telnet 2020 23 9.9.9.9 172.16.12.50 Port 

scan 

 

 

      

0.-1.-1 Rsh -1 1021   192.9.9.9 172.16.112.-1 Rsh 

0.0.5 telnet 2020 23     9.168.-1.-1  192.168.0.50 Port 

scan 

 

The generated rules are used to evaluate the remaining 

dataset, and the aim of testing is to gather information of how 

well the rules created, can detect attacks. Two methods are 

used for testing namely: (a) use existing rules in rule-based 

IDS, and (b) build tailored rule IDS. The proposed design 

Crossover 

Points 
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requires tailored rules created from traffic and fed back for 

detection. The rest part of the DARPA dataset are used as 

incoming connection to see if generated rules can distinguish 

between normal and intrusive connections. 

3.2 Simulated Annealing Trained Neural 

Network (SANN) 
SA as inspired by annealing, to strengthen glass and crystals – 

so that it is heated until it liquefies. Then slowly cool so that 

as molecules settles into low energy states, it tracks and alters 

an individual’s state, constantly evaluating its energy via its 

energy function. Its optimal point is found via a series of 

Markov chain under different thermodynamic state (Perez and 

Marwala, 2012). Its neighbouring state is determined by 

randomly changing an individual’s current state via a 

neighbourhood function. If state of lower energy is found, 

individuals move to it. If neighbourhood has higher energy, 

individuals move to that state only if an acceptance 

probability condition is met. If not met, individual remains at 

current state (Kitandis and Bras, 1980). 

Acceptance probability is difference in energies between 

current and neighbouring states. Temperature is initialized as 

high, so that individuals incline towards higher energy state – 

allowing individuals to explore a greater portion of space, 

preventing its being trapped in local optimum. As model 

progresses – temperature reduces with cooling and individuals 

converge towards lowest energy states till an optimum point 

(Ojugo et al, 2013). The algorithm is as thus:  

Simulated Annealing Algorithm {} 

Initialize individual state, energy and temperature 

Loop until temperature is at minimum 

 Loop until maximum number of iterations reached 

  Find neighbourhood state via neighbourhood function 

  If neighbourhood state has lower energy than current 

      Then change current state to neighbouring state 

  Else if the acceptance probability is fulfilled 

      Then move to the neighbouring state 

  Else retain the current state 

  Keep track of state with lowest energy  

End inner loop: End outer loop 

ANN first yields candidates of low fitness in training, and if 

better solutions are not found, best individuals are chosen 

after a number of runs, until optima is found. ANN uses its 

exploratory search of multiple individuals; while SA uses it 

flexibility in finding a global optima (Ojugo et al, 2013c).  

Factors to be defined: (1) ANN: number of runs, dataset for 

calibration, population representation of dataset, size and 

cross validation function; And (2) SA (with ANN complete), 

what neighborhood size and energy function is employed to 

choose fit candidates till solution is found. Temperature 

schedule is applied that randomly re-initialize network for 

series of Markov chain. Neighbourhood function is applied to 

randomly changed individual energy. The fitness function is 

recomputed to track individuals of low energy state but with 

threshold value of 0.8 to enter SA early enough to apply 

temperature schedule needed. Thus, a moderated Markov 

chain is used that accepts the states with energies of lower or 

equal to current state’s energy. It runs till state of energy 0 is 

reached (solution is found). SA and ANN, shares the same 

fitness function (Ojugo et al, 2013c). 

3.3 Hybrid Gravitation Search Neural 

Network (GSANN) 
GSA is based on Newton’s laws of gravity and motion with 

its main idea, being to consider isolated system of masses, 

where every mass represents a solution to a certain problem. 

