
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.43, May 2018

10

Minimization of Test Suites for Fuzzy Object-Oriented

Database

Shweta Dwivedi

Assistant Professor
Dept. of Computer Science & Engineering,

Maharishi University of Information Technology,
Lucknow, INDIA

Santosh Kumar

Associate Prof. & Head
Dept. of Computer Science & Engineering

Maharishi University of Information Technology,
Lucknow, INDIA

ABSTRACT

Test suite optimization is an effective method that is used to

minimize or reduce the time and cost of testing. There are

several researchers and software professionals have used this

method or techniques to enhance the correctness and

effectiveness of test suites/cases. These approaches optimize

test suite for a single objective but fuzzy logic with certain

algorithm is used to optimize the test cases/suites for multi

objective selection processes. Therefore, in the present work

an approach of optimization or minimization of test suites is

proposed for the designed fuzzy object-oriented database and

also applied this approach to reduce the complexity of the

designed database. The main objective of our approach is to

minimize and find the test suite that is best optimal for multi-

objective testing.

Keywords

FOOD, Test suites, Test suites optimizations, C-Means

Clustering.

1. INTRODUCTION
Software testing is one of the important tasks for any software

testers to test that the designed system is working properly

and accurately. The designing of good test cases is very

difficult and complex art. According to Patton R. [83] test

cases are the specific inputs that you will try and the

procedures that you will follow when you test the software.

Therefore, a good test case is that helps to discover correct

information along with the risk which is associated with the

information. The test cases are designed and executed to find

the bugs and make them fixed before deployment the

software. There are different styles of testing is available (like

Stress Testing Regression Testing Risk-based testing Domain

testing etc.) to validate the developed software. In the current

scenario, the regression testing is used to reduce the efforts of

re-testing the software to find an appropriate and adequate

testing coverage, although the regression testing is the process

to re-test the designed system for ensuring that the previously

validated system has no more errors. Any changes made in the

software evolved huge number of test cases that resultant a

time consuming, highly expensive and exhaustive process to

re-test the system. However, the test cases are the collection

or set of logic or condition through which the designed system

is tested and determined that whether the system satisfies or

meet the requirements and working correctly. Therefore, the

minimization of test cases is one of the major challenges in

the software development system. The test case reduction is

one of the techniques that try to remove the redundant and

unnecessary test cases.

As the testing process is on progress some new test cases may

be added in regression testing, the resultant of this process the

size of test suites is increased due to the integration

techniques. Therefore, the increment of test cases makes the

possibility to produce some redundant test cases also. Due to

the limitation of the time and resources, the minimization or

optimization techniques should be required to used and

minimize the test suites/test cases.

2. RELATED WORK
Bhasin et al. [1] have proposed a work dwells on the power of

fuzzy expert system to make decisions which are better than

the normal expert systems. Mudgal [2] has proposed a new

model for the minimization of test suite, which is based on the

Boolean function simplification. Alakeel [3] has presented a

novel approach for test cases prioritization using fuzzy logic

for the purpose of regression testing programs with assertions.

Haider et al. [4] have proposed an expert system that finds a

tradeoff among the quality aspects, technique used and level

of testing based on objective function defined by the tester,

quite similar to human judgment using fuzzy logic based

classification. Haider et al. [5] have concluded that ANFIS

can be used to automate the optimization process. Shamshiri

et al. [6] have reported an empirical study on the effects of

using a genetic algorithm (GA) to generate test suites over

generating test suites incrementally with random search, by

applying the Evo Suite unit test suite generator to 1,000

classes randomly selected from the SF110 corpus of open

source projects. Qiu et al. [7] have presented a qualitative

analysis of the findings, including stakeholders, challenges,

standards, techniques, and validations employed in these

primary studies. Kumar and Bhatia [8] have proposed a

methodology based on fuzzy clustering by which we can

significantly reduce the test suite. Usaola et al. [9] have

proposed an algorithm for reducing the size of test suites,

using the mutation score as the criterion for selecting the test

cases while preserving the quality of the suite. Singh and

Shree [10] have added new test cases to the existing test suite

to check the new functionality implemented in the release.

