

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.40, May 2018

39

Performance-Driven Load Balancing for Distributed File

Systems in Clouds

Jasma Balasangameshwara
Associate Professor

Department of Computer Technology
School of Engineering

Dayananda Sagar University
Kudlu Gate, Hosur Main Road
Bengaluru, Karnataka, India

Chandrakala H. L.
Associate Professor,

Department of Computer Science & Engineering
HKBK College of Engineering
Manyata Tech Park, Nagwara
Bengaluru, Karnataka, India

ABSTRACT
Distributed file systems are the fundamental units for cloud

applications where in the data node concurrently serves the

computing and storage functions. In these file systems, a file is

split by a master node into a set of file chunks and allotted to

separate data nodes such that various jobs can be carried out in

parallel across the data nodes. However, the unpredictability of

the nodes and dynamism in the number of files raise the need

for uniform re-distribution of files to prevent the adverse

effects of load imbalance.

Hence, the latest enhancement to distributed file systems is a

decentralized and asynchronous load rebalancing algorithm

that exploits both heterogeneity and movement cost for file

chunk allocation among data nodes. But, the load rebalancing

protocol has its basis in a randomized method wherein the data

node periodically collects and sorts the storage load status of an

instance of arbitrary chosen data nodes without considering

their computational capabilities or the physical proximity

information thereby introducing not only considerable

workload on the data nodes but also high overhead on message

exchanges among data nodes thus leading to reducing

scalability. Moreover, the distributed load re-balancing

approach does not consider the additional redundant overhead

on the data nodes from the federated, load imbalanced master

nodes.

In the current study, a completely distributed performance-

driven load balancing approach (PDLB) that employs Zero-

Hop Hash Table (ZHT) and Modified Firefly Algorithm

(MFA) is suggested for coping with the load imbalance issue

on both master node and data node. The aim of PDLB is to

arrive at data allocations among nodes that could achieve

maximum resource utilization at optimized movement cost and

minimized message exchanges and algorithmic overhead. The

experimental results indicate that PDLB performs better than

the earlier distributed protocol about overhead on message

exchanges, scalability, movement cost, load imbalance factors

as well as algorithmic overheads.

General Terms

Cloud Computing, Load Balancing, Resource Utilization,

Distributed File Systems

Keywords
Map Reduce, Hadoop Distributed File System, Load

Balancing, Zero-Hop Hash Table, Firefly Algorithm

1. INTRODUCTION
Cloud is an architecture which offers resources and services

across the Internet. Storage clouds offer storage services, while

data clouds provide data managing services and computing

clouds provide computational services. Mostly these are

layered for creating stacks of cloud services which serves as

computing platforms to develop cloud-based application [1].

Distributed file systems are the fundamental units in cloud

computing applications. A file in a distributed file system is

split into a set of file chunks and allotted to separate data nodes

such that various jobs such as chunk creation, deletion,

replication and MapReduce jobs may be carried out in parallel

among the data nodes [5].

But, due to the unpredictability of the nodes and dynamism in

the data and number of files, there is a need for uniform re-

distribution of data in distributed file systems to prevent the

adverse effects of load imbalance. Hence, resource utilization

of the node and load balancing among nodes are critical

function for distributed file systems in a cloud.

The benefits of using cloud computing for distributed file

systems as illustrated by Grossman et al [1] are; first the data in

a storage cloud can be easily replicated and second once the

information is stored in clouds, it can wait for the computing

jobs [2]. The key enabling technologies for cloud based

distributed file systems include MapReduce programming

paradigm, distributed file systems virtualization among others

[3]. These methods have an emphasis on scalability and

comprises of resources that may randomly fail and join when

maintaining system dependability.

1.1 Background
Current best distributed file systems in clouds are the Google

GFS [4] and Hadoop HDFS [5]. Applications which function

on these file systems have huge datasets and a generic file is

gigabytes to terabytes in size. Hence these file systems ought to

offer high aggregate data bandwidth [5].

HDFS provides interfaces for applications for moving

themselves close to where data is positioned as it is efficient if

computations demanded by applications is implemented nearer

the information it functions on. This approach adopted by

HDFS decreases network congestion while increasing the total

throughput of the model [5].

However, “Google GFS” [4] and “Hadoop HDFS” [5] rely on a

“centralized master node” for balancing the load of its data

nodes. They distribute the file chunks to data nodes in a

uniform manner so that MapReduce jobs may be executed in

parallel. They also employ a standalone master node that

gathers information on the file chunk locations and migrates

excessive file chunks from data nodes. Due to this approach,

the master node is under a great amount of workload which

linearly scales with system size thereby becoming a

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.40, May 2018

40

performance bottleneck as well as the one point of failure.

Also, as the centralized method does not regard the cost of load

migrations [6], [7] it may be unsuccessful in Google GFS [4]

and Hadoop HDFS [5] wherein the data nodes concurrently

serve the computing and storage functions.

Google GFS [4] and Hadoop HDFS [5] employ periodic load

information exchange policy. In this policy, the load status

information is disseminated or collected at regular intervals.

Even though this approach is simple, it is essential to determine

the most appropriate dissemination period as overheads due to

periodic communication increases system loads and reduces

scalability. In periodic information exchange approach, a fixed

quantity of state-collection overheads is induced in the model

regardless of whether the information will be used. Too

frequent updates induces high communication overhead and

too few updates makes the system state outdated [14].

Distributed hash tables (DHT) are the important building

blocks for large scale distributed systems [15] like Google GFS

and Hadoop HDFS. ZHT refers to a zero-hop DHT [16]. It

focuses on being a basic unit for future high-end computing

models with the aim of providing availability, error tolerance,

excellent throughputs, scalability, persistence as well as less

latency. ZHT also possesses various significant attribute

ensuring that it is a better than other DHTs as well as key-value

stores. They are light weight, permitting data to join as well as

leave in a dynamic fashion, effectively propagating events

through the system, scalable and support for operations like

offering lock-free concurrent keys/value alterations additional

to inserts/lookups/removals [16].

1.2 Motivation
There has been a great amount of effort recently in the

development of load balancing protocols for distributed files

systems for realizing greater performance in cloud

environments. However, practical samples of these issues are

regarded as NP-complete [1]. Therefore, the current study’s

motivation lies in the requirement of excellent methods which

consider cloud infrastructure, resource heterogeneity and

volatility, communications overhead as well as movement cost.

