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ABSTRACT 
Distributed file systems are the fundamental units for cloud 

applications where in the data node concurrently serves the 

computing and storage functions. In these file systems, a file is 

split by a master node into a set of file chunks and allotted to 

separate data nodes such that various jobs can be carried out in 

parallel across the data nodes. However, the unpredictability of 

the nodes and dynamism in the number of files raise the need 

for uniform re-distribution of files to prevent the adverse 

effects of load imbalance.   

Hence, the latest enhancement to distributed file systems is a 

decentralized and asynchronous load rebalancing algorithm 

that exploits both heterogeneity and movement cost for file 

chunk allocation among data nodes. But, the load rebalancing 

protocol has its basis in a randomized method wherein the data 

node periodically collects and sorts the storage load status of an 

instance of arbitrary chosen data nodes without considering 

their computational capabilities or the physical proximity 

information thereby introducing not only considerable 

workload on the data nodes but also high overhead on message 

exchanges among data nodes thus leading to reducing 

scalability. Moreover, the distributed load re-balancing 

approach does not consider the additional redundant overhead 

on the data nodes from the federated, load imbalanced master 

nodes.       

In the current study, a completely distributed performance-

driven load balancing approach (PDLB) that employs Zero-

Hop Hash Table (ZHT) and Modified Firefly Algorithm 

(MFA) is suggested for coping with the load imbalance issue 

on both master node and data node. The aim of PDLB is to 

arrive at data allocations among nodes that could achieve 

maximum resource utilization at optimized movement cost and 

minimized message exchanges and algorithmic overhead. The 

experimental results indicate that PDLB performs better than 

the earlier distributed protocol about overhead on message 

exchanges, scalability, movement cost, load imbalance factors 

as well as algorithmic overheads.  

General Terms 
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Distributed File Systems 

Keywords 
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1. INTRODUCTION 
Cloud is an architecture which offers resources and services 

across the Internet. Storage clouds offer storage services, while 

data clouds provide data managing services and computing 

clouds provide computational services. Mostly these are 

layered for creating stacks of cloud services which serves as 

computing platforms to develop cloud-based application [1].  

Distributed file systems are the fundamental units in cloud 

computing applications. A file in a distributed file system is 

split into a set of file chunks and allotted to separate data nodes 

such that various jobs such as chunk creation, deletion, 

replication and MapReduce jobs may be carried out in parallel 

among the data nodes [5].  

But, due to the unpredictability of the nodes and dynamism in 

the data and number of files, there is a need for uniform re-

distribution of data in distributed file systems to prevent the 

adverse effects of load imbalance. Hence, resource utilization 

of the node and load balancing among nodes are critical 

function for distributed file systems in a cloud. 

The benefits of using cloud computing for distributed file 

systems as illustrated by Grossman et al [1] are; first the data in 

a storage cloud can be easily replicated and second once the 

information is stored in clouds, it can wait for the computing 

jobs [2]. The key enabling technologies for cloud based 

distributed file systems include MapReduce programming 

paradigm, distributed file systems virtualization among others 

[3]. These methods have an emphasis on scalability and 

comprises of resources that may randomly fail and join when 

maintaining system dependability.      

1.1 Background 
Current best distributed file systems in clouds are the Google 

GFS [4] and Hadoop HDFS [5]. Applications which function 

on these file systems have huge datasets and a generic file is 

gigabytes to terabytes in size. Hence these file systems ought to 

offer high aggregate data bandwidth [5].  

HDFS provides interfaces for applications for moving 

themselves close to where data is positioned as it is efficient if 

computations demanded by applications is implemented nearer 

the information it functions on. This approach adopted by 

HDFS decreases network congestion while increasing the total 

throughput of the model [5].   

However, “Google GFS” [4] and “Hadoop HDFS” [5] rely on a 

“centralized master node” for balancing the load of its data 

nodes. They distribute the file chunks to data nodes in a 

uniform manner so that MapReduce jobs may be executed in 

parallel. They also employ a standalone master node that 

gathers information on the file chunk locations and migrates 

excessive file chunks from data nodes. Due to this approach, 

the master node is under a great amount of workload which 

linearly scales with system size thereby becoming a 
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performance bottleneck as well as the one point of failure.  

Also, as the centralized method does not regard the cost of load 

migrations [6], [7] it may be unsuccessful in Google GFS [4] 

and Hadoop HDFS [5] wherein the data nodes concurrently 

serve the computing and storage functions.  

Google GFS [4] and Hadoop HDFS [5] employ periodic load 

information exchange policy. In this policy, the load status 

information is disseminated or collected at regular intervals. 

Even though this approach is simple, it is essential to determine 

the most appropriate dissemination period as overheads due to 

periodic communication increases system loads and reduces 

scalability. In periodic information exchange approach, a fixed 

quantity of state-collection overheads is induced in the model 

regardless of whether the information will be used. Too 

frequent updates induces high communication overhead and 

too few updates makes the system state outdated [14].  

Distributed hash tables (DHT) are the important building 

blocks for large scale distributed systems [15] like Google GFS 

and Hadoop HDFS.  ZHT refers to a zero-hop DHT [16].   It 

focuses on being a basic unit for future high-end computing 

models with the aim of providing availability, error tolerance, 

excellent throughputs, scalability, persistence as well as less 

latency. ZHT also possesses various significant attribute 

ensuring that it is a better than other DHTs as well as key-value 

stores. They are light weight, permitting data to join as well as 

leave in a dynamic fashion, effectively propagating events 

through the system, scalable and support for operations like 

offering lock-free concurrent keys/value alterations additional 

to inserts/lookups/removals [16].   

