
International Journal of Computer Applications (0975 - 8887)
Volume 179 - No.43, May 2018

Data Compression using Simulated Circular Indexing
Transform (SCIT)

Gebremichael Girmay
Andhra University College of Engineering (A),

Andhra University, Visakhapatnam-530003, India

D. Lalitha Bhaskari
Andhra University College of Engineering (A),

Andhra University, Visakhapatnam-530003, India

ABSTRACT
One of the critical issues in big data environment is the volume of
the data generated and streamed in real time or archived for later
use. If the data streamed in real-time is large enough then the time
required to transmit that data may lead to unnecessary delay and
latency problems. The other case with huge volumes of data when
it is archived is the case of storage devices requirements. Com-
pressing the data before or while transmitting is one useful solu-
tion to minimize the size of data and thus avoid or minimize the
latency problem and storage shortages. In this research paper the
focus will be to deal on some compression techniques, especially
in data transforming techniques similar to BWT, MTF and RLE
which are commonly used to transform the data prior to encoding
the data into fewer bits using entropy encoding techniques such
as Huffman, Arithmetic, Golomb, etc. All the data transforming
techniques have their own positive and weak sides. Thus in this
paper alternative method is proposed to fill some of the gaps that
cannot be solved by the already existing data compression trans-
forming techniques. The proposed algorithm can be combined with
other data compression methods to optimize the compression effi-
ciency. The performance of this proposed algorithm is measured
as compared to other related compression algorithms, and it is
found that in some special cases it can perform better than others.

General Terms
Data compression, transforming, modeling, entropy encoding, lossless and
lossy, statistical, dictionary, performance, big data.

Keywords
Info-table, unique symbol, codeword, SCIT, frequency, gap, critical
issue.

1. INTRODUCTION
Data compression is the process of minimizing the size of code
generated by digital coding systems to represent a specific data or
information. Digital coding is the process of using binary digits or
bits to represent letters, characters and other symbols in a digital
format. A digital system is a device or technology that generates
discrete values based on some bit combination techniques, so that
each character, letter or symbol is unique and easily distinguish-
able from each ones. There are several types of digital coding tech-
niques widely used, which include ASCII code, BCD/EBCDIC,

UNICODE, etc. For example, using ASCII code, a digital system
can generate 128 unique symbols, while using EBCDIC it can pro-
vide 256 unique symbols.

In this paper, the necessity and advantage of compression is dis-
cussed based on data transfer and data storage issues, and some
well-known compression algorithms and techniques are reviewed
in brief.

As stated in [1], data compression is the process of converting an
input data stream (the source stream or the original raw data) into
another data stream (the output, or the compressed, stream) that has
a smaller size.

One of the necessities for choosing to compress data is to mini-
mize transfer delay/latency during data communication using any
media. Specifically, if the input data is generated in real time and
is streamed on the way or is stored in memory and is to be trans-
ferred to any other destination at any time using speed-constrained
systems.

The second issue is when there is small storage volume within the
system, but the data or document is to be archived for later use.
Other issues are such as to speed up the data processing operations,
to reduce energy required to process or to transmit, and for security
purposes as well.

Data compression works if the original file of data is re-encoded as
follows:

- Reduce the number of symbols in the data using predictive meth-
ods.

- Rearrange the symbols in the data using transform techniques.
- Encode more frequent symbols with fewer bits.

RLE is an example of compression technique that works well on
documents that exhibit to contain repetitive symbols. BWT, MTF,
PPM, and Differencing are some examples of predictive/transform
techniques used to rearrange characters or symbols within a docu-
ment after which it is possible to more reduce the size of the doc-
ument. Huffman coding, Arithmetic coding, Shannon-Fano, Tun-
stall, Elias gamma, and other more methods are those used to en-
code frequent symbols with fewer bits.

A particular compression method can either be lossy or lossless.
With Lossless method the decompressor‘s output is an exact copy
of the original data. Text compression is generally of lossless type.
With a lossy method, the decoder‘s output is not an exact copy of

1



International Journal of Computer Applications (0975 - 8887)
Volume 179 - No.43, May 2018

the original data but an approximation that is somewhat similar to
the original version. Lossy compression is useful when compress-
ing pictures (e.g., JPEG) or audio files (e.g., MP3), where small
deviations from the original are invisible (or inaudible) to the hu-
man senses [2].

Codes can be categorized as block-block, block-variable, variable-
block, or variable-variable [3]. Compression coding techniques
such as Huffman and Arithmetic generate variable-length code-
word for every unique symbol or group of symbols. Coding meth-
ods such as ASCII generate fixed-length codes for every unique
character.