The primary aim is the reaching of solutions which have least

make-span, effective network traffic as well as resource usage,

a well-balanced load, excellent data center dependability as

well as flexibility at the time of change to the files and nodes.

There is an inherent trade-off to arrive at the solution. For

overload avoidance, the utilization of data nodes should be

reasonably low in order to avoid possible overloads in the

event that the resource requires increases at a later stage. For

optimized resource utilization, the utilization of data nodes

should be reasonable high to enhance the overall throughput of

the system.

It is difficult to propose a load balancing strategy for huge-

scale, dynamic as well as data-intensive clouds. This obstacle

is the motivation to expand the load rebalancing technique

suggested in [3] and combine it with the dynamic resource

allocation approach [14]. Problems like metadata management,

replication strategies and file consistency systems are not

within the scope of the current work.

1.3 Contribution
The contributions of the current study are several. A load

balancing method has been proposed for distributed file

systems in data-intensive cloud computing environment called

PDLB. PDLB employs Zero-Hop Hash Table (ZHT) and

Modified Firefly Algorithm (MFA) for arriving at load

balancing decisions. Given that cloud architectures are

dynamic with differing network topologies; we consider the

dynamic network topology through the generation of

topologies with nodes of differing capabilities and differing

bandwidth between the connecting links by considering their

physical network proximity.

As far as is known, PDLB is the first that tackles all that which

has been mentioned below:

1. A resource allocation approach using MFA that can

obviate overloads in the system (master node and

data node) efficiently while reducing the cost of

message exchanges among/ between master/data

nodes and algorithmic overhead.

2. PDLB considers distributed cloud infrastructure,

resources as well as network heterogeneity,

movement cost as well as resource unpredictability

by configuring the system as a ZHT network.

The primary contributions of the current work to the previous

literature are given below:

1. Mutual information feedback strategy as well as

neighbor selection strategy suggested in [14] are

improved even more.

2. Using ZHT for estimation of the presence as well as

efficacy of nodes through the simplification of model

of decision making.

3. Modified Firefly Optimization Algorithm (MFA) is

integrated to PDLB for arriving at optimal load

allocation paths.

4. Analytical models are derived for validating the

efficacy of PDLB.

2. RELATED WORK
State-of art distributed file systems in clouds depend on master

nodes for managing metadata of the file systems as well as for

balancing loads of data nodes based on the metadata [3].

However, as the quantity of data nodes and files rises linearly,

the master node becomes a performance bottleneck.

Hence, the latest HDFS enhancement [23] was a distributed

approach with multiple master nodes. However, HDFS

statically assigns file system workloads to the master node and

does not support adaptive load migration mechanism among

master nodes. Also, the master nodes are independent of each

other and the data nodes have to periodically send heartbeat

messages to all master nodes in the cluster.

Hsiao et al [3] studied the load rebalancing issue in distributed

file systems to huge-scale, dynamic as well as data-intensive

clouds. The aim was the allocation of chunks of files in a

uniform manner amongst the data nodes so that no data nodes

oversees management of excess quantity of chunks.

Additionally, the movement cost, resource heterogeneity and

physical network locality was also taken into consideration for

addressing the load imbalance issue among data nodes.

However, Hsiao assumed the following:

1. Randomized load re-balancing approach.

2. Each data node executes gossip-based aggregation

algorithm for collecting storage load status of an

instance of arbitrarily chosen data nodes.

3. There is one bottleneck resource i.e. storage for

optimization.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.40, May 2018

41

4. Data nodes are arranged as a network based on

DHTs.

5. Load re-balancing approach is not dependent on the

DHT algorithms.

6. Re-balancing approach greatly relies on the data node

arrival as well as departure operations for migrating

file chunks amongst data nodes.

7. Periodic shifting of load among light-loaded data

nodes

8. Pairing of under-loaded data nodes with multiple

over-loaded data nodes

9. Load management of the master node is not

considered

The assumptions in the load re-balancing approach [3] for

distributed file systems leads to the following limitations:

1. The randomized load re-balancing approach only

considers the storage capacity of the data node and

does not take into consideration the data node’s

overall capability which practically ought to be a

function of computation power storage space and

network bandwidth [17], [18]. This is critical in

distributed file systems as the data nodes

concurrently serve both the computing and storage

functions.

2. Periodic piggybacking of load status leads to

accumulation of information regardless of whether

the information will be used. Also, too frequent

updates induce high communication overhead which

inhibits system scalability and too few updates make

the system state outdated causing adverse effects on

the load balancing approach. Scalability and

responsiveness are critical functions in huge-scale

distributed file systems like Google GFS [4] as well

as Hadoop HDFS [5].

3. Each data node executes gossip-based aggregation

algorithm for collecting storage load status of an

instance of arbitrarily chosen data nodes. The

implication of small bounded message size as well as

relatively slow periodic message exchange join to

restrain the data carriage capability of the gossip-

based aggregation protocol.

4. Each data node in the load re-balancing approach

executes a DHT algorithm like Chord [20], Pastry

[21] or Amazon’s Dynamo [22]. DHT’s Chord and

Pastry scale logarithmically with the system scales.

Amazon’s Dynamo is a key value storage model

which certain Amazon core services utilize for

providing an ‘always-on’ experience. Dynamo is a

zero-hop DHT. An important shortcoming of

Dynamo is that it is an internal Amazon project that

is not capable of being utilized outside Amazon’s

architecture. Also, the routing time for Dynamo is

log (N) and it does not support append operation.

5. The Re-balancing approach greatly relies on the data

node arrival as well as departure operations for

migrating file chunks amongst data nodes and

ignores the dynamism in the file chunks. Periodic

shifting of load among light-loaded data nodes and

pairing of under-loaded data node with multiple over-

loaded data nodes adds additional algorithmic

overhead.

6. As the master nodes in HDFS federation [23] are

federated with no co-ordination among themselves,

the data nodes have to periodically send heartbeat

messages to all master nodes in the cluster. This

approach lacks adaptive load migration among

master nodes and adds additional messaging and

movement overhead on the data nodes. Also, the load

balancers in HDFS do not distinguish between

various locations of remote clusters when balancing

the load.

Hence, the objective of PDLB is to arrive at allocations as

uniformly as possible among nodes by not only exploiting

resource heterogeneity in terms of storage, compute and

physical network proximity but also take into consideration the

load transfer overhead, algorithmic overhead and movement

cost so that no node must manage excess amount of data.