Asoudeh and Labiche [11] have proposed a test suite

generation technique from extended finite state machines

based on a genetic algorithm that fulfills multiple

(conflicting) objectives. Ma et al. [12] have investigated the

use of an evolutionary approach, called genetic algorithms,

for test-suite reduction. Selva kumar et al. [13]

haveexamined the effectiveness of a test suite reduction

process based on a combination of both concept analysis and

Genetic algorithm. Dinca [14] has introduced the multi-

objective test suite optimization problem for Event-B

testing. Raamesh and Uma [15] have utilized a hybrid,

multi-objective algorithm that combines the efficient

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.43, May 2018

11

approximation of the evolutionary approach with the

capability data mining algorithm to produce higher-quality

test cases. Pattorn [16] has introduced the software testing

techniques to test the designed software. Mondal and

Tahbildar [17] have presented an approach showing that the

novel optimal page replacement algorithm reducing the

redundant test cases during retesting of modified object

oriented program. Subhashini and Jeya Mala [18] have

reduced the time spent in testing by reducing the number of

test cases.

3. EXPERIMENTAL STUDY &

RESULTS
An approach of test cases minimization for heart disease

diagnosis is proposed, for that purpose a case study of

hospital-based patient diagnostic system is taken and a

diagnostic process is represented through the state chart

diagram also generate some test cases for demonstrating that

how the test cases are minimized.

3.1 State Chart Diagram
State chart diagram known as a state machine diagram in

UML is used to design the different states of the system

through which the classes passes from state to state where

every class is assigned with a state. The state machine

diagram is designed by the basic notations like filling the

circle for the initial state, a hollow circle filled with the solid

circle for final state, rounded rectangle showing the state and

an arrow is used for transition of states. The figure 6.3.1.1

shows the state chart diagram of patient diagnostic process

who suffered from heart attack problem. Therefore, it is

assumed that Patient is the initial as well as final state who

suffered from heart disease this state is equivalent to „q0‟ and

the Patient goes to the Registration_ Desk for register himself

where the patient get their number and goes to the concerned

department where the Doctor diagnose the patient in details

and send the patient to the concerned Ward to admit the

patient if the condition is severe; these states of the system are

equivalent to „q1‟, „q2‟ and „q3‟ respectively. If the condition

of the patient is moderate then the patient take the prescription

from the doctor and go home as well as the patient is declared

fit by the Doctor and discharged from the ward i.e. the system

reach to its final state this state of the system is „q0‟.

Patient

Registration_Desk

Cardiology_Department

Ward

Patient_Discharge

Start/

Stop

Go for registration

Send for detailed

Diagnosis

If condition is

moderate

If the condition is

severe then admit

into the ward

Patient declared fit

by the doctor and

discharge

Fig 3.1: State Chart Diagram for Heart Patients Diagnosis

There are some tests cases are designed for the verification or

correctness of the above designed state chart diagram which

are described below:

Test Case 1
The Registration_Desk/MSW checks the condition of the

patient. The Patient is not admitted into the ward if the

condition of the patient is moderate.

Test Case 2
The Patient is found in severe condition by the doctor and

referred the patient to admit into the ward.

Test Case 3
The Patient declared fit by the doctor and the patient

discharged from the ward with medicines prescription.

3.2 Fuzzy Object-Oriented Database
The Fuzzy Object-Oriented Database is an extension of

structured based database like relational database for handling

the both crisp and vague information. There is a great need to

represent the vagueness or impreciseness in today‟s several

applications that are dealing with the different nature of the

data. Basically, the fuzzy object-oriented database allows both

the conceptual schema and the navigation into the database

through a graphical interaction. Therefore, the fuzzy object-

oriented database is designed to deal or manage incomplete

information at the level of data representation and in queries

and has been formalized within the framework of fuzzy set

theory. In respect of fuzzy object-oriented database, it is

possible that either it deals with various kinds of data richer

than the traditionally managed by the pure object-oriented

database. Therefore, fuzzy object-oriented database is a

combination of both structured as well as object-oriented

database where the users can manipulate and retrieve

information by performing several queries as performed in the

traditional query languages.