1.2 Motivation 
There has been a great amount of effort recently in the 

development of load balancing protocols for distributed files 

systems for realizing greater performance in cloud 

environments. However, practical samples of these issues are 

regarded as NP-complete [1]. Therefore, the current study’s 

motivation lies in the requirement of excellent methods which 

consider cloud infrastructure, resource heterogeneity and 

volatility, communications overhead as well as movement cost. 

The primary aim is the reaching of solutions which have least 

make-span, effective network traffic as well as resource usage, 

a well-balanced load, excellent data center dependability as 

well as flexibility at the time of change to the files and nodes.  

There is an inherent trade-off to arrive at the solution. For 

overload avoidance, the utilization of data nodes should be 

reasonably low in order to avoid possible overloads in the 

event that the resource requires increases at a later stage. For 

optimized resource utilization, the utilization of data nodes 

should be reasonable high to enhance the overall throughput of 

the system.  

It is difficult to propose a load balancing strategy for huge-

scale, dynamic as well as data-intensive clouds. This obstacle 

is the motivation to expand the load rebalancing technique 

suggested in [3] and combine it with the dynamic resource 

allocation approach [14]. Problems like metadata management, 

replication strategies and file consistency systems are not 

within the scope of the current work.  

1.3 Contribution 
The contributions of the current study are several. A load 

balancing method has been proposed for distributed file 

systems in data-intensive cloud computing environment called 

PDLB. PDLB employs Zero-Hop Hash Table (ZHT) and 

Modified Firefly Algorithm (MFA) for arriving at load 

balancing decisions. Given that cloud architectures are 

dynamic with differing network topologies; we consider the 

dynamic network topology through the generation of 

topologies with nodes of differing capabilities and differing 

bandwidth between the connecting links by considering their 

physical network proximity. 

As far as is known, PDLB is the first that tackles all that which 

has been mentioned below:  

1. A resource allocation approach using MFA that can 

obviate overloads in the system (master node and 

data node) efficiently while reducing the cost of 

message exchanges among/ between master/data 

nodes and algorithmic overhead. 

2. PDLB considers distributed cloud infrastructure, 

resources as well as network heterogeneity, 

movement cost as well as resource unpredictability 

by configuring the system as a ZHT network.  

The primary contributions of the current work to the previous 

literature are given below: 

1. Mutual information feedback strategy as well as 

neighbor selection strategy suggested in [14] are 

improved even more. 

2. Using ZHT for estimation of the presence as well as 

efficacy of nodes through the simplification of model 

of decision making.  

3. Modified Firefly Optimization Algorithm (MFA) is 

integrated to PDLB for arriving at optimal load 

allocation paths.  

4. Analytical models are derived for validating the 

efficacy of PDLB.   

2. RELATED WORK 
State-of art distributed file systems in clouds depend on master 

nodes for managing metadata of the file systems as well as for 

balancing loads of data nodes based on the metadata [3]. 

However, as the quantity of data nodes and files rises linearly, 

the master node becomes a performance bottleneck.  

Hence, the latest HDFS enhancement [23] was a distributed 

approach with multiple master nodes. However, HDFS 

statically assigns file system workloads to the master node and 

does not support adaptive load migration mechanism among 

master nodes. Also, the master nodes are independent of each 

other and the data nodes have to periodically send heartbeat 

messages to all master nodes in the cluster.  

Hsiao et al [3] studied the load rebalancing issue in distributed 

file systems to huge-scale, dynamic as well as data-intensive 

clouds. The aim was the allocation of chunks of files in a 

uniform manner amongst the data nodes so that no data nodes 

oversees management of excess quantity of chunks. 

Additionally, the movement cost, resource heterogeneity and 

physical network locality was also taken into consideration for 

addressing the load imbalance issue among data nodes.  

However, Hsiao assumed the following: 

1. Randomized load re-balancing approach. 

2. Each data node executes gossip-based aggregation 

algorithm for collecting storage load status of an 

instance of arbitrarily chosen data nodes.  

3. There is one bottleneck resource i.e. storage for 

optimization. 
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4. Data nodes are arranged as a network based on 

DHTs. 

5. Load re-balancing approach is not dependent on the 

DHT algorithms. 

6. Re-balancing approach greatly relies on the data node 

arrival as well as departure operations for migrating 

file chunks amongst data nodes.  

7. Periodic shifting of load among light-loaded data 

nodes 

8. Pairing of under-loaded data nodes with multiple 

over-loaded data nodes 

9. Load management of the master node is not 

considered   

The assumptions in the load re-balancing approach [3] for 

distributed file systems leads to the following limitations:  

1. The randomized load re-balancing approach only 

considers the storage capacity of the data node and 

does not take into consideration the data node’s 

overall capability which practically ought to be a 

function of computation power storage space and 

network bandwidth [17], [18]. This is critical in 

distributed file systems as the data nodes 

concurrently serve both the computing and storage 

functions.  

2. Periodic piggybacking of load status leads to 

accumulation of information regardless of whether 

the information will be used. Also, too frequent 

updates induce high communication overhead which 

inhibits system scalability and too few updates make 

the system state outdated causing adverse effects on 

the load balancing approach. Scalability and 

responsiveness are critical functions in huge-scale 

distributed file systems like Google GFS [4] as well 

as Hadoop HDFS [5].   