In this paper we focus exclusively on lossless compression algo-
rithms, by modeling and implementing a new transform technique
similar to MTF method and encoding using Huffman coding as a
final step.

Most compression/decompression systems apply a combination of
several techniques to achieve better compression efficiency. Com-
pression/decompression performance is measured based on the data
type compressed, and whether it is lossy or lossless compres-
sion. Commonly used performance measurement methodologies
include: compression ratio, compression factor, compression gain,
compression rate, and fidelity. In most cases, if possible, the goal
is to achieve a best compression factor and speed with less degrad-
ing fidelity; Entropy being a reference for better encoding factor, as
defined by Shannon.

In subsequent sections and subsections, the basic concepts of com-
pression will be covered in some detail. Section 2, literature review,
Section 3, modeling and coding and Section 4, proposed technique
and its implementation will be covered.

2. LTITERATURE REVIEW
The research works done in the compression/decompression area is
wide, and is still continuing in several fields as the data generated
is vastly growing at high rate. In this chapter some basic theoreti-
cal and practical concepts and approaches are reviewed. Generally
compression can be lossless or lossy. Lossless compression is con-
cerned with textual documents and some critical data such as med-
ical scanning images. Lossless data compression methods can be
classified as Entropy type, Dictionary type, and other types [1].

In entropy (or statistical) coding each symbol is assigned a code
based on the probability model that is chosen. Highly probable
symbols are assigned short codes, and vice versa. In dictionary
coding, groups of consecutive characters, words, or phrases are re-
placed with seemingly short code. The group of symbols or words
represented by the corresponding codes can be found by referring
it in the dictionary.

Lossy data compression goes with general images, videos and au-
dios. Next some commonly used optimal encoding algorithms are
detailed, tuning towards the proposed method. Indeed saving stor-
age space is a common reason for the use of compression [4], and
other reasons are of course speed and band width utilization.

2.1 Huffman Coding
Huffman coding, developed, in 1952, by D. Huffman, is a popular
method for data compression, categorized under the entropy coders.
An entropy coder is a method that assigns to every symbol from the
alphabet a code depending on the probability of symbol occurrence
[5]. The symbols that are more probable to occur get shorter codes

than the less probable ones. Huffman coding is an optimal coding
technique for compression purpose and serves as the basis for sev-
eral popular programs run on various platforms [6]. Some programs
use just the Huffman method, while others use it as one step in a
multistep compression process. The Huffman method is somewhat
similar to the Shannon-Fano method. Huffman coding is one of the
best methods for coding with respect to probabilistic model.

Though the size of the code assigned to a symbol ai basically de-
pends on its probability of occurrences pi it is also affected by the
number of unique symbols (the size of the alphabet) in the stream or
document. A small alphabet requires just a few codes, so they can
all be short; a large alphabet requires many codes, so some must be
long. One critical issue in Huffman coding is that, if those unique
symbols (whether they are few or more) that constitute a given
data file, do appear with equal probabilities (or frequency of occur-
rence), it may not considerably change the size of the document.
For example, if there are n unique symbols and n = 2m, where m
is a common code length (e.g. for ASCII code, m = 7, n = 128)
supported by the system when generating each alphanumeric char-
acters and symbols, applying Huffman coding will not affect the
original size of the document. Thus in such related cases some
transform or predictive techniques are required either to:

- reduce the number of unique symbols, or
- vary the frequency of the representative symbols, or
- rearrange their position in the document so that produce a repet-

itive form.

What it means is, the Huffman method cannot assign to any sym-
bol a code shorter than one bit, if some form of predictive transform
is not done ahead to using Huffman coding. Therefore to achieve
meaningful compression process, a need comes to apply a multistep
compression process, the last step being Huffman or other statisti-
cal coding methods such us Arithmetic, Elias, Golomb, and more
others. The multistep compression process may incorporate RLE,
BWT, MTF, and PPM, etc. compression techniques that can be ap-
plied prior to conducting Huffman or the other statistical coding
methods.

Huffman Decoding: During compressing some basic information
must be collected in the form of Information Table (Info-table).
These points (info) include: list of the unique symbols and their
probability (or frequency); and if required, their variable-size code-
word, the size of the original and compressed file. During decod-
ing the compressor (encoder) has to determine the codes based on
the supplied points in the info-table. Basically it does that based
on the probabilities (or frequencies of occurrence) of the symbols.
The Huffman decompressor (decoder) must first construct (map)
the Huffman tree as was constructed by the compressor (encoder).
Only then can it read and decode the compressed stream. Then, if
a multistep compression was used, the decompressor should follow
the same step but in reverse order, to gate the original stream.