Law states that particles attract each other with gravitational 

force acting between particles that are directly proportional to 

product of their masses and inversely proportional to the 

distance between them (Rashedi et al, 2009a). Thus, agent’s 

performance depends on its mass as they attract each other via 

gravitational pull towards those of heavier mass. Agents are 

randomly initialized with gravitational force defined as: 

𝐺 𝑡 =
𝑀𝑖 𝑡 ∗ 𝑀𝑗 (𝑡)

𝑅𝑖𝑗 𝑡 +  𝜀
 𝑋𝑗 𝑡 −  𝑋𝑖 𝑡         (1)  

Rij is Euclidean distance between masses for i and j, G(t) is 

gravitation force at t with small constant ε – which decreases 

at t, to control pool and search’s accuracy. Total force is: 

𝐹𝑖
𝑑 =  𝑟𝑎𝑛𝑑 𝑖 ∗ 𝐹𝑖𝑗         2 

𝑗∈𝑘𝑏𝑒𝑠𝑡 ,𝑗≠1

 

Acceleration at t, in d dimension is directly proportional to 

force on agent i, and inversely proportional to agent’s mass: 

𝐴𝑖
𝑑 𝑡 =

𝐹𝑖
𝑑(𝑡)

𝑀𝑖𝑗 𝑡 
            (3) 

Next agent velocity is a function of its current velocity plus 

current acceleration – to update next position given by X as: 

𝑉𝑖
𝑑 𝑡 + 1 =  𝑟𝑎𝑛𝑑 𝑖 ∗  𝑉𝑖

𝑑 𝑡 + 𝐴𝑖
𝑑 𝑡  4  

𝑋𝑖
𝑑 𝑡 + 1 =  𝑋𝑖

𝑑 ∗  𝑉𝑖
𝑑(𝑡 + 1)                  5  

Mass is updated as fitness value of agent i at time t given as: 

𝑀𝑖 𝑡 =  
𝐹𝑖𝑡 𝑖 −  𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡 𝑡 −  𝑤𝑜𝑟𝑠𝑡(𝑡)
                (6) 

Strongest agents from their fitness route for maximization task 

is given as:  

𝑤𝑜𝑟𝑠𝑡 𝑡 =  Maximize
𝑗∈{1,2…𝑁}

𝐹𝑖𝑡 𝑡  7  

𝑏𝑒𝑠𝑡 𝑡 =  Minimize
𝑗 ∈{1,2…𝑁}

𝐹𝑖𝑡 𝑡  8  

At start, agents are located as solution trained in ANN, and 

passed over to GSA. With each cycle, velocity/position is 

updated via Eqs. 4/5; while G/M is found via Eqs. 1/6. The 

model stops if an optima is found or stops using its stop 

criterion (computational expensive). GSA uses exploration 

ability to navigate and guarantee its choice value for random 

agents, and exploitation ability to allow agents of heavier 

masses move slower in order to attract those of lesser mass as 

well as locate optima, around a good solution in the shortest 

time possible (Rashedi et al, 2009b and Ojugo, 2012a). Its 

algorithm is as thus: 

Input: Audit data, generations and population size.  

Randomly initialize created agent (rule) for search space 

identification  

Compute fitness function of agents and created rules as thus 

Set w1 = 0.2, w2 = 0.8, MaxGenerations = 60 (epoch) 
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Set n =200, generationCounter = 0, created rule groups = 30  

For ANNGSA Training, each rule set:  

Set A = 0, AB = 0 

AB = AB + 1   //AB++ 

If record matches only condition part 

    A = A+1  //A++ 

End if 

Select any 30-fitted rules, 1 for each group to form new pool 

Apply G(t), best(t), worst(t) and Mi(t) for i=0 

Update G(t), best(t), worst(t) and Mi(t) for i=1,2,3,…n: 

Randomly select 3-fitted rules based best fitness value 

Compute total force in all directions 

Compute acceleration and velocity of rules in space 

Update each rule’s M, G and Position 

Select best chromosome to be parent 

Repeat Process 14 until stop criterion is reached 

End 

ANN first yields candidates of low fitness in training, and if 

better solutions are not found, best individuals are chosen 

after a number of runs, until optima is found. ANN uses its 

exploratory search of multiple individuals; while GSA uses it 

flexibility in finding a better optimal point, even when local 

maximas are present (Ojugo et al, 2013c). Factors that must 

be defined: (1) ANN: number of runs, dataset for calibration, 

pool representation of dataset, size and cross validation 

function; candidates. The fitness function is recomputed to 

track individuals of value 0.8 – though, ANN finds 

individuals of low fitness with G, M and position of agents 

(rules) updated to enter GSA early enough till state of energy 

0 is reached – implying a solution is found (Ojugo et al, 

2013c). 