3. Each data node executes gossip-based aggregation 

algorithm for collecting storage load status of an 

instance of arbitrarily chosen data nodes. The 

implication of small bounded message size as well as 

relatively slow periodic message exchange join to 

restrain the data carriage capability of the gossip-

based aggregation protocol. 

4. Each data node in the load re-balancing approach 

executes a DHT algorithm like Chord [20], Pastry 

[21] or Amazon’s Dynamo [22]. DHT’s Chord and 

Pastry scale logarithmically with the system scales. 

Amazon’s Dynamo is a key value storage model 

which certain Amazon core services utilize for 

providing an ‘always-on’ experience. Dynamo is a 

zero-hop DHT.  An important shortcoming of 

Dynamo is that it is an internal Amazon project that 

is not capable of being utilized outside Amazon’s 

architecture. Also, the routing time for Dynamo is 

log (N) and it does not support append operation. 

5. The Re-balancing approach greatly relies on the data 

node arrival as well as departure operations for 

migrating file chunks amongst data nodes and 

ignores the dynamism in the file chunks. Periodic 

shifting of load among light-loaded data nodes and 

pairing of under-loaded data node with multiple over-

loaded data nodes adds additional algorithmic 

overhead. 

6. As the master nodes in HDFS federation [23] are 

federated with no co-ordination among themselves, 

the data nodes have to periodically send heartbeat 

messages to all master nodes in the cluster. This 

approach lacks adaptive load migration among 

master nodes and adds additional messaging and 

movement overhead on the data nodes. Also, the load 

balancers in HDFS do not distinguish between 

various locations of remote clusters when balancing 

the load.  

Hence, the objective of PDLB is to arrive at allocations as 

uniformly as possible among nodes by not only exploiting 

resource heterogeneity in terms of storage, compute and 

physical network proximity but also take into consideration the 

load transfer overhead, algorithmic overhead and movement 

cost so that no node must manage excess amount of data.  

To achieve the objective, the nodes in PDLB are structured as a 

ZHT network and every node executes a ZHT algorithm. 

ZHT’s has all the advantages of DHT’s which are availability, 

error tolerance but simultaneously achieves the advantages of 

least latency typically related to idle central indexes [16] which 

is very essential for state-of-art distributed file systems.    

Modified Firefly Algorithm (MFA) [35] has been integrated to 

PDLB for arriving at optimal load allocation paths for each 

node. It has been shown in [36] that MFA is better than Particle 

Swarm Optimization (PSO) in its applications.       

The remaining sections are structured as follows: Section   

Remainder of this work is organized as follows: Section 3 

reviews the load balancing problem. The overview of the 

system model is given in section 4. Section 5 discusses the 

proposed algorithm. Section 6 offers a performance 

comparison of PDLB as well as DLRA. Section 7 details the 

setup of the simulation and Section 8 gives the results of the 

experiments. Finally, section 9 concludes the work.  

3. LOAD BALANCING PROBLEM  
The aim in the current work is the designing of a load 

balancing protocol to re-allocate data in a uniform manner 

amongst nodes of a huge scale distributed file system by 

exploiting resource heterogeneity, physical network proximity, 

movement cost and communication cost [5], [23].  

Load balancing in PDLB is dynamically and independently 

performed at three levels – the primary master node level, 

secondary master node level and data node level. Load 

balancing at the primary/secondary master node levels balances 

the storage at the file pool level. Load balancing at the data 

node level balances the storage of data nodes.  

Note that with multiple master nodes, different categories of 

applications and users can be isolated to different namespaces 

[23]. PDLB employs this isolation strategy given by HDFS 

Federation at two levels namely the primary master node level 

and secondary master node level and allows only those 

primary/secondary master nodes that share the same category 

of application or user; to adaptively migrate the storage load 

among themselves.  

Like HDFS Federation [23], PDLB balances only the data 

among the primary/secondary master nodes, taking into 

consideration the respective primary/secondary master node’s 

namespace overhead but does not balance the namespace of the 

primary/secondary master nodes.  

Let Ʈ be the ideal amount of data (i.e. number of files on 

primary/secondary master node or number of chunks on data 
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node) that a node i is needed to manage in a system-wide load 

balanced state, which is [3] 

Ʈi =ƴi Ƥi                                                           (1) 

Where “ƴ is the storage load per unit capacity a node i ought to 

manage in the load balanced state and Ƥi is the storage capacity 

of the node” [3].  

ƴi =m/Ƥk                                                                                   (2) 

Wherein “m refers to the quantity of files (if k is a 

primary/secondary master node) or number of chunks (if k is a 

data node) stored in the rack. Hence, the basis of this design is 

to make sure that the amount of data managed by node i is 

proportional to its storage capacity”.  

PDLB’s aim is to decrease the load imbalance factor in every 

node i as 

|| Li - Ʈi ||                                                                                 (3) 

wherein Li represents the current storage load of node i and ||.|| 

denotes the absolute value function [3]. It is to be noted that 

node collectively refers to primary/secondary master node and 

data node.  

The movement cost Mc(i,j) between node i and node j is 

computed thus: 

Mc(i,j) = m/min(Bw,Aj)                                                   (4) 

Where Bw is network bandwidth between node i as well as j 

and Aj is the available I/O speed at node j. A similar Eq. can be 

found in [33].   