Unclear and inconsistent information is handled by the most

promising database i.e. the fuzzy database. An extension of

the fuzzy database is fuzzy object-oriented database (FOOD)

that also deals with the vague or imprecise information as well

as it supported the object-oriented programming concepts for

storing and interrogating the vague information and turned

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.43, May 2018

12

this vague information into crisp one. Therefore, a fuzzy

object-oriented database is designed for the patient diagnostic

system (PDS) of "Heart Disease” is represented in the table

3.2.2 and their Membership Function along with range value

is represented into the table 3.2.1. Some fuzzy queries are

performed, for that the fuzzy query approach is based on the

fuzzy logic. Here a fuzzy object-oriented database is designed

for the patient who suffered from the heart failure problem.

For fuzzy database a member function plays an important

role; therefore, some major member functions are taken in

context of patient heart failure like patient Age with its

linguistic variable (Young, Mid, Old, Very Old), Cholesterol

with linguistic variable (Low, Medium, High, Very High) and

Blood Pressure with linguistic variable (Low, Medium, High,

Very High) along with their fuzzy set range values are

represented in table 3.2.1.

Table 3.2.1. Membership Function for Heart Disease and Linguistic Terms along with Fuzzy Range Values

Input

Field

Linguistic

Terms

Range

Value

Input

Field

Linguistic

Terms

Range

Value

Input

Field

Linguistic

Terms

Range

Value

Age

Young

<35

Cholesterol

Low

<195

Blood

Pressure

Low

<127

Mid

35-45

Medium

195-250

Medium

127-160

Old

45-58

High

250-310

High

160-185

Very Old

58>

Very High

290>

Very High

180>

Table 3.2.2. Fuzzy Object-Oriented Database for Heart Disease Diagnosis

3.3 Test Suites for Fuzzy Object-Oriented

Database
The test suites are a collection of several test cases and the test

cases are the set of conditions that are used to test the software

or any developed software system by the software

professional like tester who will test the designed system

whether it satisfying the requirement or work properly for

which the system is designed. Through the test case writing

software professional can also find the problems occur in the

developing system. There are several test case tools available

through which a software professional can write test cases. A

sample test case format is represented in the table 3.3.

Table 3.3. Sample Test Case Format

Test Suite ID Test suite to which these test

cases belongs

Test Case ID ID of the test case

Objective/Summary of Test Objective of test case

Case

Related Requirement Test case requirement ID

Prerequisites Preconditions that must be

fulfilled before to executing

the test

Test Procedure Procedure for test case

execution

Test Data Required test data that is used

during the test case executed

Expected result Expected outcome

Actual Result Actual outcome

Status Pass the test/fail the test

Remark Any remark by the tester

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.43, May 2018

13

Created/run by Person who write test cases

Date of Creation Test case creation date

Executed by Executed person

Date of Execution Test case execution date

Test Environment Environment

(Hardware/Software/Network)

at which tests were executed

Similarly, the software professionals and the software testers

made several test suites that include several test cases and

verified that the designed system is satisfied the all

requirement specification and working properly.

3.4 Minimization/Optimization Techniques

for Test Suites
The collection of several test cases which are performed by

the software professionals or researchers to test a software

system is called a test suite. Test case writing for any software

system or application is a skill which can be achieved through

the experience of several years and study. An effective test

cases is written by the experienced software testers. As the

well experienced software testers or professionals write

several test cases or bunch of test cases for a software

application, there certain chances for redundant test cases

which affect the cost, time and size of the test suite.

Therefore, software professionals need to reduce these test

cases to save the time and cost. As the name said the test suite

reduction is a technique to reduce the similar or redundant test

cases and also reduce that test cases which are not relevant or

have less important for the software system. Therefore, the

minimization of test suite for the system or software

application can be formally stated as follows.