2.2 Run Length Encoding (RLE)
RLE is one of the encoding techniques used to encode and as well
to transform a data under compression. It works well on data sets
with long runs of similar symbols. It can work in combination with
other encoding techniques as well. RLE is used for any type of
data format if such data type exhibits long runs of the specific el-
ements in several positions, where sequences of consecutive iden-
tical elements are replaced by the length of the run [4]. The sym-
bols in the stream may or may not be with equal probability, what
is required is, there should be less randomness of the symbols.

2



International Journal of Computer Applications (0975 - 8887)
Volume 179 - No.43, May 2018

It replaces a run of symbols with a tuple that contains the sym-
bol and the number of times it is repeated [7]. In general, a string
s1s1...s1s2s2...s2s3s3..., in which each symbol appears in a long
run (as countable infinite repetitive) is suitable to reduce the runs
and thus reducing(compressing) the size of the string. Example, the
string ”ssssiiiiooonn” can be encoded or transformed using RLE as
4s4i3o2n. Then it can further be coded using statistical models such
as Huffman or Arithmetic encoders.

One of the critical issues in using RLE is when the similarity run of
symbols is short (e.g. one or two), which will result in increasing
the size rather than compressing it. Anyway, RLE can be used at the
beginning or after some techniques are processed in most multistep
compression process, e.g., RLE–BWT–MTF–RLE–Huffman [8].

2.3 Move-to-Front Transform
Move-to-Front (MTF) is an adaptive scheme and works on the prin-
ciple that the appearance of a symbol in the input data makes that
symbol more likely to appear in the near future. As detailed in [9]
the basic idea of this method is to maintain the alphabet A of sym-
bols as a list where frequently-occurring symbols are located near
the front. A symbol s is encoded as the number of symbols that
precede it in this list. Thus if alphabet A = (C, o,m, p, r, e, s, . . .)
and the next symbol in the input stream to be encoded is the p, it
will be encoded as 3, since it is preceded by three symbols. There
are several possible variants to this method; the most basic of them
adds one more step: After symbol s is encoded, it is moved to the
front of list A. Thus, after encoding the p, the alphabet is modified
to A = (p,C, o,m, r, e, s, . . .). This move-to-front step reflects the
expectation that once p has been read from the input stream, it will
be read many more times and will, at least for a while, be a com-
mon symbol. The move-to-front method is locally adaptive, since
it adapts itself to the frequencies of symbols in local areas of the
input stream. The main idea is to move to front the symbols that
mostly occur, so those symbols will have smaller output number or
results in to more repetitiveness and thus will be coded with short
codeword bits. Example, as the input document is processed, each
symbol (or word, when used at world level) is looked up in the al-
phabet list and if it happens to occur as the ith entry, it is coded by
the index number i. Then the symbol is moved to the front of the
list so that if it occurs soon afterwards, it will be coded by a number
smaller than i.

This technique is intended to be used in combination with other
compression techniques like Burrows-wheeler transform (BWT).

After a stream is transformed using MTF, then follows encod-
ing it using either of the variable length entropy encoders such as
Golomb, Huffman, arithmetic, etc.

An optional example is the number i is coded so that the smaller its
value the shorter its code, and thus more likely symbols are repre-
sented more compactly.For instance, one suitable method of assign-
ing variable code lengths is to code position index integer number
i ≥ 1 as the binary representation of i prefixed by blogi2c zeros.
In this case as the binary code of the integer i is 1 + blogi2c bits
long, then adding blogi2c zeros becomes 1 + 2blogi2c bits [1]. For
example the codes for i is 1, 2, 3, and 4 are 1, 010, 011, and 00100,
respectively.

Therefore this method produces good results if the input stream
contains concentrations of identical symbols, i.e. if the stream sat-
isfies the concentration property (if the local frequency of symbols
changes significantly from area to area in the input stream).

It can be shown that the move-to-front method performs, in the
worst case, slightly worse than Huffman coding. At best, it per-
forms significantly better when it is used with BWT or when the
frequencies of the symbols in the input file are or not varied mean-
ingfully, but appearing repetitively.

There are several possible variants to this method:-
Move-ahead-k- The element of A matched by the current symbol
is moved ahead k positions instead of all the way to the front of A.

Wait-c-and-move- An element of A is moved to the front only after
it has been matched c times to symbols from the input stream (not
necessarily c consecutive times).