In PDLB, it is possible that a set of distinct nodes intend to 

share the load of node i with the aim of minimizing the load 

imbalance factor as given in Eq. (3). Thus, i gives first 

preference to nodes belonging to same rack with minimum Mc. 

If a node in a cluster is unbalanced and if it cannot find another 

candidate node in the same cluster, then the node will look up 

for another node in another remote geographically close cluster 

with minimum Mc.  

4. SYSTEM OVERVIEW 
In this section, the original HDFS Federation structure is 

reformulated with a two-layer master node architecture as 

illustrated in figure 1. The extended master node structure 

given by Xiayu Hua et al. [33] is used for setting the 

architecture of PDLB. However, PDLB does not use in its 

architecture the cache support specified by Xiayu Hua et al.  

4.1 Architecture 
A huge-scale distributed file system comprising a set of data 

nodes DN, a set of primary master nodes MN and a set of 

secondary master nodes SN in a cloud is considered, where the 

cardinality of DN, MN and SN are d, m and s respectively. The 

SNs are applied to every rack of the DNs [33]. An SN is 

configured from an existing DN machine on each rack [33]. A 

scoring system is used by considering the storage space and 

computational capacity of DNs for selecting DNs eligible for 

acting as SNs. A DN with highest score is designated SN for a 

particular rack. To an MN, each SN is its DNs [33]. To a DN, 

SN in its rack is their MN [33]. The modifications needed in 

HDFS Federation structure for incorporating the structural 

extension are minimal and is taken from [33].    

The secondary master nodes and primary master nodes are 

grouped into clusters (as given in HDFS Federation [23]) based 

on their physical network proximity.  Each secondary master 

node registers with all primary master nodes in the cluster and 

the secondary master nodes are used as common storage by all 

primary master nodes of the cluster [23]. It is assumed that the 

data nodes can be arbitrarily upgraded, substituted and 

appended in the system. 

A single primary master node offers no isolation in multi-user 

environments. For example, an experimental application can 

overload the primary master node and slow down production 

critical applications. Hence, with several primary master nodes, 

different groups of applications as well as users may be 

separated to different namespaces [23]. PDLB employs this 

isolation strategy given by HDFS Federation and allows only 

those primary master nodes that share the same category of 

application or user; to adaptively co-ordinate among one other.    

In the system, a set of files are stashed in the m primary master 

nodes. The group of files is denoted as F. The files in F can be 

randomly generated, discarded or added. All files fi ∈ F are 

split into a set of disjoint, fixed-size chunks represented by cf. 

The chunks are then allocated to distinct data nodes such that 

MapReduce tasks may be carried out in parallel across the data 

nodes.   

A file pool is a set of files that belong to a single namespace 

[23]. Data nodes store file chunks for all file pools in the 

cluster. It is managed independently of other file pools.  

Each chunk of a file has an identifier named using SHA1 [9].     

Every data node, secondary master node, primary master node 

and cluster also has a unique ID. Cluster ID is added to identify 

all nodes in the cluster. The nodes of the distributed file system 

are organized as a ZHT network [10]. The ZHT network is 

initialized so that each two nodes with adjacent IDs are 

geometrically close. With the specified IP address of 

participant nodes (data/master) in the storage cloud, the space-

filling curve technique [24] is used to designate IDs to the 

nodes, ensuring physically near nodes have adjacent IDs [3].  

A data node comprises of ZHT instances as shown in Fig. 1. 

The ZHT instance handles requests from MNs or SNs during 

failure of its corresponding MNs. A data node can have several 

ZHT samples distinguished with the IP address and port. A 

ZHT instance is particular to the category of application of the 

MN. All ZHT instances belonging to a particular category of 

application of MNs are fully connected. Whenever a ZHT 

instance gets overloaded, it communicates with other ZHT 

instances for achieving PDLB. 

 

Fig. 1. PDLB High Level Cluster-Architecture 

On MN & SN runs a ZHT server. ZHT server acts as a data 

management building block for its namespace and file pool as 

shown in Fig. 1. ZHT instances and ZHT servers runs the 
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PDLB. 

For discovering file chunks, the ZHT lookup operation is 

carried out. ZHTs are used due to the following reasons [10]: 

1. Optimization is carried out for high-end 

computational systems and is capable of surviving 

several failures and also ensuring least overhead.  

2. It is flexible, supporting nodes joining and departing 

dynamically. 

3. It has all the advantages of DHT’s excellent 

availability and error tolerance, but simultaneously 

achieves the advantages of minimum latency 

typically related to idle centralized indexes.    

4.2 Resource Heterogeneity & Fair 

Scheduling 
PDLB employs the distributed monitoring system such as 

Ganglia for capturing and dynamically reporting the various 

system performance statistics at the rack, cluster and remote 

cluster level. Appendix A, in the supplementary material 

summarizes the most relative performance tuning parameters 

of HDFS used in PDLB.  Note that “CPU utilization” and 

“compute load” represented as PC are interchangeable in this 

paper. PDLB assumes that there are four bottleneck resources 

for optimized load allocations to the nodes and a node’s 

capacity is function of compute load, network bandwidth, 

current available I/O speed and storage load. The pluggable 

MapReduce fair scheduler [5] is employed by PDLB for 

optimized resource management. To overcome the drawbacks 

of periodic approach as discussed in the background section, 

event-driven approach is employed by PDLB to reload the 

allocation file. The number of maps and reduces that can run 

on a given data node is dynamically determined based on the 

storage load and compute load of the data node.               