Suppose:

(1) A test suite T consists of several test cases {t1, t2,

t3, . . .,tn}.

(2) Testing requirements are the one that must be

satisfied the desired testing coverage of any

software system or applications. Here a testing

requirement set {r1, r2, r3, . . ., rn}is taken that must

be satisfied to provide the desired testing coverage

of the program.

(3) The subset of test suite set is {T1, T2, T3, . . ., Tn}

of T, in which each T associated with each of the rn

such that each test case tn belongs to Tn that satisfied

rn.

Though the software professionals design and write the test

cases to verify the designed system‟s correctness but they

write bunch of test cases that includes lots of tests which is

very exhaustive, time taking and cost effecting when the

software tester executes these tests. Therefore, software

professionals need to optimize or minimize these test case to

reduce the time and coast of testing. An optimization

technique is one through which minimum test cases are used

to produce the correct and an effective solution of the

problem.

Here a clustering technique is used for minimized the test

suites for that purpose test cases are written or created through

any one of the testing methods like white-box testing/black-

box testing measured the test data and then reduce the test

cases by using the clustering technique. Architecture for test

suite minimization is represented in figure 3.4 where it is

shown that the system transformed into the graphical form

which is represented into the figure 3.1 where the path

between to states is covered by the test data.

Test cases writing

through white-box/

blacck-box testing

Clustering

Tehniques

Minimized Test

suites

Figure 3.4: Architecture or test suite minimization

Test suite minimization architecture demonstrate that the test

case data is measured by any one of the testing techniques of

the system which is being tested and converted into the

control flow graph (in this chapter graphical form of the

system represented through the state chart diagram in figure

3.1) where the path between states covered by the test data.

Lets us consider an algorithm for heart disease diagnosis and

data set for measuring the heart disease is represented into the

table 3.4.

Table 3.4.1: Data set for Measuring the Heart Disease

Key_Value

Test_Value Input_Value

P_ID Test value range

for heart disease

(no heart disease

if diameter

narrowing i.e. 0%-

50% and heart

disease confirmed

if diameter

narrowing range is

>50%)

Age

Gender:

(value 1: Male;

value 0: Female)

Chest Pain Type:

(value 1: Normal,

value 2: Moderate

3: Severe)

Blood Pressure:

(mm Hg on

admission to the

hospital)

Cholesterol
(mg/dl)

ALGORITHM:
Step1: Input Value: Gender, Age, Chest_Pain_Type,

Blood_Pressure, and Cholesterol.

Step2: Each input variables is fuzzy and associated with

the membership function.

Step 3: Calculate each membership function for fuzzy

variable.

If Gender = Male/Female, Age = 45-75, Chest_Pain_Type =

2/3(Moderate/Severe), Blood_Pressure (155-197) and

Cholesterol (217-307) then the heart disease condition is

confirmed.

Step 4: Repeat the step 3 for several time for different input

values to confirm the heart failure condition.

Step 5: Exit

3.5 Control Flow Diagram
A diagram that describe the flow of controls on any process or

system that consists of subdivision to represent the process to

compute the result in a sequential form of steps. Here

geometrical figures like Square, Diamond, oval etc. to

represent operations of data and arrows are used for the path

that shows the flow of controls. There are various types of

control flow diagrams such as process control flow diagram,

quality control flow diagram, Configuration control flow

diagram etc. therefore; a control flow diagram for measuring

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.43, May 2018

14

the heart disease is represented in the figure 3.5 which is a

directed graph consisting of vertices and edges where every

vertex is the state and the directed arrow represent the flow of

control while P1, P2, P3 and P4 represent the path of the

control flow.