To achieve the objective, the nodes in PDLB are structured as a

ZHT network and every node executes a ZHT algorithm.

ZHT’s has all the advantages of DHT’s which are availability,

error tolerance but simultaneously achieves the advantages of

least latency typically related to idle central indexes [16] which

is very essential for state-of-art distributed file systems.

Modified Firefly Algorithm (MFA) [35] has been integrated to

PDLB for arriving at optimal load allocation paths for each

node. It has been shown in [36] that MFA is better than Particle

Swarm Optimization (PSO) in its applications.

The remaining sections are structured as follows: Section

Remainder of this work is organized as follows: Section 3

reviews the load balancing problem. The overview of the

system model is given in section 4. Section 5 discusses the

proposed algorithm. Section 6 offers a performance

comparison of PDLB as well as DLRA. Section 7 details the

setup of the simulation and Section 8 gives the results of the

experiments. Finally, section 9 concludes the work.

3. LOAD BALANCING PROBLEM
The aim in the current work is the designing of a load

balancing protocol to re-allocate data in a uniform manner

amongst nodes of a huge scale distributed file system by

exploiting resource heterogeneity, physical network proximity,

movement cost and communication cost [5], [23].

Load balancing in PDLB is dynamically and independently

performed at three levels – the primary master node level,

secondary master node level and data node level. Load

balancing at the primary/secondary master node levels balances

the storage at the file pool level. Load balancing at the data

node level balances the storage of data nodes.

Note that with multiple master nodes, different categories of

applications and users can be isolated to different namespaces

[23]. PDLB employs this isolation strategy given by HDFS

Federation at two levels namely the primary master node level

and secondary master node level and allows only those

primary/secondary master nodes that share the same category

of application or user; to adaptively migrate the storage load

among themselves.

Like HDFS Federation [23], PDLB balances only the data

among the primary/secondary master nodes, taking into

consideration the respective primary/secondary master node’s

namespace overhead but does not balance the namespace of the

primary/secondary master nodes.

Let Ʈ be the ideal amount of data (i.e. number of files on

primary/secondary master node or number of chunks on data

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.40, May 2018

42

node) that a node i is needed to manage in a system-wide load

balanced state, which is [3]

Ʈi =ƴi Ƥi (1)

Where “ƴ is the storage load per unit capacity a node i ought to

manage in the load balanced state and Ƥi is the storage capacity

of the node” [3].

ƴi =m/Ƥk (2)

Wherein “m refers to the quantity of files (if k is a

primary/secondary master node) or number of chunks (if k is a

data node) stored in the rack. Hence, the basis of this design is

to make sure that the amount of data managed by node i is

proportional to its storage capacity”.

PDLB’s aim is to decrease the load imbalance factor in every

node i as

|| Li - Ʈi || (3)

wherein Li represents the current storage load of node i and ||.||

denotes the absolute value function [3]. It is to be noted that

node collectively refers to primary/secondary master node and

data node.

The movement cost Mc(i,j) between node i and node j is

computed thus:

Mc(i,j) = m/min(Bw,Aj) (4)

Where Bw is network bandwidth between node i as well as j

and Aj is the available I/O speed at node j. A similar Eq. can be

found in [33].

In PDLB, it is possible that a set of distinct nodes intend to

share the load of node i with the aim of minimizing the load

imbalance factor as given in Eq. (3). Thus, i gives first

preference to nodes belonging to same rack with minimum Mc.

If a node in a cluster is unbalanced and if it cannot find another

candidate node in the same cluster, then the node will look up

for another node in another remote geographically close cluster

with minimum Mc.

4. SYSTEM OVERVIEW
In this section, the original HDFS Federation structure is

reformulated with a two-layer master node architecture as

illustrated in figure 1. The extended master node structure

given by Xiayu Hua et al. [33] is used for setting the

architecture of PDLB. However, PDLB does not use in its

architecture the cache support specified by Xiayu Hua et al.

4.1 Architecture
A huge-scale distributed file system comprising a set of data

nodes DN, a set of primary master nodes MN and a set of

secondary master nodes SN in a cloud is considered, where the

cardinality of DN, MN and SN are d, m and s respectively. The

SNs are applied to every rack of the DNs [33]. An SN is

configured from an existing DN machine on each rack [33]. A

scoring system is used by considering the storage space and

computational capacity of DNs for selecting DNs eligible for

acting as SNs. A DN with highest score is designated SN for a

particular rack. To an MN, each SN is its DNs [33]. To a DN,

SN in its rack is their MN [33]. The modifications needed in

HDFS Federation structure for incorporating the structural

extension are minimal and is taken from [33].

The secondary master nodes and primary master nodes are

grouped into clusters (as given in HDFS Federation [23]) based

on their physical network proximity. Each secondary master

node registers with all primary master nodes in the cluster and

the secondary master nodes are used as common storage by all

primary master nodes of the cluster [23]. It is assumed that the

data nodes can be arbitrarily upgraded, substituted and

appended in the system.

A single primary master node offers no isolation in multi-user

environments. For example, an experimental application can

overload the primary master node and slow down production

critical applications. Hence, with several primary master nodes,

different groups of applications as well as users may be

separated to different namespaces [23]. PDLB employs this

isolation strategy given by HDFS Federation and allows only

those primary master nodes that share the same category of

application or user; to adaptively co-ordinate among one other.

In the system, a set of files are stashed in the m primary master

nodes. The group of files is denoted as F. The files in F can be

randomly generated, discarded or added. All files fi ∈ F are

split into a set of disjoint, fixed-size chunks represented by cf.

The chunks are then allocated to distinct data nodes such that

MapReduce tasks may be carried out in parallel across the data

nodes.

A file pool is a set of files that belong to a single namespace

[23]. Data nodes store file chunks for all file pools in the

cluster. It is managed independently of other file pools.

Each chunk of a file has an identifier named using SHA1 [9].

Every data node, secondary master node, primary master node

and cluster also has a unique ID. Cluster ID is added to identify

all nodes in the cluster. The nodes of the distributed file system

are organized as a ZHT network [10]. The ZHT network is

initialized so that each two nodes with adjacent IDs are

geometrically close. With the specified IP address of

participant nodes (data/master) in the storage cloud, the space-

filling curve technique [24] is used to designate IDs to the

nodes, ensuring physically near nodes have adjacent IDs [3].