5. PERFORMANCE-DRIVEN  

LOAD BALANCING ALGORITHM 
PDLB is applied to MNs, SNs and DNs for achieving optimal 

load balancing. MNs and SNs adopt the isolation strategy 

proposed in HDFS Federation [23] for further optimizing 

PDLB.   

5.1 PDLB Policies 
The ‘Neighbor Node Selection Policy (NNSP)’, ‘Enhanced 

Mutual Information Feedback Policy (EMIF)’, ‘Load Status 

Monitoring Policy (LSMP)’ & ‘Performance Benefit Factor 

(PBF)’ used in PDLB is detailed in Appendix A of the 

supplementary material of this article as these policies are 

adopted with minor changes from [3], [4], [5], [14], [23] and 

[27].   

5.2 Brief Introduction to Modified Firefly 

Optimization Algorithm 
By utilizing the load imbalance factor, a modified Firefly 

optimization algorithm (MFA) based load allocation algorithm 

is presented to decide the load allocation for nodes in the 

system.  

The concept of Firefly algorithm (FA) was first introduced in 

[34]. FA is a nature inspired meta-heuristic protocol that owes 

its inspiration to the flashing behavior or fire flies [34]. The 

main aim for the firefly flash is to function as a single system 

for attracting other fire flies.  

Xin-She yang developed FA through the following 

assumptions [34]:  

1. That all fireflies are attracted to others,  

2. Brighter fireflies attract less bright ones with 

attractiveness being proportional to brightness and  

3. If no brighter fireflies are present, fireflies travel in 

arbitrary directions. 

Surafel Luleseged Tilahun & Hong Choon Ong proposed a 

modified FA [35]. In modified FA (MFA), the arbitrary 

movement of the brighter firefly (as stated above in iii.) is 

modified by generating random directions for determining the 

optimal direction wherein brightness increases.  

In FA, the brightness is related to the objective function [34]. 

The designation of attractiveness in MFA is altered so that the 

impact of the objective function is magnified [35].  

To apply MFA to the load balancing problem, the following are 

required: 

1. Define objective function for both DNs and MNs. 

2. Utilize the MFA method to search the solution space 

& arrive at a near optimal solution vector wherein the 

updating procedure of brightest firefly is altered for 

keeping optimal result throughout all iterations.   

3. Define an optimization rule for both DNs, MNs and 

SNs which will either be maximized or minimized. 

The optimization rules of PDLB are to 

1. Maximize resource utilization of nodes 

2. Minimize movement cost and message exchanges 

between nodes 

3. Minimize load imbalance factor 

4. Minimize algorithmic overhead 

The solution vector is the load allocation plan which applies 

the optimization rules. As given in MFA, the brightest firefly is 

the firefly with current global best solution [35]. In PDLB 

approach, current load on the node i (Li) is considered a firefly. 

The brightest firefly is the node i with highest performance 

benefit factor represented by β.      

The following sub-sections outline the search space and the 

performance-driven load balancing function as the objective 

function for applying MFA to DNs, MNs & and SNs.        

5.3 Modified Firefly Algorithm 
The vector Vi is used for indicating the node selection policy of 

node i. V = VN+VL (refer ‘Neighbor Node Selection Policy’ 

and ‘Enhanced Mutual Information Feedback Policy’ sections 

of Appendix A of the supplementary material). The neighbor 

vector VN  & local vector VL consists of one entry per node 

with the node’s ID as the index of each entry followed by the 

node’s network address and its Ʈ as the entries for remote 

clusters and local clusters respectively.  

Ϝi
k = (Mc(i,k)+(PCk)

-1)-1-(Lk-Ʈk)                                                (5) 

Where Ϝi
k is the benefit factor of transferring load from node i 

to node k and PCk is the compute load of node k. For 

simplicity, Ϝi
k represents the benefit factor of no load transfer 

from node i, which is in accordance with the assumption of 

MFA that if no optimal direction is generated, the firefly will 

remain in its current position.   

βi(Lk) = Ϝi
k - Ϝ

i
i                                     (6) 

Where βi(Lk) represents the performance benefit factor of 
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transferring the load to node k from node i. The value of β is 

directly proportional to the brightness of the firefly.  

Vßi[j] = k if βi(Lk)>= 0                                                            (7) 

Where Vßi[j] represents the performance benefit solution 

vector maintained by node i.  

The objective is to find the optimal load transfer path from a 

node using the objective function of maximizing the 

performance benefit factor β.  

Brightness       
       

 

   
f(i,r)                                       (8) 

           
     

    
                            (9) 

Wherein n denotes the quantity of nodes in the system. N[r] 

refers to the quantity of nodes in a Vß of r. 

As the higher brightness can bring current global best solution, 

Eq. (8) becomes the objective function for the MFA-based load 

allocation protocol.   

To determine the optimal load allocation path of a node k with 

highest β, m unit vectors say u1, u2, … ,um are randomly 

generated. An optimal path U is chosen from the randomly 

generated m paths such that the β of node k will increase if 

node k selects that path. Hence, the path of a node k with 

highest β is given by: 

x := x + αU                                   (10)  

Wherein x represents i & r of f(i,r) in Eq. (8) and α refers to an 

arbitrary step length with (0≤α≤1). If such a path is not present 

amongst the arbitrary created solutions, then node k will not 

transfer any load as given in Eq. (7).   