Heart Disease confirmed

Input Values

Input Mebership Function

Measuring

Heart

Disease
If co

n
d

itio
n

s n
o

t m
a

tch
ed

Source

Destinetion

P1

P2

P3

P4

 Fig 3.5: Directed Graph for Heart Disease Diagnosis

Table 3.5. Test Case and Path for Heart Disease Diagnosis

Test

Cas

e ID

Input

Value

Range

Value

Expected

Result

Path

t1 Chest

Pain, BP

Moderate

, 155-199

Heart

disease

Confirme

d

Source-

P1-P2-P3-

Destinatio

n

t2 Age,

Chest

Pain,

Cholestero

l

75,

severe,

199-297

Heart

disease

confirmed

(heart

failure)

Source-

P1-P2-P3-

Destinatio

n

t3 Age,

Chest

Pain, BP

25,

moderate

, 127-140

No heart

disease

P1-P2-P4

t4 Chest Pain Severe No heart

disease

P1-P2-P4

The test cases and their paths for heart disease diagnoses are

represented in the above table 3.5 which are clustered and

minimize through the c-means clustering method. The data

sets/objects are grouped into the similar cluster through the

clustering analysis and different data objects puts into

dissimilar group. Therefore, the c-means clustering is

explained here for the heart disease diagnosis.

3.6 C-Means Clustering
Clustering is the process of collect and arranges items into

groups on the basis of their similarity. There are different

types of clustering algorithms such as K-Means Clustering

and C-Means Clustering; here the c-means clustering

algorithm is used for minimize the test suites. Therefore, the

fuzzy c-means clustering algorithm contains the groups of

items that may belongs to more than one groups and the

degree of membership function for each item is given by a

probability distribution over the clusters. The c-means

clustering algorithm is very useful where the numbers of

clusters are predetermined. Therefore, the algorithm put the

data to any one of the clusters.

Due to the non-decidability of absolute membership function

of the data which belongs to a given cluster it is different from

other clustering algorithm. It measured the degree of

membership function. The fuzzy c-means clustering is very

fast and accurate in calculating the absolute membership

function because there are several numbers of iterations

required to accomplish a particular clustering exercise

corresponds to required accuracy. The equation (1) shows an

objective function which is minimized in each iterations of

the c-means clustering algorithm:

 𝑱 = 𝜹𝒊𝒋
𝑪
𝒋=𝟏

𝑵
𝒊=𝟏 ∥ 𝒙𝒊 − 𝒄𝒋 ∥

𝟐 (1)

Where:

N number of data points

C number of clusters required

𝒄𝒋Centre vector for cluster j,

𝜹𝒊𝒋Degree of membership for the ith data point 𝒙𝒊 in

cluster j

∥ 𝒙𝒊 − 𝒄𝒋 ∥Measures the similarity/closeness of the data

point 𝒙𝒊 to the Centre vector 𝒄𝒋of cluster j.

In each iteration, the algorithm maintains a center vector for

each of the clusters. Therefore, the main objective is to define

c clusters for each data points and placed these clusters in

smarter way that produces a different result. in the proceeding

step take each data point belonging to the data set that is

associated with the nearest cluster. The first step of clustering

is completed when there is no data point is remaining and at

this stage need to re-calculate the c new clusters as barycentre

of the result of the previous step. As the c new cluster found,

a new binding has been developed between the data point and

the nearest cluster. For further proceedings a loop is generated

and noticed that these cluster moving their locations step by

step until no more changes can be done. Therefore, the

objective of this algorithm is to minimize the objective

function shown in the equation (1).

4. CONCLUTIONS
Many researchers have proposed test suite optimization or

minimization techniques to reduce the redundancy and

duplicity in test suites that increase the cost and time of

testing. The test suites minimization technique is also studied

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.43, May 2018

15

by the concept of regression testing for the designed fuzzy

object-oriented database and the test suites are minimized

against some criteria that proved the resulting test suite is

capable to find almost entire range of bugs. Minimization or

optimization of test suites has reduced the overall software

development time and cost.

5. ACKNOWLEDGMENTS
Authors are grateful to the Vice-Chancellor (Prof. P.K.

Bharti), Maharishi University of Information Technology

Lucknow for providing the excellent facility in the computing

lab (Maharishi university of Information Technology,

Lucknow, India) for the entire research work. Thanks are also

due to University Grant Commission, India for support to the

University.

