

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.40, May 2018

34

A Comparative Study on Analysis of Various Shortest

Path Algorithms on GPU using OPENCL

Umesh Nayak
UIT, RGPV Bhopal

Rajeev Pandey
PhD, Asst. Professor
UIT, RGPV Bhopal

Uday Chourasia
Asst. Professor

UIT, RGPV Bhopal

ABSTRACT
Finding shortest path for various applications is important in

various domains. But to provide result for complex graphs in

real time is a challenging task. So in this paper four shortest

path algorithms namely Dijkstra‟s algorithm, Floyd Warshall,

Bellman Ford and Jhonsons algorithm are studied and

analyzed to detect parallelism in them and the parallelized

version of all three is implemented using parallel computing

framework OpenCL. It is found that Bellman Ford and Floyd

Warshall contains fine grained parallelism while Jhonsons has

less parallelism.

Keywords
Bellman-Ford, Dijkstra, Floyd Warshall

1. INTRODUCTION
In this world of quickest growing technology, computers have

become a lot of powerful than ever before. thus it‟s a difficult

task to create economical utilization of all the resources inside

a machine. In period of time solely central processor area unit

concerned in programming however currently each day GPU

that area unit termed as General Purpose Graphical process

Unit (GPGPU) also are on the market in concert of the

resource which may be equally utilised and might offer high

performance at an affordable value. GPU area unit like

minded for applications that involve the utilization of matrices

thanks to its design.

One of the applications is shortest path issues on graph that

deals with matrices.

Shortest path [1][4] drawback finds application in massive

domains of scientific and world. Common applications of

those algorithms area unit in network routing, VLSI style,

artificial intelligence and transportation, they're additionally

used for directions between physical locations like in Google

maps. Here all the applications mentioned usually involve

positive weights however some applications area unit there

wherever weights will be negative like currency exchange

arbitrage and a few alternative areas wherever, edge

represents one thing aside from just distance between 2

entities. In such application areas Bellman-Ford algorithmic

rule will be used. Bellman-Ford algorithmic rule is applicable

on graphs with negative weights and might additionally notice

negative cycles wherever majority of algorithms fail. tender-

Ford is additionally utilized in wireless detector networks and

alternative impromptu networks as distributed Bellman Ford

will be used there. Distributed Bellman-Ford is additionally

used as initial ARPANET routing algorithmic rule [12] in

1969 .

Most of the higher than application area unitas specified are

real time applications and wish leads to a fast time that the

performance of algorithmic rule have to be compelled to be

improved so it consume less power and time.[8] Parallel

computing on GPU is one in all the technologies that area unit

used for top performance computing at an affordable value

and considerable speed of performance. GPU is presently

used for a range of functions with the exception of graphical

process and play. That‟s why we tend to refer GPU as General

Purpose Graphical process unit (GPGPU) because it provides

high performance computing will be programmed

victimisation commonplace frame work like OpenCL and

CUDA. OpenCL could be a framework that is for all GPU

whereas, CUDA is supposed specifically for NVIDIA GPUs

solely. Thus, we are going to be victimisation OpenCL for our

GPU implementation thanks to its movableness and open-ness

2. INTRODUCTION TO OPENCL
Open Computing Language may be a framework for writing

programs that execute across heterogeneous platforms. They

consist as an example of CPUs GPUs DSPs and FPGAs.

OpenCL [11] specifies a programing language (based on C99)

for programming these devices and application programming

interfaces (APIs) to manage the platform and execute

programs on the figure devices. OpenCL provides a

customary interface for parallel computing mistreatment task-

based and empiric similarity.

Figure 1. Actors on OpenCL system

Heterogeneous systems
It's a system composed of multiple computing systems. as an

example a desktop system with a Multicore processor and

GPU. Here area unit the most elements of the system:

Figure 2: OpenCL Platform Model

Host: Your desktop system Compute Device: CPU, GPU,

FPGA, DSP. Compute Unit: Number of cores Processing

Elements: ALUs on each core.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.40, May 2018

35

You don't need to think too much on how the OpenCL device

model fit on a specific hardware, this is the responsibility of

the hardware vendor. Don't think that Processing Element is a

"Processor" or CPU Core.

Figure 3: AMD GPU Compute Device

OpenCL Models
First to understand OpenCL we need to understand the

following models.