A critical issue in using MTF is, it gives poor performance if re-
quest sequence is in reverse order of the alphabet list [10]. That is
if the distribution of the symbols in the stream appears in reverse
order at seemingly equal interval, then using MTF will not achieve
good compression performance.

2.4 Burrows-Wheeler-Transform (BWT)
As explained in [9, 11], BWT method was developed by Michael
Burrows and David Wheeler in 1994, while working at DEC Sys-
tems Research Centre in Palo Alto, California. The main idea of
the BWT method is that it starts with a string S of m symbols and
scramble (permute) them into another string L that satisfies two
conditions.

(1) Any region of L will tend to have a concentration of just a
few symbols. Another way of saying this is if a symbol s is
found at a certain position in L, then other occurrences of s
are likely to be found nearby. This property means that L can
easily and efficiently be compressed with the move-to-front
method, perhaps in combination with RLE and then apply a
statistical model(e.g. Huffman or others) to assign probabili-
ties to the transformed symbols.

(2) It is possible to reconstruct the original string S from L (a little
more data may be needed for the reconstruction, in addition to
L, but not much).

One of the critical issues is that, the BWT method will work well
only if m is large (at least several thousand symbols per string) [9].
Another case is that, as a string with m symbols can have m! per-
mutations, it becomes a large number for large value of m, thus the
particular permutation used by BWT has to be carefully selected.

The BW codec proceeds in the following steps:

(1) String L is created, by the encoder, as a permutation of S.
Some more information, denoted by I , is also created, to be
used later by the decoder in step 3.

(2) The encoder compresses L and I and writes the results on the
output stream. This step typically starts with RLE, continues
with move-to-front coding, and finally applies Huffman cod-
ing.

(3) The decoder reads the output stream and decodes it by applying
the same methods as in 2 above but in reverse order. The result
is string L and variable I .

(4) Both L and I are used by the decoder to reconstruct the original
string S.

Given an input string of m symbols, the encoder constructs an m×
m matrix where it stores string S in the top row, followed by (m−
1) copies of S, each cyclically shifted (rotated) one symbol to the
left. The matrix is then sorted lexicographically by rows.

3



International Journal of Computer Applications (0975 - 8887)
Volume 179 - No.43, May 2018

The permutation L selected by the encoder is the last column of the
sorted matrix. It should be noted that the Burrows-Wheeler method
can easily achieve efficient compression when applied to longer
strings (thousands of symbols), though it requires more memory
and time to do that. Thus WBT works in block wise.

2.5 Entropy
Entropy is one of the important concepts in information theory. It
is a theoretical measure of quantity of information [5, 6, 7, 9, 12].
Entropy is a measure of the amount of order or redundancy in a
message. The value of entropy is small if there is a lot of order and
otherwise it is large if there is a lot of disorder. Entropy as a mea-
sure is very important with regard to achieving better data compres-
sion goals, because the length of a message after it is compressed
(encoded) should ideally be equal to its entropy. That is entropy
gives an estimate of how long to make the encoded version of each
symbol in a massage.

As Shannon demonstrated, for a set of possible events with known
probabilities p1, p2, p3, . . . , pn , that sum to 1, the Entropy of these
events is given as

E(p1, p2, p3, . . . , pn) = −k
n∑

i=1

pi log
pi
2

where, the positive constant k governs the units in which entropy is
measured. As normally, the units are bits, where k=1, and logs are
taken with base 2, then:

E = −
n∑

i=1

pi log
pi
2

The information content or entropy of a selected probability pi is
thus given as

Ei = −pi logpi2
From this it is clear that more likely symbols or messages having
greater probabilities contain less information.

3. MODELING AND CODING
The task of finding a suitable model for text compression is an ex-
tremely important problem. As shown in Figure 1, some basic steps
are conducted to reach the final compression step. The input mes-
sage can be transformed first ahead to applying prediction. The sep-
aration into modeller and encoder is valuable because modeling and
coding are very different sorts of activity [4]. The modeller deter-
mines the probability of the unique symbols in the text and supplies
to the encoder. Once prediction is applied, the encoder receives the
predicted probability or frequency of occurrences together with the
actual input stream and turns them into sequence of bits (binary
digits) to be transmitted or saved.

There are three ways that the encoder and the decoder can maintain
the same model: static, semi-adaptive, adaptive modeling.

In general in statistical compression process the stream can be first
transformed so by doing that the size of the stream and/or the num-
ber of unique symbols can be minimized or their frequency can be
more skewed as is observed in RLE, BWT, MTF, etc. This paper
work is also focusing on the transforming part of the statistical en-
coding.