A data node comprises of ZHT instances as shown in Fig. 1.

The ZHT instance handles requests from MNs or SNs during

failure of its corresponding MNs. A data node can have several

ZHT samples distinguished with the IP address and port. A

ZHT instance is particular to the category of application of the

MN. All ZHT instances belonging to a particular category of

application of MNs are fully connected. Whenever a ZHT

instance gets overloaded, it communicates with other ZHT

instances for achieving PDLB.

Fig. 1. PDLB High Level Cluster-Architecture

On MN & SN runs a ZHT server. ZHT server acts as a data

management building block for its namespace and file pool as

shown in Fig. 1. ZHT instances and ZHT servers runs the

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.40, May 2018

43

PDLB.

For discovering file chunks, the ZHT lookup operation is

carried out. ZHTs are used due to the following reasons [10]:

1. Optimization is carried out for high-end

computational systems and is capable of surviving

several failures and also ensuring least overhead.

2. It is flexible, supporting nodes joining and departing

dynamically.

3. It has all the advantages of DHT’s excellent

availability and error tolerance, but simultaneously

achieves the advantages of minimum latency

typically related to idle centralized indexes.

4.2 Resource Heterogeneity & Fair

Scheduling
PDLB employs the distributed monitoring system such as

Ganglia for capturing and dynamically reporting the various

system performance statistics at the rack, cluster and remote

cluster level. Appendix A, in the supplementary material

summarizes the most relative performance tuning parameters

of HDFS used in PDLB. Note that “CPU utilization” and

“compute load” represented as PC are interchangeable in this

paper. PDLB assumes that there are four bottleneck resources

for optimized load allocations to the nodes and a node’s

capacity is function of compute load, network bandwidth,

current available I/O speed and storage load. The pluggable

MapReduce fair scheduler [5] is employed by PDLB for

optimized resource management. To overcome the drawbacks

of periodic approach as discussed in the background section,

event-driven approach is employed by PDLB to reload the

allocation file. The number of maps and reduces that can run

on a given data node is dynamically determined based on the

storage load and compute load of the data node.

5. PERFORMANCE-DRIVEN

LOAD BALANCING ALGORITHM
PDLB is applied to MNs, SNs and DNs for achieving optimal

load balancing. MNs and SNs adopt the isolation strategy

proposed in HDFS Federation [23] for further optimizing

PDLB.

5.1 PDLB Policies
The ‘Neighbor Node Selection Policy (NNSP)’, ‘Enhanced

Mutual Information Feedback Policy (EMIF)’, ‘Load Status

Monitoring Policy (LSMP)’ & ‘Performance Benefit Factor

(PBF)’ used in PDLB is detailed in Appendix A of the

supplementary material of this article as these policies are

adopted with minor changes from [3], [4], [5], [14], [23] and

[27].

5.2 Brief Introduction to Modified Firefly

Optimization Algorithm
By utilizing the load imbalance factor, a modified Firefly

optimization algorithm (MFA) based load allocation algorithm

is presented to decide the load allocation for nodes in the

system.

The concept of Firefly algorithm (FA) was first introduced in

[34]. FA is a nature inspired meta-heuristic protocol that owes

its inspiration to the flashing behavior or fire flies [34]. The

main aim for the firefly flash is to function as a single system

for attracting other fire flies.

Xin-She yang developed FA through the following

assumptions [34]:

1. That all fireflies are attracted to others,

2. Brighter fireflies attract less bright ones with

attractiveness being proportional to brightness and

3. If no brighter fireflies are present, fireflies travel in

arbitrary directions.

Surafel Luleseged Tilahun & Hong Choon Ong proposed a

modified FA [35]. In modified FA (MFA), the arbitrary

movement of the brighter firefly (as stated above in iii.) is

modified by generating random directions for determining the

optimal direction wherein brightness increases.

In FA, the brightness is related to the objective function [34].

The designation of attractiveness in MFA is altered so that the

impact of the objective function is magnified [35].

To apply MFA to the load balancing problem, the following are

required:

1. Define objective function for both DNs and MNs.

2. Utilize the MFA method to search the solution space

& arrive at a near optimal solution vector wherein the

updating procedure of brightest firefly is altered for

keeping optimal result throughout all iterations.

3. Define an optimization rule for both DNs, MNs and

SNs which will either be maximized or minimized.

The optimization rules of PDLB are to

1. Maximize resource utilization of nodes

2. Minimize movement cost and message exchanges

between nodes

3. Minimize load imbalance factor

4. Minimize algorithmic overhead

The solution vector is the load allocation plan which applies

the optimization rules. As given in MFA, the brightest firefly is

the firefly with current global best solution [35]. In PDLB

approach, current load on the node i (Li) is considered a firefly.

The brightest firefly is the node i with highest performance

benefit factor represented by β.

The following sub-sections outline the search space and the

performance-driven load balancing function as the objective

function for applying MFA to DNs, MNs & and SNs.

5.3 Modified Firefly Algorithm
The vector Vi is used for indicating the node selection policy of

node i. V = VN+VL (refer ‘Neighbor Node Selection Policy’

and ‘Enhanced Mutual Information Feedback Policy’ sections

of Appendix A of the supplementary material). The neighbor

vector VN & local vector VL consists of one entry per node

with the node’s ID as the index of each entry followed by the

node’s network address and its Ʈ as the entries for remote

clusters and local clusters respectively.

Ϝi
k = (Mc(i,k)+(PCk)

-1)-1-(Lk-Ʈk) (5)

Where Ϝi
k is the benefit factor of transferring load from node i

to node k and PCk is the compute load of node k. For

simplicity, Ϝi
k represents the benefit factor of no load transfer

from node i, which is in accordance with the assumption of

MFA that if no optimal direction is generated, the firefly will

remain in its current position.

βi(Lk) = Ϝi
k - Ϝ

i
i (6)

Where βi(Lk) represents the performance benefit factor of

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.40, May 2018

44

transferring the load to node k from node i. The value of β is

directly proportional to the brightness of the firefly.

Vßi[j] = k if βi(Lk)>= 0 (7)

Where Vßi[j] represents the performance benefit solution

vector maintained by node i.

The objective is to find the optimal load transfer path from a

node using the objective function of maximizing the

performance benefit factor β.

Brightness

f(i,r) (8)

 (9)

Wherein n denotes the quantity of nodes in the system. N[r]

refers to the quantity of nodes in a Vß of r.