 Device Model: How the device look inside.

 Execution Model: How work get done on devices.

 Memory Model: How devices and host see data.

 Host API: How the host control the devices.

OpenCL components
 C Host API: C API used to control the devices.

(Ex: Memory transfer, kernel compilation)

 OpenCL C: Used on the device (Kernel Language)

Device Model

Figure 4. Device Model

 Global Memory: Shared with all Device, but slow.

And is persistent between kernel calls.

 Constant Memory: Faster than global memory, use

it for filter parameters

 Local Memory: Private to each compute unit, and

shared to all processing elements.

 Private Memory: Faster but local to each

processing element.

3. INTRODUCTION TO GPU

ARCHITECTURE
To make efficient utilization of resources one need to be fully

acquaint with architecture of those resources especially like

GPU[9][10]. GPU comprises of one or more compute units

and compute units further consists of stream core processors.

Each stream core processor consists of some ALU‟s and

special function unit. In VLIW5 architecture it consists of 4

ALUs and 1 special function unit. All the stream core

processors within a compute unit share local memory and

global memory is shared by all the compute units. The

architecture of GPU on which implementations are tested i.e.

AMD HD 6450 is shown in figure 5.

Figure 5 : Architecture of AMD HD 6450

Table 1: Configuration of AMD HD 6450

4. RELATED WORK
In [1], Finding the shortest methods from one supply to any or

all different vertices may be a basic technique utilized in a

range of higher-level graph algorithms. we have a tendency to

gift 3 parallelfriendly and work-efficient ways to resolve this

Single-Source Shortest methods (SSSP) problem: Workfront

Sweep, Near-Far and Bucketing. These ways opt for totally

different approaches to balance the trade-off between saving

work and structure overhead. In follow, all of those ways do a

lot of less work than ancient Bellman-Ford ways, whereas

adding solely a modest quantity of additional beat serial ways.

These ways ar designed to own a ample parallel employment

to fill fashionable massively-parallel machines, and choose

reorganizational schemes that map well to those architectures.

we have a tendency to show that generally our Near-Far

technique has the best performance on fashionable GPUs,

outperforming different parallel ways. we have a tendency to

additionally explore a range of parallel load-balanced graph

traversal methods and apply them towards our SSSP thinker.

Our work-saving ways continuously beat a standard GPU

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.40, May 2018

36

Bellman-Ford implementation, achieving rates up to 14x

higher on low-degree graphs and 340x higher on scalefree

graphs. we have a tendency to additionally see vital speedups

(20–60x) compared against a serial implementation on graphs

with adequately high degree.

In [2], they describe a variant of the Bellman–Ford

algorithmic rule for single-source shortest methods in graphs

with negative edges however no negative cycles that willy-

nilly permutes the vertices and uses this randomised order to

method the vertices among every pass of the algorithmic rule.

The modification reduces the worst-case expected variety of

relaxation steps of the algorithmic rule, compared to the

previously-best variant by Yen (1970), by an element of 2/3

with high likelihood. we have a tendency to additionally use

our high likelihood certain to add negative cycle detection to

the randomised algorithmic rule.

5. BELLMAN FORD
Consider a graph G(n,E,V) where, n is that the range of

vertices, E is that the set of edges and V is that the set of

vertices. contiguity matrix illustration of graph is employed

here, because it is like minded for GPU.[3][5] Here, price is

that the contiguity matrix for graph. Initially, Dist can contain

direct edges from the source„s‟. Afterwards, Dist[v] of „kth‟

iteration means that distance from „s‟ to „v‟ browsing no over

„k‟ intermediate edges. Finally, once no-hit completion of rule

Dist can contain the shortest path to any or all the vertices „v‟

in V from source„s‟. for every edge (u,v) in set E, Relax(u,v)

is termed (n-1) times. So, Relax () is termed E (n-1) times,

therefore majority of your time of the rule is spent during this

procedure. The rule for Bellman Ford[6] is illustrated in rule

3.1.

BellmanFord (s,Dist,Cost,n)

{

for i=1 to n do

Dest[i] = Cost[source,i];

End for

for k=1 to n-1 do

for each (u,v) in E do

Relax(u,v)

End for

End for }

Relax (u,v)

{

if Dest[v]> Dest[u] + Cost[u,v]

Dest[v] = Dest[u] + Cost[u,v]

}

Time complexity of Bellman ford algorithm if adjacency

matrix representation is used will be O(n3) .