Text Compression:
As mentioned in the previous sections some context-based text

Fig. 1. Outline of Basic Steps in Lossless Compression

compression methods perform a transformation on the input data
and then apply a statistical model to assign probabilities to the
transformed symbols. Good examples of such methods are the
Burrows-Wheeler method, also known as the Burrows-Wheeler
transform.

Most text compression methods are either statistical or dictionary
based [9, 13]. In dictionary based method the text is fragmented
into words and is saved in a data structure called a dictionary. When
a fragment of new text is found to be identical to one of the dic-
tionary entries, a pointer or a symbol that identify to that entry is
written on the compressed stream, to become the compression of
the new fragment. In statistical method, on the other hand, consists
of methods that develop statistical models of the text as discussed
above. The model can be static or dynamic (adaptive). A static
model uses fixed probabilities, whereas a dynamic model modifies
the probabilities on the fly while text is being input and compressed.
Most models are based on one of two approaches: Frequency and
Context. In context-based model, the modeller considers the con-
text of a symbol when assigning it a probability. Since the decoder
does not have access to future text, both encoder and decoder must
limit the context to past text, i.e., to symbols that have already been
input and processed.

4. PROPOSED METHOD: SIMULATED
CIRCULAR INDEXING TRANSFORM (SCIT)

If the probabilities of the symbols in a document are more skewed,
then applying statistical coding methods directly can achieve good
results. The fact that the probability is skewed implies low entropy
which in turn implies the possibility of very good compression.

The proposed method, here and onward called, Simulated Circu-
lar Indexing Transform (SCIT), aims at filling some specific gab
observed in the compression or data transforming techniques re-
viewed above. The approach is similar to the Move-to-Front trans-
forming techniques. But instead of moving the symbol to any lo-
cation in the list of alphabets, is just to play with index, moving
or stepping next or back circularly if a different symbol is com-
ing otherwise don‘t move if the current symbol happens to occur

4



International Journal of Computer Applications (0975 - 8887)
Volume 179 - No.43, May 2018

repetitively. Conceptually all the moves (next/back or up/down) are
mapped or simulated circularly to the position index value of the
symbols in the alphabet, except that don‘t move or ‘stay there‘ case
is given a 0 index value for a repetitive symbol.

In move-to-front and some other transforming methods, the trans-
formed data is represented by the indexes (numerical values). In the
proposed SCIT method, the index is translated to the symbol cur-
rently indexed, thus the transformed data is represented by the sym-
bol themselves. As this translated (virtual) indexing works right,
for comparison and compatibility purpose, the MTF is also imple-
mented using this concept in this work. For example take the input
string is:
S: Compression is very important.
Here, S = 30 characters, and the unique symbols or alphabets
are n = 15 as seen in the info-table: Info-table basically contains

P0, Ia→
0 1 2 3 4 5 6 7 8 9 a b c d e
C o m p r e s i n ↑ v y t a .

unique symbols in S and may include their codeword and some ad-
ditional information, such as frequencies of each unique symbol.
Let use these variables: n, Ia, Pv, P0; where

n -total number of unique symbols in the stream S.
Ia -holds the index value of a next symbol to be accessed, in the

infotable.
Pv -virtual(simulated) index, in terms of numeric or the symbols

themselves.
P0 -actual index value of immediate previously accessed symbol.

Now, we can formulate the proposed method as follows. Initially
Ia, Pv, and P0 are assigned to a specific value, example 0 index
values.

a) During encoding: For each byte in the stream find correspond-
ing Pv as follows.
Pv = Ia− P0, if Ia ≥ P0; otherwise, Pv = (n+ Ia)− P0,
if Ia < P0 .

P0 = (Pv + P0)mod(n)

Example,
Ia→
S: C o m p r e s s i o n ↑ i s ↑ v e r y ↑ i m p o r t a n t . = 30(15)
Pv: 0 1 1 1 1 1 1 0 1 9 7 1 d e 3 1 a e 7 d d a 1 d 3 8 1 a 4 2 = 30(11)
P0: 0 1 2 3 4 5 6 6 7 1 8 9 7 6 9 a 5 4 b 9 7 2 3 1 4 c d 8 c e

Or, Pv is represented by the name of the symbols themselves in-
stead of using numeric values (Note: Here, vertical arrow ↑ replaces
space),
Pv: C o o o o o o C o ↑ i o a . p o v . i a a v o a p n o v r m = 30(11)

Representing Pv in this way avoids writing two or more digit index
values. The successive list of Pv gives the transformed variant of
that S. The value 0 in the Pv list is to mean don‘t move, that means
take the current symbol, rather. Since, a pointer at starting time,
in most cases, points to the first byte/word in an input stream or
document, the first 0 in Pv tells to consider the first character in S
which in this illustration is, C character.