If β of node k is higher than the β of the node x, then node x 

will take the load allocation path towards node k. The index 

update of the node x in the system 

x := x + A0e
(-λz^2)(k-x)+ αє                                                    (11) 

Where z = Mc(k,x), A0 is the attractiveness at z=0, λ is the load 

absorption coefficient and  є vector of random numbers.  

A0 = eΩ(k,x)                                                                              (12) 

Ω(k,x) = Ϝk
k – Fx

x at Mc = 0                                                  (13) 

5.4 Performance Benefit Factor (β) 
PDLB can be integrated as a pluggable with the existing huge-

scale distributed file systems such as Google GFS [4] as well 

as Hadoop HDFS [5].  Particularly, for incorporating PDLB 

with the master nodes in Hadoop HDFS [5], every data node 

employs enhanced mutual information feedback policy to 

piggyback its locally hosted chunks’ data to the master nodes, 

such that the master nodes can collect the locations of chunks 

in the system.  

A master node will not assign further chunks to a heavy data 

node if the data node continues to be heavy for more than (Tp)
q 

time where q≠1 as given in MFA. If for more than (Tp)
q time, 

the number of heavy nodes that continue to be remain heavy 

exceeds |d/q| or |m/q|, then a new node (master/data) request is 

initiated by PDLB. 

Also note that in the distributed load re-balancing approach 

proposed by Hsiao et al [3], storage load-based sorting of data 

nodes in the system is done periodically. In PDLB, such sorting 

is done whenever data is added/deleted, or the node is 

heavy/added/deleted. 

The distributed load re-balancing approach proposed by Hsiao 

et al [3] requires to periodically send load status messages to 

data nodes that are not physically close thereby introducing 

additional overhead on message exchanges, whereas PDLB 

exchanges load status messages among nodes from their local 

and neighbor vector only. 

As PDLB extends the approach in HDFS Federation [23] at 

two levels i.e. primary master nodes level and secondary 

master nodes level, the failure of the master node does not 

prevent the data node from serving other master nodes in the 

cluster because each data node registers to each distinctive 

category master node and to one master node from the set of 

shared category master nodes.  

Note that when a master node is deleted, the corresponding file 

pool at the data nodes is also deleted by PDLB.  

 

Algorithm 1: Algorithm PDLB with MFA 

 

Begin 

1. Objective function: f(x) x=(x1,x2,…,xn) Eq. (8) 

Where x refers to i & r of f(i,r) 

2. For each SN, DN & MN sets 

     For each different application category of MN  

             Create an initial population of fireflies  

             xi (I = 1,2,…n) 

3. Attractiveness A associated with f(x) as A = f(x) 

4. Define load absorption coefficient λ as 2 

While (t < 500) 

      for i = 1 to n (all n fireflies) 

          for j = 1 to m ( m fireflies NNSP) 

              Call LSMP ( Refer Appendix A of Supplementary) 

              Choose optimal path [Eq. (10)] 

              If (Aj > Ai)  

                  Move firefly i toward j [Eq. (11)] 

                  Differ attractiveness with Mc [Eq. (12)] 

                  Evaluate new solutions and update Attractiveness    

                  [Eq. (6) & Eq. (7)] 

              End If 

         End for j 

      End for i 

      Rank fireflies & find the current best 

      Call EMIF        

  End While 

 

6. PERFORMANCE COMPARISON OF 

PDLB and DLRA  
Table 1 compares the time complexity of PDLB and 

Distributed Load Rebalancing Algorithm in short (DLRA) [3].  
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Table. 1. Performance Comparison of PDLB and DLRA 

Comparison 

Parameter 

Symbol 

Descript

ion 

PDLB DLRA [3] 

Routing Time C = 

Max. 

size of 

the 

network 

0 to 2 O(c) 

Number of 

algorithmic 

rounds in 

expectation 

so that 

system 

comprises no 

light nodes 

K is the 

initial 

number 

of heavy 

data 

nodes  

O(log log K) O(log K) 

A light data 

node gathers 

a number of 

vectors per 

algorithmic 

round 

Per 

algorith

mic 

round, nv 

number 

of 

vectors 

are 

gathered 

by a light 

data 

node. 

Each 

data 

node 

contacts 

a set of 

chosen 

data 

nodes in 

the 

system 

and 

generates 

a vector 

V   

O(|V|log|V|) O(nv|V|log|

V|) 

Spreading of 

a message in 

a network 

and rounds of 

communicati

on 

Each 

data 

node 

contacts 

a set of 

chosen 

data 

nodes in 

the 

system 

and 

genreates 

a vector 

V 

O(log|V|loglog

V)  

rounds of 

communication 

and  

O( |V| 

loglog|V|)  

messages 

O(log|V|) 

rounds of 

communicat

ion and 

O(|V|log|V|) 

messages  

 

Thus, from Table 1, it can be concluded that PDLB leads to 

dramatically lower network congestion and achieves quicker 

convergent rate about the quantity of algorithmic rounds 

required to ensure that the model contains no light nodes as 

compared to DLRA. The basic algorithm of PDLB is available 

in Appendix B of the online supplementary material.   

 

7. SIMULATIONS 

7.1 Simulation Setup 
The performance of PDLB is tested through Java based 

computer simulations. In the simulations, PDLB is carried out 

by using ZHT_Sim [28], a zero-hop distributed hash table 

simulator for extreme scale system services written in Java. 