3.4 Experimental Model Validation 
Figures 4-7 describes the accuracy with which each hybrid 

model captures genuine malware attacks and its 

corresponding false-positive (error rates in classifying of 

malware signatures as emergent in each intrusive attack) and 

true-negatives (error rates in not accurately classifying 

malware signature emergent in the intrusive attack – which 

can arise from code signature variation in the virus and due to 

code obfuscation method used by the metamorphic engine). 

 

Figure 4: Evolved Variants Malware IDS Using ANN 

 

Figure 5: Evolved Variants Malware IDS Using GANN 

 

Figure 6: Evolved Variants Malware IDS Using SANN 

 

Figure 7: Evolved Variants Malware IDS Using GSANN 

4 RESULT FINDINGS AND 

DISCUSSION 
Using a simple Python implementation of various matching 

algorithms, algorithms were compared based these feats: 

4.1 Classification Accuracy 

 

Figure 8: Prediction Accuracy of Algorithms in 

percentage 
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4.2 Processing Speed 

 

Figure 9: Processing time in Seconds 

4.3 Convergence Time 

Figure 10: Convergence time of matches 

Figure 10 shows the convergence time of matches in which 

the various algorithms took in finding the patterns within the 

text. 

4.4 Discussion of Findings  
Top rules have same fitness range [0.8, 0.8065] and are 

estimated 80% good to be used in detection – to imply the 

achievement of generating a bunch of good rules, rather than a 

single optimum rule – is better in intrusion detection. 10-out-

of-22 rules have destination port as -1, so that the rules looks 

out for connections from any destination port. This increases 

the chances of detecting intrusion, improves the generality of 

rules, and provides for new attack types and its corresponding 

rules to be added to knowledgebase. The rule generator used a 

population of 400, w1 = 0.2, w2 = 0.8, 5000 epoch-evolutions 

and 0.05 probability of a gene to be mutated respectively. 

After training and testing models, the results are thus: 

4.4.1 ANN was run 15 times (to eradicate biasness) and 

took 102seconds to find optima after 329-iterations 

(at best). It was able to generate each time, multiple 

local maxima (good rules) and its time varied 

between 102seconds and 70minutes. Convergence 

time depends on how close initial population is to 

solution and on mutation applied to individuals in 

the pool. 

4.4.2 GANN was run 15 times (to eradicate biasness) 

and took 89seconds to find optima after 280 

iterations (at best). It was able to generate each 

time, multiple local maxima (good rules) and its 

time varied between 102seconds and 70minutes. 

Convergence time depends on how close initial 

population is to solution and on mutation applied to 

individuals in the pool. 

4.4.3 SANN was run 15 times, took 62seconds to reach 

optima after 380 iterations. It generated at 

intermittently multiple local maxima (good rules) 

and its time varied between 62 seconds and 

40minutes. Convergence time depends on initial 

population, the temperature schedule applied and 

series of random walks applied to pool. It is to be 

noted that SA is most useful in the generation of 

best rule (and not set of better rules, goal of this 

study). 

4.4.4 GSANN was run 15 times (to eradicate biasness) 

and took 102econds to find optima after 322 

iterations (at best). It was able to generate each 

time, multiple local maxima (good rules) and its 

time varied between 89 seconds and 54minutes. 

Convergence time depends on fitness function of 

weights with G, M and position updates of rules and 

individuals in the pool 

4.5 Rationale for Choice of Algorithms 
Most mathematical, machine learning models are inspired by 

evolution, biological and behavioural population. They search 

a space via hill-climbing method which is flexible, easily 

adapts to changing states and suited for real-time app to 

guarantee high global convergence in multimodal task. 