Now as a last step is to code Pv list (transformed stream, S‘) using
either Huffman or other statistical coding techniques. This encoded

or compressed document as well including the info-table is then to
be communicated or archived as was intended.

Note that the number inside the parenthesis, e.g., 15 in 30(15), 11
in 30(11) represents the number of unique symbols in the original
and transformed strings respectively.

b) During decoding: Huffman or other coded doc is decoded or
decompressed to obtain Pv list back. Then retransform Pv list
to get back S, as follows.

First translate each Pv element or symbol to corresponding nu-
meric value one at a time.

Next determine the corresponding actual index Ia or P0 and
refer the symbol at that location in the info-table and form S in
sequence character by character.

P0 = (Pv + P0)mod(n) , Ia← P0

Example,
Pv: C o o o o o o C o ↑ i o a . p o v . i a a v o a p n o v r m = 30(11)
Pv: 0 1 1 . . .
P0: 0 1 2 . . .
Ia→
S: C o m p r e s s i o n ↑ i s ↑ v e r y ↑ i m p o r t a n t . = 30(15)

For the above transforming and retransforming example, Move-to-
Front, will do as follows.

Ia→
S: C o m p r e s s i o n ↑ i s ↑ v e r y ↑ i m p o r t a n t . = 30(15)
Pv: 0 1 2 3 4 5 6 0 7 6 8 9 3 4 2 a 6 7 b 4 6 a a a 6 c d c 2 e = 30(15)
i.e., using the symbols instead,
Pv: C o m p r e s C i e n ↑ p r m v s i y r s v v v s t a t m . = 30(15)

We can see that the number of unique symbols after transforming
using the SCIT method is 11 while after using MTF is 15 same as
in the original document.

As is observed in the info-table, Table 1, the transformed string
may have less number of unique symbols (Syb.) as compared to
the original string. This phenomenon holds true also for MTF in
other examples. And also some of the symbols will gain highest
frequency (Freq.) though in some cases, the SCIT technique propa-
gates and equalizes the frequency for many symbols in which case
the performance will decrease. Now when we apply the statistical
encoding technique, Huffman coding, then,

S→115 bits ≈15bytes/30; if Huffman(HM) is solely used.
MTF: S’→111 bits ≈14bytes/30; if MTF→HM multistep is used.
SCIT: S’→91 bits ≈12bytes/30; if SCIT→HM multistep is used.

Observations:

(1) Using Huffman without using SCIT or MTF methods perform
optimally in most normal texts or cases.

(2) Using MTF in combination with BWT performs better than
Huffman in many cases. i.e., BWT→MTF→Huffman

(3) Using SCIT method with or without BWT performs better than
Huffman and MTF for special cases only. SCIT→Huffman or
BWT→SCIT→Huffman

Let examine more examples that are special cases:
S1: aabbbccddeefffgghh =18(8)bytes
Huffman:→54bits≈7bytes/18
MTF: aabaacadaeafaagaha =18(8)bytes→38bits≈5bytes/18
SCIT: aabaababababaababa =18(2)bytes→18bits≈3bytes/18

5



International Journal of Computer Applications (0975 - 8887)
Volume 179 - No.43, May 2018

Table 1. Combined Info-Table of Input, SCIT and MTF
Po, Input SCIT MTF

Ia Syb. Freq. Syb. Freq. Syb. Freq.

0 C 1 C 2 C 2
1 o 3 o 11 o 1
2 m 2 m 1 m 3
3 p 2 p 2 p 2
4 r 3 r 1 r 3
5 e 2 e 2
6 s 3 s 4
7 i 3 i 2 i 2
8 n 2 n 1 n 1
9 ↑ 3 ↑ 1 ↑ 1
a v 1 v 3 v 4
b y 1 y 1
c t 2 t 2
d a 1 a 4 a 1
e . 1 . 2 . 1

n=15, S =30 n=11, S‘=30 n=15, S‘=30

S2: abcdefghijklmnopqrstuvwxyzzyxwvutsrqponmlkjihgfedcba
=52(26) bytes
Huffman:→248bits ≈31 bytes/52
MTF: abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz
=52(26) bytes→248bits ≈ 31 bytes/52
SCIT: abbbbbbbbbbbbbbbbbbbbbbbbbazzzzzzzzzzzzzzzzzzzzzz
zzz =52(3) bytes→79bits ≈ 10 bytes/52

S3: abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz
=52(26) bytes
Huffman:→248bits 31 bytes/52
MTF: abcdefghijklmnopqrstuvwxyzzzzzzzzzzzzzzzzzzzzzzzzzzz
=52(26) bytes→170bits ≈ 22 bytes/52
SCIT: abbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbb =52(2) bytes→52bits ≈ 7 bytes/52

(Now if we apply more methods such as RLE just after applying
SCIT, the compressed document may come down to less than 5
bytes only.)