The number of files and file chunks originally hosted by a node 

in the simulations follow the geometric distribution, permitting 

stress tests as proposed in [3]. PDLB is compared with 

Distributed Load Rebalancing Algorithm in short (DLRA) [3]. 

The number of random directions considered is 20.   

Table 2 reveals the values of the variables utilized in the 

simulations and heterogeneous system configurations. A cloud 

network topology connecting the storage nodes is simulated in 

a 2D torus direct network [3], [29].   

Table. 2. Simulation Parameters (tu=time unit, pt=percent) 

Simulation Parameter Value 

Set Cardinality | . | - 

Absolute Value Function || . || - 

Size of system, s 1010 

The number of primary & secondary master 

nodes, m 

10 

The number of data nodes, d 1000 

The period for periodic information exchange, 

Tp 

10 tu 

Number of file chunks, nfc 10,000 

Number of clients 4 

Average storage capacity (ASC) among nodes, 

Sc 

11 

Average processing power (APW) among data 

nodes, Pp  

11 

Maximum and minimum storage capacities is  110 , 2 

Random number that each node contacts, r 70-100 

Chunk allocator factor, q 2 

File size, fs 10 

Chunk size, cs 1 

Mean transfer delay, µ 0.05 tu 

Standard deviation of transfer delay, Ω       50pt 

Storage load per unit capacity, ƴ 0.5 

power-law distribution, α 2 

 

Fig.2 displays the cumulative distribution function (CDF) of 

the data in the simulation, where workload-I represents the 

variation of the geometric distribution. Workload-I indicates 

that a small quantity of nodes originally processes a huge 

amount of data.  
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Fig. 2. The Workload Distribution 

7.2 Simulation Results 
Fig. 3 gives the simulation outcomes of the storage load 

distribution after performing the DLRA and PDLB. The 

simulation outcomes indicate that PDLB performs better than 

DLRA with regard to the storage load imbalance factor 

because PDLB employs MFA to ensure that a heavy data node 

does not overload a light data node during the storage load 

migration and also the master nodes do not further assign 

chunks to overloaded data nodes. On the contrary, in DLRA, 

the storage load migration from a heavy data node to light data 

node may overload the light data node. 

 

Fig. 3. The Load Distribution 

Fig. 4 shows the movement cost of DLRA and PDLB. The 

movement cost of PDLB is less than that of DLRA. This is 

because, DLRA matches the top light data nodes with the top-

heavy data nodes and a light data node is required to shed its 

load to its successor data node in order to accept storage load 

from a heavy data node. In PDLB, a light data node need not 

shed its storage load rather accept the storage load from a 

heavy data node. 

 

Fig. 4. The Movement Cost 

Fig. 5 reveals the total quantity of messages created by a PDLB 

and DLRA. In DLRA, each data node probes a set of other data 

nodes in the system periodically and may reallot its storage 

load from/to the probed data nodes, introducing more 

messages. On the contrary, in PDLB, each data node gathers 

partial system knowledge from its local and neighbor data 

nodes based on the EMIF policy. Only a heavy data node 

reallocates some of its storage load to one of the probed light 

data node through EMIF thereby introducing less messages. 

Also, in PDLB, load status exchange is performed among 

geographically close nodes thereby preventing the messages 

that travel between two nodes, to traverse a long physical 

distance through various physical network links. Also, a data 

node is required to only send its load status to each distinct 

category master node and one geographically close same 

category master node thus again reducing the number of 

messages. 

 

Fig. 5. The Message Overhead 

Both DLRA and PDLB depend on DHT network in the 

simulations. But, in DLRA the data nodes can depart from or 

join the network for load re-balancing thereby raising the 

overheads needed for maintaining DHT structures. Hence, the 

quantity of re-joining operations of PDLB is further 

investigated.  

Fig. 6 illustrates the simulation results. It is seen that in DLRA, 

only light data nodes rejoin the system as successors of heavy 

data nodes. DLRA tries to pair light and heavy data nodes 

precisely. PDLB pairs a heavy data node with compatible light 

data node thus preventing light data nodes from shedding their 
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storage load or rejoining the heavy data nodes. Note the PDLB 

is comparable with the centralized algorithm used in Google 

GFS and Hadoop HDFS. This is because, like the centralized 

algorithm, PDLB does not introduce rejoining overhead as data 

nodes in PDLB need not self-organize or self-heal for rejoining 

operations.  

 

Fig. 6. The Rejoining Cost 

Fig. 7 illustrates the weighted communication cost (WCC) for 

DLRA and PDLB by investigating the network traffic 

introduced in them. The weighted communication cost is 

defined as follows 

            
 ∈ 

                                                               (14) 

Where M denotes the load status messages, sizei is the size of 

the message i and linki represents the communication cost 

incurred by message i . In the simulations, it is presumed that 

the size of each message is identical, i.e. sizei=1 for all i∈M 

with no loss of generosity. Thus, based on (4), the higher the 

WCC, the more physical links utilized for load status message 

exchanges. The simulations reveal that PDLB performs better 

than DLRA in terms of WCC. This is because, each light data 

node in DLRA first finds several matched heavy data nodes 

from its vector. While doing so, DLRA does not exploit 

physical network proximity thus leading to higher WCC as 

compared to PDLB.  