6. REFERENCES
[1] Bhasin H., Gupta S. and Kathuria M., “Regression

Testing Using Fuzzy Logic”, International Journal of

Computer Science and Information Technologies 2013;

Vol. 4 Issue 2, pp. 378-380.

[2] Mudgal P.A., “A Proposed Model for Minimization of

test Suite”, Journal of Nature Inspired Computing, 2013,

Vol. 1, Issue 2, pp. 34-37.

[3] Alakeel M.A., “A Fuzzy Test Case Prioritization

Technique for Regression Testing Programs with

Assertions”, The Sixth International Conference on

Advanced Engineering Computing and Application in

Sciences 2012; 78-82.

[4] Haider AA, Nadeem A, Akram S, “Regression Test Suite

Optimization Using Adaptive Neuro Fuzzy Inference

System”, Frontiers of Information Technology 2016, pp.

52-56.

[5] Haider AA, Rafiq S, Nadeem A, “Test Suite

Optimization Using Fuzzy Logic”, International

Conference on Emerging Technologies, 2012, pp. 1-6.

[6] Shamshiri A., Rojas M.J., Fraser G. and McMinn P.,

“Random or Genetic Algorithm search for Object-

Oriented Test Suite Generation”, Conference on Genetic

and Evolutionary Computation 2015; 1367-1374.

[7] Qiu D, Li B, Ji S, Lenung H, “Rgeression Testing of

Web Service: A Systematic Mapping Study”, ACM

Computing Surveys 2015, Vol. 47, Issue 2.

[8] Kumar G., and Bhatia K.P., “Software Testing

Optimization Through Test Suite Reduction Using Fuzzy

Clustering”, Springer CSIT. 2013, Vol. 1, Issue 3, pp.

253-260.

[9] Usaola P.M., Mateo R.P. and Lamancha P.B.,

“Reduction of Test Suites Using Mutation”, Springer-

Verlag Berlin Heidelberg 2012, Vol. 72, Issue 12, pp.

425-438.

[10] Singh S, Shree R, “A Combined Approach to Optimize

the Test Suite Size in Regression Testing”, CSI

Transaction on ICT, 2016, Vol. 4 Issue 2, pp. 73-78

[11] Asoudeh N. and Labiche Y., “A multi-Objective Genetic

Algorithm for Generating Test Suites from Extended

Finite State Machine”, International Symposium on

Search Based Software Engineering 2013; pp. 288-293.

[12] Ma YX, Sheng KB, Ye GC, “Test-Suite Reduction Using

Genetic Algorithm”, International Workshop on

Advanced Parallel Processing Technologies 2005, pp.

253-262.

[13] Selva kumar S., Dinesh C.R.M. Dhinesh kumar C, and

Ramraj N, “Reducing the Size of the Test Suite by

Genetic Algorithm and Concept Analysis”, Recent

Trends in Network and Communications; 153-161.

[14] Dinca L, “Multi-Objective Test Suite Optimization for

Event-B Models”, International Conference on

Informatics Engineering and Information Science 2011,

pp. 551-565.

[15] Raamesh L, Uma VG, “Data Mining Based Optimization

of test Cases to Enhance the Reliability of the Testing”,

Advances in Computing and Information Technology;

pp. 89-98.

[16] Patton R, “Software Testing”, Pearson Education 2001.

[17] Mondal K.S. and Tahbildar H., “Regression Test Cases

Minimization for Object Oriented Programming using

New Optimal Page Replacement Algorithm”,

International Journal of Software Engineering and Its

Applications 2014, Vol. 8, Issue 6, pp. 253-264.

[18] Subhashini B, JeyaMala D, “Reduction of Test Cases

Using Clustering Technique”, International Journal of

Innovative Research in Science, Engineering and

Technology 2014, Vol. 3, Issue 3, pp. 1992-1996.

[19]