In this last example, S3, though unique symbols in MTF seem more
as compared to SCIT, the difference in the compressed outcome is
just 15 bytes even though S3 can repeat million times in that sim-
ilarity and repetitive sense of sequence. But in the first and second
examples SCIT performs best as compared with Huffman alone or
MTF.

5. RESULTS & PERFORMANCE COMPARISON
The amount of compression that can be obtained using current tech-
niques is in most cases a trade-off against speed and the amount of
memory required. Here to evaluate the performance of the proposed
transforming technique, SCIT, it is compared with MTF with and
without using BWT. Especially a focus is given for the cases that
the proposed technique can achieve better performance.

Commonly used benchmark test files can be found from the Cal-
gary and Canterbury Corpus which includes text, image, and object
files that can be used to evaluate lossless compression methods.
Thus using some of this files and additional files it is to be demon-
strated that the SCIT techniques will work better for some special
arrangement or distribution of symbols in particular files.

Some of the basic points assumed to measure compression are
memory required to implement the method, how speedy the method
performs on a given system, the amount of compression gained,
how closely the reconstruction resembles the original stream (fi-
delity), and the relative complexity of the algorithm. Out of these
measuring factors memory and time efficiency are the main to be
considered [14, 15].

- Compression-ratio, CR=Size of the compressed stream
Size of the input stream

- Compression-factor, CF= 1
x

= Size of the input stream
size of the compressed stream

- Compression-gain, CG=Compressed file size
Original file size

x100%
- Storage Saving-Percentage, SP=100x(1-CR)

=Original file size − compressed file size
Original file size

x100%
- Compression time, Tcd = Total time required to process, com-

press and/or decompress a given stream.
- Entropy, H, and average codeword length (Acl).

For this multistep compression process, C program has been imple-
mented to experiment the overall compression results.

The following tables and charts summarize the compression per-
formance of the SCIT compression technique comparing with re-
spect to other techniques particularly with using Huffman alone,
with MTF, and in a multistep compression technique using with
BWT. Here as pointed out above speed and memory storage are
considered as efficiency measurement and of course it is lossless
compression though it works for lossy compression as well.

From Table 2., we can see that, for most normal text documents, if
we directly use Huffman without using any transforming technique
performs better than MTF and the SCIT techniques, and of course
MTF is the next better than the SCIT. But for some special alphanu-
meric character combinations the SCIT and MTF respectively per-
forms better. Example the file ”alpha.txt” is a kind of artificial file
and file ”alpha*.txt” is the same as file ”alpha.txt” but in reverse
order. Therefore the SCIT method performs best for files that are
composed in reversed manner at several intervals.

Figures 2, 3, 4, and 5, demonstrate some of the performance mea-
surement parameters from Table 2. The tables and figures show the
results of compression using Huffman (HM), MTF and SCIT tech-
niques. Again they provided the performance comparison among
these three methods (HM, MTF, and SCIT). When we look at Fig-
ure 2, the values along the vertical-axis represent the SP values
which illustrates above 80% storage saving can be achieved in gen-
eral. Similarly it is clearly reflected that in Figure 3, compression
ratio (those across vertical-axis) for SCIT is poor in most normal
texts, but best for some special correlations of symbols. Figure 4, is
normally the reverse of Figure 3, and shows the number of bits or
characters (in the vertical-axis) replaced by a single bit or charac-
ter. Figure 5, illustrates the time (across vertical-axis, in seconds)
required to process, compress and decompress a given file size in
bytes. One can easily identify which method is performing better
for which file and in what condition.

Note: in most the figures the file name is written instead of the file
size, i.e., each file size can be referred from the corresponding table,
otherwise can be replaced with real file size in bytes or Kbytes.