All pair shortest path using bellman ford algorithm could also

be calculated if above algorithm for all the vertices in the

graph is called.

For each s in V

Call BellmanFord(source,Dest,Cost,n);

End for

Identified Parallelism:
The only issue arises here is the way to calculate minimum of

of these „n‟ values. therefore instead of conniving the

minimum which is able to increase the time of algorithmic

rule we'll synchronize the write operations on Destk[v] for all

„u‟ specified minimum worth resides in Destk[v] at the and of

Relax() procedure. This issue is referred as write-write

consistency.

6. FLOYD WARSHALL
APSP may be a elementary drawback in graph theory. Floyd-

Warshall (FW) may be a accepted algorithmic rule for its

resolution. FW sequent implementation uses 3 nested loops.

Consider a weighted graph G (V, E) hold on mistreatment

nearness matrix illustration by a weight matrix W of order

N*N wherever N is variety of vertices in G.where, wijϵ W for

all (i,j) ϵ E.

This matrix W contains zero for diagonal components as each

corresponds to same vetex. And eternity for the vertices that

aren't connected directly and weight is there for vertices that

area unit connected directly or edges out there in graph.

Floyd algorithm:

For(int k=0;k<N;k++)

For (int i=0;i<N;i++)

For(int j=0;j<N;j++)

Identified parallelism:
As it is evident from the on top of algorithmic program that

price of kth iteration depends on k-1 therefore this loop

contains dependency therefore it can not be removed to

perform correspondence. however rest two loops will be

referred to as in parallel for N2 threads victimization OpenCL.

7. DIJKSTRA’S ALGORITHM
Dijkstra algorithm[7] ia a single source shortest path

algorithm and it can only be applied to connected graphs

having positive edge weights.

The Algorithm consists of following steps :

• Distance to supply vertex is ready to zero.

• Set all different distances to eternity.

• S is ready of visited vertices that is empty at first.

• Q is that the queue that at first contains all the

vertices.

• Then till letter of the alphabet is empty part is

chosen from letter of the alphabet with minimum distance.

• And then this u is added to visited vertex list.

• If new shortest path found is shortest among all it's

set as new shortest path until this step

Dist[S] 0

For all v ϵ V – {S}

Do dist[v] ∞

S ᵠ

Q V

While Q ≠ ᵠ

Do u min(Q,dist)

S S U {u}

For all v ϵ neighbours[u]

Do if dist[v] > dist[u] + W(u,v)

Then d[v] d[u] + W(u,v)

Return dist

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.40, May 2018

37

Identified parallelism :
For all the vertices in Q we are able to execute below steps in

parallel and notice the vertex victimisation write-write

consistency that holds minimum distance price. in order that

the gap came are going to be the smallest amount of all the

vertices processed in parallel.

8. JHONSONS ALGORITHM
Johnson's algorithmic rule could be a thanks to realize the

shortest ways between all pairs of vertices in an exceedingly

thin, edge weighted, directed graph. It permits a number of the

sting weights to be negative numbers, however no negative-

weight cycles might exist. It works by mistreatment the

Bellman–Ford algorithmic rule to reckon a metamorphosis of

the input graph that removes all negative weights, permitting

Dijkstra's algorithmic rule to be used on the remodeled graph.

Comparative Analysis
ALGORITHM TYPE COMPLEXITY GRAPH PARALLELISM

Dijkstra SSSP and APSP O(n2) and O(n3) Positive edge weights only Coarse grained

parallelism

Bellman Ford SSSP and APSP O(n3) and O(n4) Negative and positive

both.

 Can detect negative

cycle also.

 But doesn‟t works for

graph which contains negative

cycle.

Fine grained

parallelism

Floyd Warshall APSP O(n3) Negative and positive

both.

 But doesn‟t works for

graph which contains negative

cycle.