 

Fig. 7: The WCC 

The effect of node heterogeneity in terms of storage and 

computational power is investigated. In this experiment, the 

storage and compute capabilities of the nodes follow the 

power-law distribution, which is the zipf distribution [3], 

[30],[31] and [32]. In, fig. 8, the ratio of the amount of data 

hosted by every node i, to its storage capacity represented by P 

is assessed [3]. Node i tries to make minimum ||P- ƴ || for 

approaching the load balanced state [3]. The simulations 

denote that PDLB outperforms than DLRA. This is because in 

DLRA, light data nodes may need to offload their loads to their 

successor data nodes, so that the light data node can accept 

storage load from a heavy data node.   

 

Fig. 8. The Effect of Data Node Heterogeneity 

By default, the quantity of data nodes and the quantity of 

chunks in the experiments are d=1000 and nfc=10,000 

respectively. Fig. 9 illustrates the effect of varying nfc by 

having nfc=10,000, 20,000 and 80,000 for DLRA and PDLB 

with d=1000. As shown in fig. 9, PDLB adapts well as 

compared to DLRA disregarding the quantity of chunks in the 

system.  

 

Fig. 9: The Effect of Varying nfc (Workload -I) 

The performance effect of different range of random number r 

is investigated. The simulation results are depicted in fig. 10 

where different value of r=10, 100 and 1000 is studied for 

workload-I. As shown in fig. 10, without global knowledge 

PDLB performs very well for r=100 and 10,000 as compared 

to DLRA.  
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Fig. 10: The Effect of Sampling Quality 

8. EXPERIMENTATION 

8.1 Experimental Environment Setup 
The performance is PDLB is evaluated by setting up an inter-

connected cluster running Ubuntu 10.10 with eight 

heterogeneous systems, with each system having a minimum of 

two cores. The specifications of the cluster are given in Table 3 

On each system, the Google Protocol buffers C++ and C 

bindings are installed.  

Table. 3. Cluster Specification 

Sl. 

No. 

Node Processor RAM 

1. Master Intel Core 2 Duo 3 GB 

2. Master Intel Centrino 3GB 

3. Master Intel i7 8GB 

4. Data Intel Centrino 2GB 

5. Data Intel Core 2 Duo 3GB 

6. Data Intel Pentium 3GB 

7. Data Intel Pentium 2GB 

8. Data Intel i3 4GB 

 
ZHT using MPI protocol is then deployed on the cluster. 

Hadoop HDFS Federation version 2.3.0 is installed on the 

cluster with three dedicated master nodes and 5 data nodes. Out 

of the three dedicated master nodes, two master nodes share a 

common application.  PDLB is implemented on the cluster and 

its performance is assessed against the load balancer in HDFS 

Federation and DLRA. 

Four multi-threaded client programs are established in the 

multi-threaded environment for issuing requests to the master 

nodes. Requests are commands for creating directions with 

arbitrarily assigned names and removing randomly chosen 

directories. For emulating the loads of the master node in a 

production system as well as for investigating the impact of the 

master node’s loads on the performance of PDLB, the 

processor cycles available for the master node is limited by 

differing the maximal processor utilization represented by PU, 

PU=8%, 16%, 32%, 64% and 99%.  

Total quantity of files and chunks distributed in file the system 

in our experiment is restricted to 16 and 128 respectively. All 

the nodes are linked with a 100 Mbps fast Ethernet switch. The 

size of a chunk is set to 16MB. Hence, transferring the chunks 

takes no more than (16*128*8)/100 = 2.8 minutes if the 

network bandwidth is completely used. The original placement 

of 16 files and 128 chunks follow the geometric distribution.  

For every experimental round, the time elapsed to finish 

PDLB, DLRA and HDFS Federation load balancer is 

measured.  Eight runs are performed for a particular PU and the 

average time needed for implementing the three algorithms is 

computed. Note that each data node randomly selects three 

samples.   

8.2 Experimental Results 
The experimental results are demonstrated in Fig. 11a, reveals 

the setup of the experiment. Fig. 11b, shows the time required 

for carrying out PDLB, DLRA and HDFS Federation load 

balancer. PDLB clearly outperforms HDFS Federation load 

balancer and DLRA.  

 

Fig. 11a: Experimental Environment Setup 

 

Fig. 11b: Time vs. PU 

9. CONCLUSION 
In the current study, a performance-driven load balancing 

protocol using modified firefly algorithm for dealing with the 

load imbalance issue in huge-scale, dynamic as well as 

distributed emerging file systems in the clouds has been 

suggested. PDLB strives for balancing the storage load of both 

the master nodes as well as the data nodes by taking into 

consideration physical network locality, communication cost, 
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movement cost and node heterogeneity in terms of both storage 

and compute. 

If no representative real workloads are present in terms of 

distribution of chunks in a storage system in the public domain, 

the performance of PDLB is investigated against DLRA and 

Hadoop HDFS through synthesized probability distribution of 

chunks. The synthesis workloads stress test the protocols 

through the creation of a few data nodes and master nodes 

which are heavily loaded. 

The computer simulation results indicate that PDLB 

outperforms DLRA and Hadoop HDFS Federation load 

balancer about load balance factors, communication and 

movement costs as well as algorithmic overheads. 

Furthermore, PDLB exhibits a fast-convergent rate as 

compared to DLRA and HDFS. The efficacy of PDLB is 

additionally proved with real-implementations with small-scale 

cluster environments.  
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