Initialized with random pool, it allocates increasing trials to 

regions of high fitness to find optima. Once a peak is found, 

model restarts with another randomly chosen, starting point. 

Its simplicity, well suited for dynamic feats/phenomena of 

many local maxima – makes them appropriate. Each random 

trial is done in isolation and as search progresses, it allocates 

its trials evenly over space and still evaluates as many points 

in regions found to be of low fitness as in regions found to be 

of high fitness. Its demerit is its inadequacy for linear model 

with small regions surrounded by low fitness – making such 

functions/models, difficult to optimize. 

4.6 Implementation Tradeoffs 
Result trade-offs are as follows (Ojugo et al, 2013): 

4.6.1 Result Presentation: Researchers often display 

flawed and unfounded results, to validate new/modified 

model rather than re-test limitations, insufficiency, biasness 

and inabilities of existing ones. This is because negative 

results are less valuable and most of such models aim to curb 

the non-linearity and dynamism in the phenomena they are 

predicting alongside discovering feats and underlying 

properties of the historic datasets used, to train, cross validate 

and test such models. 

4.6.2 Efficiency: modeler sand researchers can often 

use figure to show how well their prediction is quite 

in agreement with observed values (even with their 

limited dataset used for training the model that is 

often times squeezed). Some plot for observed and 

predicted values are often not easily distinguishable 

– as such modelers do not even provide numerical 

data to support their claim for their system (though 

their model is in good agreement with observed 

values). Some measure of goodness does not 

provide the relevant data. 

4.6.3 Insufficient Testing: Validation compares 

observed on predicted values. Many studies suffer 
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from inadequate dataset. If model aims to predict 

dynamic state, such ability should not be 

demonstrated with misleading results of limited 

dataset; and inconclusive and unclear contributions. 

Model must be adequately tested with methods laid 

bare so that process can be repeated to validate the 

usefulness and authenticity of such models. 

4.6.4 Model validation: is not an undertaking to be 

carried out by a researcher or research group; but 

rather, a scientific dialogue. Improper model 

applications and ambiguous results often impede 

such dialogue. This study aims to greatly minimize 

confusion in study of model as well as their 

corresponding implementation in IDS. 

5 CONCLUSION AND 

RECOMMENDATION 
Models serve as educational, predictive tools to compile all 

existing data about a task, serve as a vehicle to communicate 

hypotheses, a means to investigate parameters crucial in 

estimation and help us better understand a problem domain. 

Simple models may not provide enough new data, whereas 

very complex models may not be fully understood. A model’s 

use and application as an intellectual tool requires less 

accurate numerical agreement in prediction. But rather 

requires feedback mechanisms, as more important – as only 

models that are understandable and manageable, can be fully 

explored. A balance of complexity and simplicity is crucial to 

studying the relevant processes of how the model works. 

Study implements ruled-based IDS used to generate a set of 

classification rules from DARPA audit data used for training. 

The support-confidence fitness function is used to evaluate 

goodness of each rule. Based on weight selection (fitness 

values w1/w2), generated rules can detect network intrusions, 

detect anomalies and classify attack types. 

The research frameworks are divided: training and testing. 

Study implements IDS with Java and C# on Linux platform 

(due to program interaction, simplicity, code execution, speed 

and connection ease). All critical factors in IDS, as a system 

must go through millions of network connection – inspecting 

each to determine intrusive and non-intrusive connections. 

Study limitations include: (a) generated rules were biased to 

training data. This was resolved by carefully selecting the 

number of generations at training to avoid overtraining or the 

number of top best-fit rules so as not to over fit model, and (b) 

support-confidence framework may be simple to implement 

and provide improved accuracy to final rules, but it requires 

the whole training data to be loaded into memory before any 

computation. For very large training datasets, it is neither 

efficient nor feasible, and system requires enough cache 

memory to hold the data to be processed. 
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