Fine grained

parallelism

Jhonsons Algorithm SSSP and APSP O(n2) and O(n3) Uses Bellman Ford

algorithm to remove negative

weights from graph

 And then applies

Dijkstra on transformed graph

Coarse grained

parallelism

Single supply shortest path rule finds shortest path from a

supply vertex to all or any alternative vertices within the

graph. For a graph of „n‟ vertices there is n*n potential try of

vertices as well as same vertex set (v,v) which can be zero for

straightforward graph as self loop won't be there. thus

workgroup of are going to be appropriate for SSSP. every

work item in workgroup can represent a try (u,v) wherever

wherever u and v ϵ V.

As illustrated in [15] the parallel rule of Bellman-Ford for

SSSP got the hurrying as shown in table five.1.First we'll

analyze execution time of parallel implementation for SSSP

on hardware and GPU. From table five.1 it's clear that GPU

implementation is almost four times quicker than that on

hardware.

So {we can|we can|we are able to} say if for a specific price

of „N‟ GPU can take „t‟ time then hardware will take „4t‟.

Then for N.x hardware can take approximate x3.4t time as

rule is of the order of O(n3) and GPU can take or so (1-x)3.t

time. the most objective of fine tuned implementation is to

require such a price of „x‟ so each the time becomes akin to

one another that is:

x3.4t = α. (1-x)3.t

Both is finely tuned if α reaches near one. once testing the

implementation for various values of „x‟, best results ar

obtained once vertices ar divided within the quantitative

relation 1:3.

So {we can|we'll|we are going to} divide the add quantitative

relation 1:3 among hardware and GPU thus each can take

comparable time in parallel and overall execution time will

rely upon the one that completes last. thus here for n vertices

n/3 are going to be handled by hardware and 2n/3 are going to

be handled by GPU. Host rule is shown in rule.

9. CONCLUSION
In this paper it is found Bellman Ford algorithm has more

parallelism as compared to other algorithms. So In this paper

all three algorithms are studied and parallelism is identified. It

is found that Bellman Ford and Floyd Warshall contains fine

grained parallelism while Jhonsons has less parallelism.

10. REFERENCES
[1] Andrew Davidson, Sean Baxter, Michael Garland, John

D. Owens, “Work-Efficient Parallel GPU Methods for

Single-Source Shortest Paths” in 2014 IEEE 28th

International Parallel & Distributed Processing

Symposium.

[2] Andrew V. Goldberg, Tomasz Radzik , A Heuristic

improvement of the Bellman Ford algorithm.Appl. Math.

Lett.Vol. 6, No. 3, pp. 3-6, 1993.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.40, May 2018

38

[3] A.S. Nepomniaschaya, An Associative Version of the

Bellman-Ford Algorithm for Finding the Shortest Paths

in Directed Graphs, V. Malyshkin (Ed.): PaCT 2001,

LNCS 2127, pp. 285–292, 2001.

[4] J. Y. Yen., An algorithm for finding shortest routes from

all source nodes to a given destination in general

networks. Quarterly of Applied Mathematics 27:526-530,

1970.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.

Stein. Problem 24-1: Yen's improvement to Bellman

Ford. Introduction to Algorithms, 2nd edition, pp. 614-

615. MIT Press, 2001.

[6] R. Bellman. On a routing problem. Quarterly of Applied

Mathematics 16:87-90,1958.

[7] Yefim Dinitz , Rotem Itzhak , Hybrid Bellman-Ford-

Dijkstra Algorithm.

[8] Aydın Buluc , John R. Gilbert and Ceren Budak ,

“Solving Path Problems on the GPU” , Journal Parallel

Computing Volume 36 Issue 5-6, June,2010 Pages 241-

253.

[9] Andrew Davidson , Sean Baxter, Michael Garland , John

D. Owens , “Work-Efficient Parallel GPU Methods for

Single-Source Shortest Path “ in International Parallel

and Distributed Processing Symposium, 2014

[10] Owens J.D., Davis, Houston, M., Luebke, D., Green, S.,

“GPU Computing”, in: Proceedings of the IEEE,

Volume: 96 , Issue: 5 , 2008.

[11] A. Munshi, B. R. Gaster, T.G. Mattson, J. Fung, D.

Ginsburg, “OpenCL Programming Guide”, Addison-

Wesley pub., 2011.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.

Stein, Introduction to Algorithms, Second Edition. The

MIT Press, Sep. 2001.

IJCATM : www.ijcaonline.org