As the higher brightness can bring current global best solution,

Eq. (8) becomes the objective function for the MFA-based load

allocation protocol.

To determine the optimal load allocation path of a node k with

highest β, m unit vectors say u1, u2, … ,um are randomly

generated. An optimal path U is chosen from the randomly

generated m paths such that the β of node k will increase if

node k selects that path. Hence, the path of a node k with

highest β is given by:

x := x + αU (10)

Wherein x represents i & r of f(i,r) in Eq. (8) and α refers to an

arbitrary step length with (0≤α≤1). If such a path is not present

amongst the arbitrary created solutions, then node k will not

transfer any load as given in Eq. (7).

If β of node k is higher than the β of the node x, then node x

will take the load allocation path towards node k. The index

update of the node x in the system

x := x + A0e
(-λz^2)(k-x)+ αє (11)

Where z = Mc(k,x), A0 is the attractiveness at z=0, λ is the load

absorption coefficient and є vector of random numbers.

A0 = eΩ(k,x) (12)

Ω(k,x) = Ϝk
k – Fx

x at Mc = 0 (13)

5.4 Performance Benefit Factor (β)
PDLB can be integrated as a pluggable with the existing huge-

scale distributed file systems such as Google GFS [4] as well

as Hadoop HDFS [5]. Particularly, for incorporating PDLB

with the master nodes in Hadoop HDFS [5], every data node

employs enhanced mutual information feedback policy to

piggyback its locally hosted chunks’ data to the master nodes,

such that the master nodes can collect the locations of chunks

in the system.

A master node will not assign further chunks to a heavy data

node if the data node continues to be heavy for more than (Tp)
q

time where q≠1 as given in MFA. If for more than (Tp)
q time,

the number of heavy nodes that continue to be remain heavy

exceeds |d/q| or |m/q|, then a new node (master/data) request is

initiated by PDLB.

Also note that in the distributed load re-balancing approach

proposed by Hsiao et al [3], storage load-based sorting of data

nodes in the system is done periodically. In PDLB, such sorting

is done whenever data is added/deleted, or the node is

heavy/added/deleted.

The distributed load re-balancing approach proposed by Hsiao

et al [3] requires to periodically send load status messages to

data nodes that are not physically close thereby introducing

additional overhead on message exchanges, whereas PDLB

exchanges load status messages among nodes from their local

and neighbor vector only.

As PDLB extends the approach in HDFS Federation [23] at

two levels i.e. primary master nodes level and secondary

master nodes level, the failure of the master node does not

prevent the data node from serving other master nodes in the

cluster because each data node registers to each distinctive

category master node and to one master node from the set of

shared category master nodes.

Note that when a master node is deleted, the corresponding file

pool at the data nodes is also deleted by PDLB.

Algorithm 1: Algorithm PDLB with MFA

Begin

1. Objective function: f(x) x=(x1,x2,…,xn) Eq. (8)

Where x refers to i & r of f(i,r)

2. For each SN, DN & MN sets

 For each different application category of MN

 Create an initial population of fireflies

 xi (I = 1,2,…n)

3. Attractiveness A associated with f(x) as A = f(x)

4. Define load absorption coefficient λ as 2

While (t < 500)

 for i = 1 to n (all n fireflies)

 for j = 1 to m (m fireflies NNSP)

 Call LSMP (Refer Appendix A of Supplementary)

 Choose optimal path [Eq. (10)]

 If (Aj > Ai)

 Move firefly i toward j [Eq. (11)]

 Differ attractiveness with Mc [Eq. (12)]

 Evaluate new solutions and update Attractiveness

 [Eq. (6) & Eq. (7)]

 End If

 End for j

 End for i

 Rank fireflies & find the current best

 Call EMIF

 End While

6. PERFORMANCE COMPARISON OF

PDLB and DLRA
Table 1 compares the time complexity of PDLB and

Distributed Load Rebalancing Algorithm in short (DLRA) [3].

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.40, May 2018

45

Table. 1. Performance Comparison of PDLB and DLRA

Comparison

Parameter

Symbol

Descript

ion

PDLB DLRA [3]

Routing Time C =

Max.

size of

the

network

0 to 2 O(c)

Number of

algorithmic

rounds in

expectation

so that

system

comprises no

light nodes

K is the

initial

number

of heavy

data

nodes

O(log log K) O(log K)

A light data

node gathers

a number of

vectors per

algorithmic

round

Per

algorith

mic

round, nv

number

of

vectors

are

gathered

by a light

data

node.

Each

data

node

contacts

a set of

chosen

data

nodes in

the

system

and

generates

a vector

V

O(|V|log|V|) O(nv|V|log|

V|)

Spreading of

a message in

a network

and rounds of

communicati

on

Each

data

node

contacts

a set of

chosen

data

nodes in

the

system

and

genreates

a vector

V

O(log|V|loglog

V)

rounds of

communication

and

O(|V|

loglog|V|)

messages

O(log|V|)

rounds of

communicat

ion and

O(|V|log|V|)

messages

Thus, from Table 1, it can be concluded that PDLB leads to

dramatically lower network congestion and achieves quicker

convergent rate about the quantity of algorithmic rounds

required to ensure that the model contains no light nodes as

compared to DLRA. The basic algorithm of PDLB is available

in Appendix B of the online supplementary material.

7. SIMULATIONS

7.1 Simulation Setup
The performance of PDLB is tested through Java based

computer simulations. In the simulations, PDLB is carried out

by using ZHT_Sim [28], a zero-hop distributed hash table

simulator for extreme scale system services written in Java.

The number of files and file chunks originally hosted by a node

in the simulations follow the geometric distribution, permitting

stress tests as proposed in [3]. PDLB is compared with

Distributed Load Rebalancing Algorithm in short (DLRA) [3].

The number of random directions considered is 20.

Table 2 reveals the values of the variables utilized in the

simulations and heterogeneous system configurations. A cloud

network topology connecting the storage nodes is simulated in

a 2D torus direct network [3], [29].

Table. 2. Simulation Parameters (tu=time unit, pt=percent)

Simulation Parameter Value

Set Cardinality | . | -

Absolute Value Function || . || -

Size of system, s 1010

The number of primary & secondary master

nodes, m

10

The number of data nodes, d 1000

The period for periodic information exchange,

Tp

10 tu

Number of file chunks, nfc 10,000

Number of clients 4

Average storage capacity (ASC) among nodes,

Sc

11

Average processing power (APW) among data

nodes, Pp

11

Maximum and minimum storage capacities is 110 , 2

Random number that each node contacts, r 70-100

Chunk allocator factor, q 2

File size, fs 10

Chunk size, cs 1

Mean transfer delay, µ 0.05 tu

Standard deviation of transfer delay, Ω 50pt

Storage load per unit capacity, ƴ 0.5

power-law distribution, α 2

Fig.2 displays the cumulative distribution function (CDF) of

the data in the simulation, where workload-I represents the

variation of the geometric distribution. Workload-I indicates

that a small quantity of nodes originally processes a huge

amount of data.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.40, May 2018

46

Fig. 2. The Workload Distribution

7.2 Simulation Results
Fig. 3 gives the simulation outcomes of the storage load

distribution after performing the DLRA and PDLB. The

simulation outcomes indicate that PDLB performs better than

DLRA with regard to the storage load imbalance factor

because PDLB employs MFA to ensure that a heavy data node

does not overload a light data node during the storage load

migration and also the master nodes do not further assign

chunks to overloaded data nodes. On the contrary, in DLRA,

the storage load migration from a heavy data node to light data

node may overload the light data node.

Fig. 3. The Load Distribution

Fig. 4 shows the movement cost of DLRA and PDLB. The

movement cost of PDLB is less than that of DLRA. This is

because, DLRA matches the top light data nodes with the top-

heavy data nodes and a light data node is required to shed its

load to its successor data node in order to accept storage load

from a heavy data node. In PDLB, a light data node need not

shed its storage load rather accept the storage load from a

heavy data node.

Fig. 4. The Movement Cost

Fig. 5 reveals the total quantity of messages created by a PDLB

and DLRA. In DLRA, each data node probes a set of other data

nodes in the system periodically and may reallot its storage

load from/to the probed data nodes, introducing more

messages. On the contrary, in PDLB, each data node gathers

partial system knowledge from its local and neighbor data

nodes based on the EMIF policy. Only a heavy data node

reallocates some of its storage load to one of the probed light

data node through EMIF thereby introducing less messages.

Also, in PDLB, load status exchange is performed among

geographically close nodes thereby preventing the messages

that travel between two nodes, to traverse a long physical

distance through various physical network links. Also, a data

node is required to only send its load status to each distinct

category master node and one geographically close same

category master node thus again reducing the number of

messages.

Fig. 5. The Message Overhead

Both DLRA and PDLB depend on DHT network in the

simulations. But, in DLRA the data nodes can depart from or

join the network for load re-balancing thereby raising the

overheads needed for maintaining DHT structures. Hence, the

quantity of re-joining operations of PDLB is further

investigated.

Fig. 6 illustrates the simulation results. It is seen that in DLRA,

only light data nodes rejoin the system as successors of heavy

data nodes. DLRA tries to pair light and heavy data nodes

precisely. PDLB pairs a heavy data node with compatible light

data node thus preventing light data nodes from shedding their

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000

C
D

F

Load (logscale)

Workload-I

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
D

F

Load

DLRA PDLB

1.03253

0.607664
35

0 0.5 1 1.5

DLRA

PDLB

Movement Cost

W
o

rk
lo

ad
-I

10.23426

6.0656

0

2

4

6

8

10

12

DLRA PDLB

M
es

sa
ge

 O
ve

rh
ea

d

Workload-I

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.40, May 2018

47

storage load or rejoining the heavy data nodes. Note the PDLB

is comparable with the centralized algorithm used in Google

GFS and Hadoop HDFS. This is because, like the centralized

algorithm, PDLB does not introduce rejoining overhead as data

nodes in PDLB need not self-organize or self-heal for rejoining

operations.

Fig. 6. The Rejoining Cost

Fig. 7 illustrates the weighted communication cost (WCC) for

DLRA and PDLB by investigating the network traffic

introduced in them. The weighted communication cost is

defined as follows

 ∈

 (14)

Where M denotes the load status messages, sizei is the size of

the message i and linki represents the communication cost

incurred by message i . In the simulations, it is presumed that

the size of each message is identical, i.e. sizei=1 for all i∈M

with no loss of generosity. Thus, based on (4), the higher the

WCC, the more physical links utilized for load status message

exchanges. The simulations reveal that PDLB performs better

than DLRA in terms of WCC. This is because, each light data

node in DLRA first finds several matched heavy data nodes

from its vector. While doing so, DLRA does not exploit

physical network proximity thus leading to higher WCC as

compared to PDLB.

Fig. 7: The WCC

The effect of node heterogeneity in terms of storage and

computational power is investigated. In this experiment, the

storage and compute capabilities of the nodes follow the

power-law distribution, which is the zipf distribution [3],

[30],[31] and [32]. In, fig. 8, the ratio of the amount of data

hosted by every node i, to its storage capacity represented by P

is assessed [3]. Node i tries to make minimum ||P- ƴ || for

approaching the load balanced state [3]. The simulations

denote that PDLB outperforms than DLRA. This is because in

DLRA, light data nodes may need to offload their loads to their

successor data nodes, so that the light data node can accept

storage load from a heavy data node.

Fig. 8. The Effect of Data Node Heterogeneity

By default, the quantity of data nodes and the quantity of

chunks in the experiments are d=1000 and nfc=10,000

respectively. Fig. 9 illustrates the effect of varying nfc by

having nfc=10,000, 20,000 and 80,000 for DLRA and PDLB

with d=1000. As shown in fig. 9, PDLB adapts well as

compared to DLRA disregarding the quantity of chunks in the

system.

Fig. 9: The Effect of Varying nfc (Workload -I)

The performance effect of different range of random number r

is investigated. The simulation results are depicted in fig. 10

where different value of r=10, 100 and 1000 is studied for

workload-I. As shown in fig. 10, without global knowledge

PDLB performs very well for r=100 and 10,000 as compared

to DLRA.

0 0.2 0.4 0.6

DLRA

PDLB

Rejoining Cost

W
o

rk
lo

ad
-I

69.0978

31.7811

0

10

20

30

40

50

60

70

80

DLRA PDLB W
ei

gh
te

d
 C

o
m

m
u

n
ic

at
io

n

C
o

st

Workload-I

0

0.2

0.4

0.6

0.8

1

1.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
D

F

P

DLRA

PDLB

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

Strorage Load

C
D

F

PDLB nfc=80,000 PDLB nfc=20,000 PDLB nfc=10,000

DLRA nfc=80,000 DLRA nfc=20,000 DLRA nfc=10,000

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.40, May 2018

48

Fig. 10: The Effect of Sampling Quality

8. EXPERIMENTATION

8.1 Experimental Environment Setup
The performance is PDLB is evaluated by setting up an inter-

connected cluster running Ubuntu 10.10 with eight

heterogeneous systems, with each system having a minimum of

two cores. The specifications of the cluster are given in Table 3

On each system, the Google Protocol buffers C++ and C

bindings are installed.

Table. 3. Cluster Specification

Sl.

No.

Node Processor RAM

1. Master Intel Core 2 Duo 3 GB

2. Master Intel Centrino 3GB

3. Master Intel i7 8GB

4. Data Intel Centrino 2GB

5. Data Intel Core 2 Duo 3GB

6. Data Intel Pentium 3GB

7. Data Intel Pentium 2GB

8. Data Intel i3 4GB

ZHT using MPI protocol is then deployed on the cluster.

Hadoop HDFS Federation version 2.3.0 is installed on the

cluster with three dedicated master nodes and 5 data nodes. Out

of the three dedicated master nodes, two master nodes share a

common application. PDLB is implemented on the cluster and

its performance is assessed against the load balancer in HDFS

Federation and DLRA.

Four multi-threaded client programs are established in the

multi-threaded environment for issuing requests to the master

nodes. Requests are commands for creating directions with

arbitrarily assigned names and removing randomly chosen

directories. For emulating the loads of the master node in a

production system as well as for investigating the impact of the

master node’s loads on the performance of PDLB, the

processor cycles available for the master node is limited by

differing the maximal processor utilization represented by PU,

PU=8%, 16%, 32%, 64% and 99%.

Total quantity of files and chunks distributed in file the system

in our experiment is restricted to 16 and 128 respectively. All

the nodes are linked with a 100 Mbps fast Ethernet switch. The

size of a chunk is set to 16MB. Hence, transferring the chunks

takes no more than (16*128*8)/100 = 2.8 minutes if the

network bandwidth is completely used. The original placement

of 16 files and 128 chunks follow the geometric distribution.

For every experimental round, the time elapsed to finish

PDLB, DLRA and HDFS Federation load balancer is

measured. Eight runs are performed for a particular PU and the

average time needed for implementing the three algorithms is

computed. Note that each data node randomly selects three

samples.

8.2 Experimental Results
The experimental results are demonstrated in Fig. 11a, reveals

the setup of the experiment. Fig. 11b, shows the time required

for carrying out PDLB, DLRA and HDFS Federation load

balancer. PDLB clearly outperforms HDFS Federation load

balancer and DLRA.

Fig. 11a: Experimental Environment Setup

Fig. 11b: Time vs. PU

9. CONCLUSION
In the current study, a performance-driven load balancing

protocol using modified firefly algorithm for dealing with the

load imbalance issue in huge-scale, dynamic as well as

distributed emerging file systems in the clouds has been

suggested. PDLB strives for balancing the storage load of both

the master nodes as well as the data nodes by taking into

consideration physical network locality, communication cost,

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19

C
D

F

Load

DLRA r=10 DLRA r=100 DLRA r=1000

PDLB r=10 PDLB r=100 PDLB r=1000

0

10

20

30

40

50

60

8 16 32 64 99

Ti
m

e
(M

in
u

te
s)

Pu
PDLB DLRA Hadoop

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.40, May 2018

49

movement cost and node heterogeneity in terms of both storage

and compute.

If no representative real workloads are present in terms of

distribution of chunks in a storage system in the public domain,

the performance of PDLB is investigated against DLRA and

Hadoop HDFS through synthesized probability distribution of

chunks. The synthesis workloads stress test the protocols

through the creation of a few data nodes and master nodes

which are heavily loaded.

The computer simulation results indicate that PDLB

outperforms DLRA and Hadoop HDFS Federation load

balancer about load balance factors, communication and

movement costs as well as algorithmic overheads.

Furthermore, PDLB exhibits a fast-convergent rate as

compared to DLRA and HDFS. The efficacy of PDLB is

additionally proved with real-implementations with small-scale

cluster environments.

10. REFERENCES
[1] Grossman, Robert L., Yunhong Gu, Michael Sabala, and

Wanzhi Zhang. "Compute and storage clouds using wide

area high performance networks."Future Generation

Computer Systems 25, no. 2 (2009): 179-183.

[2] Xiao, Zhen, Weijia Song, and Qi Chen. "Dynamic

resource allocation using virtual machines for cloud

computing environment." Parallel and Distributed

Systems, IEEE Transactions on 24, no. 6 (2013): 1107-

1117.

[3] Hsiao, Hung-Chang, Hsueh-Yi Chung, Haiying Shen, and

Yu-Chang Chao. "Load rebalancing for distributed file

systems in clouds." Parallel and Distributed Systems,

IEEE Transactions on 24, no. 5 (2013): 951-962.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google

File System,” Proc. 19th ACM Symp. Operating Systems

Principles (SOSP ’03), pp. 29-43, Oct. 2003.

[5] Hadoop Distributed File System,

http://hadoop.apache.org/hdfs/, 2012.

[6] L. M. Ni and K. Hwang, “Optimal Load Balancing in a

Multiple Processor System with Many Job Classes,” IEEE

Trans. Software Eng., vol. 11, no. 5, pp. 491–496, May

1985.

[7] L. M. Ni, C.-W. Xu, and T. B. Gendreau, “A Distributed

Drafting Algorithm for Load Balancing,” IEEE Trans.

Software Eng., vol. 11, no. 10, pp. 1153–1161, Oct. 1985.

[8] Zhang, Qi, Mohamed Faten Zhani, Shuo Zhang, Quanyan

Zhu, Raouf Boutaba, and Joseph L. Hellerstein. "Dynamic

energy-aware capacity provisioning for cloud computing

environments." In Proceedings of the 9th international

conference on Autonomic computing, pp. 145-154. ACM,

2012.

[9] Eastlake, Donald, and Paul Jones. "US secure hash

algorithm 1 (SHA1)." (2001).

[10] Li, Tonglin, Xiaobing Zhou, Kevin Brandstatter,

Dongfang Zhao, Ke Wang, Anupam Rajendran, Zhao

Zhang, and Ioan Raicu. "ZHT: A light-weight reliable

persistent dynamic scalable zero-hop distributed hash

table." In Parallel & Distributed Processing (IPDPS), 2013

IEEE 27th International Symposium on, pp. 775-787.

IEEE, 2013.

[11] McNett, Marvin, Diwaker Gupta, Amin Vahdat, and

Geoffrey M. Voelker. "Usher: An Extensible Framework

for Managing Clusters of Virtual Machines." In LISA,

vol. 7, pp. 1-15. 2007.

[12] C. A. Waldspurger, “Memory resource management in

VMware ESX server,” in Proc. of the symposium on

Operating systems design and implementation (OSDI’02),

Aug. 2002.

[13] Abu-Libdeh, Hussam, Paolo Costa, Antony Rowstron,

Greg O'Shea, and Austin Donnelly. "Symbiotic routing in

future data centers." ACM SIGCOMM Computer

Communication Review 41, no. 4 (2011): 51-62.

[14] Balasangameshwara, Jasma, and Nedunchezhian Raju.

"Performance-driven load balancing with a primary-

backup approach for computational grids with low

communication cost and replication cost." Computers,

IEEE Transactions on62, no. 5 (2013): 990-1003.

[15] Naor, Moni, and Udi Wieder. "A simple fault tolerant

distributed hash table." InPeer-to-Peer Systems II, pp. 88-

97. Springer Berlin Heidelberg, 2003.

[16] Li, Tonglin, Xiaobing Zhou, Kevin Brandstatter,

Dongfang Zhao, Ke Wang, Anupam Rajendran, Zhao

Zhang, and Ioan Raicu. "ZHT: A light-weight reliable

persistent dynamic scalable zero-hop distributed hash

table." In Parallel & Distributed Processing (IPDPS), 2013

IEEE 27th International Symposium on, pp. 775-787.

IEEE, 2013.

[17] H. Shen and C.-Z. Xu, “Locality-Aware and Churn-

Resilient Load Balancing Algorithms in Structured P2P

Networks,” IEEE Trans. Parallel and Distributed Systems,

vol. 18, no. 6, pp. 849-862, June 2007.

[18] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp,

and I. Stoica, “Load Balancing in Dynamic Structured

P2P Systems,” Performance Evaluation, vol. 63, no. 6, pp.

217-240, Mar. 2006.

[19] Birman, Ken. "The promise, and limitations, of gossip

protocols." ACM SIGOPS Operating Systems Review 41,

no. 5 (2007): 8-13.

[20] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F.

Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: A

Scalable Peer-to-Peer Lookup Protocol for Internet

Applications,” IEEE/ACM Trans. Networking, vol. 11,

no. 1, pp. 17-21, Feb. 2003.

[21] A. Rowstron and P. Druschel, “Pastry: Scalable,

Distributed Object Location and Routing for Large-Scale

Peer-to-Peer Systems,” Proc. IFIP/ACM Int’l Conf.

Distributed Systems Platforms Heidelberg, pp. 161-172,

Nov. 2001.

[22] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.

Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels, “Dynamo: Amazon’s Highly Available

Key-Value Store,” Proc. 21st ACM Symp. Operating

Systems Principles (SOSP ’07), pp. 205-220, Oct. 2007.

[23] HDFS Federation,

http://hadoop.apache.org/common/docs/r0.23.0/ hadoop-

yarn/hadoop-yarn-site/Federation.html

[24] Sagan, Hans. Space-filling curves. Vol. 18. New York:

Springer-Verlag, 1994.

[25] Wolski, Rich, Neil T. Spring, and Jim Hayes. "The

network weather service: a distributed resource

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.40, May 2018

50

performance forecasting service for

metacomputing." Future Generation Computer

Systems 15, no. 5 (1999): 757-768.

[26] Heger, Dominique. "Hadoop Performance Tuning-A

Pragmatic & Iterative Approach." CMG Journal (2013).

[27] Balasangameshwara, Jasma, and Nedunchezhian Raju. "A

hybrid policy for fault tolerant load balancing in grid

computing environments." Journal of Network and

Computer Applications 35, no. 1 (2012): 412-422.

[28] Wang, Ke, Abhishek Kulkarni, Michael Lang, Dorian

Arnold, and Ioan Raicu. "Using simulation to explore

distributed key-value stores for extreme-scale system

services." In Proceedings of SC13: International

Conference for High Performance Computing,

Networking, Storage and Analysis, p. 9. ACM, 2013.

[29] Raicu, Ioan, Ian T. Foster, and Pete Beckman. "Making a

case for distributed file systems at exascale."

In Proceedings of the third international workshop on

Large-scale system and application performance, pp. 11-

18. ACM, 2011.

[30] Zhu, Yingwu, and Yiming Hu. "Efficient, proximity-

aware load balancing for DHT-based P2P

systems." Parallel and Distributed Systems, IEEE

Transactions on 16, no. 4 (2005): 349-361.

[31] Shen, Haiying, and Cheng-Zhong Xu. "Locality-aware

and churn-resilient load-balancing algorithms in

structured peer-to-peer networks." Parallel and

Distributed Systems, IEEE Transactions on 18, no. 6

(2007): 849-862.

[32] Hsiao, Hung-Chang, Hao Liao, Ssu-Ta Chen, and Kuo-

Chan Huang. "Load balance with imperfect information in

structured peer-to-peer systems." Parallel and Distributed

Systems, IEEE Transactions on 22, no. 4 (2011): 634-649.

[33] Hua, Xiayu, Hao Wu, Zheng Li, and Shangping Ren.

"Enhancing throughput of the Hadoop Distributed File

System for interaction-intensive tasks." Journal of Parallel

and Distributed Computing 74, no. 8 (2014): 2770-2779.

[34] Yang, Xin-She. Nature-inspired metaheuristic algorithms.

Luniver press, 2010.

[35] Tilahun, Surafel Luleseged, and Hong Choon Ong.

"Modified firefly algorithm." Journal of Applied

Mathematics 2012 (2012).

[36] Chatterjee, A.; Mahanti, G. K.; Chatterjee, A. (2012).

"Design of a fully digital controlled reconfigurable

switched beam conconcentric ring array antenna using

firefly and particle swarm optimization algorithm".

Progress in Elelectromagnetic Research B 36: 113–131.

IJCATM : www.ijcaonline.org