Next as can be observed from Table 3, when we use BWT and then
Huffman will not make any change to the performance obtained
from using Huffman alone. But if we use BWT→MTF→Huffman
or BWT→SCIT→Huffman, for most normal text files (example
English text books) MTF performs better than SCIT and Huffman

6



International Journal of Computer Applications (0975 - 8887)
Volume 179 - No.43, May 2018

Table 2. Compression result using HM only, MTF→HM or SCIT→HM
Input Input File Huffman MTF SCIT
File Size(Bytes) Output CR SP Tcd Ouput CR SP Tcd Output CR SP Tcd

lice29 148,480 84,545 0.569 43.06 0.19 93,266 0.628 37.19 0.23 108,532 0.730 26.90 0.23
lcet10 419,235 243,876 0.582 41.83 0.33 262,804 0.629 37.31 0.42 310,208 0.740 26.01 0.45

plrabn12 471,159 266,178 0.565 43.51 0.34 291,575 0.619 38.12 0.47 340,703 0.723 27.69 0.50
syoulik 125,179 75,806 0.606 39.44 0.19 82,448 0.659 34.14 0.22 91,434 0.730 26.96 0.22

pi 1,000,000 424,883 0.425 57.51 0.34 424,886 0.425 57.51 0.47 424,812 0.425 57.52 0.42
random 100,000 75,000 0.750 25.00 0.16 75,000 0.750 25.00 0.23 75,000 0.750 25.00 0.19
alpha 100,000 59,615 0.596 40.39 0.14 12,515 0.125 87.49 0.17 12,500 0.125 87.50 0.14

alpha* 100,000 59,615 0.596 40.39 0.16 59,613 0.596 40.39 0.16 18,988 0.189 81.01 0.14

Fig. 2. Performance Comparisons based on Storage Saving
Percentage (SP).

Fig. 3. Performance Comparisons based on Compression Ratio
(CR).

alone, and again the SCIT will do better than Huffman alone. But
still there are some special alphanumeric character compositions
that cannot be affected by BWT technique. For example apply-
ing BWT to those files pi.txt, random.txt, and alpha.txt does not
give effective change at all. But we can see applying BWT to files
syoulik.txt, and alpha*.txt and of course to others will transform
them and leads into better compression performance. What we can
conclude from these observations is all the methods have their own
positive and weak sides. Another critical issue with BWT is that
it takes more processing time and needs more main memory for
processing.

Fig. 4. Performance Comparisons based on Compression Fac-
tor (CF).

Fig. 5. Performance Comparisons based on Compression and
Decompression Time (Tcd).

Figure 6, is similar to Figure 2, except it is for multistep compres-
sion process using BWT and for the special case file compositions
(pi.txt, random.txt, alpha.txt, and alpha*.txt).

6. CONCLUSIONS
As data is generated at large volume and data transfer rate is becom-
ing essential in this digital and IOT world, some means of mech-
anism is required to solve the storage, latency, speed, bandwidth,
security and energy problems. Data compression basically aims at
minimizing the size of input data so that contribute to solve or min-

7



International Journal of Computer Applications (0975 - 8887)
Volume 179 - No.43, May 2018

Fig. 6. Performance Comparisons for multistep compression
with BWT based on SP.

imize the stated problems in data communication and data storage
scenarios. In other words data compression is becoming an inte-
gral part of the modern information storage and retrieval systems.
Several compression techniques have been developed and imple-
mented for different formats of data files, text, image, video, audio,
etc. The research on data compression methods is still continuing
as there are gaps to be covered. In this paper, using the proposed
SCIT technique, it has been tried to fill some gaps identified in
data compression transforming techniques for some special cases
at byte/character level. As a conclusion, future works can be car-
ried on an efficient and optimal coding technique (though difficult
to avoid the multistep coding techniques approach) for all types
of file types (structured, unstructured) so that solve one of the Big
Data issues.

7. REFERENCES
[1] David Salmon, Data compression, The Complete Reference,

4th Edition.
[2] Stefan Buttcher, Information Retrieval: Implementing and

Evaluating Search Engines.
[3] Debra A. Lelewer, Data Compression.
[4] Timothy C. Bell et al, 1990. Text Compression.
[5] Sebastian Deorowicz, Universal lossless data compression al-

gorithms.
[6] David Salomon, Data Compression The Complete Reference

4th edition.
[7] Colt McAnlis & Aleks Haecky, Understanding Compression,

Data Compression for Modern Developers.
[8] Dwi Suarjaya, 2012. A New Algorithm for Data Compression

Optimization, JACSA Vol. 3, No.8.
[9] David Salmon et al, Hand Book of Data Compression, 5th Edi-

tion.
[10] Rakesh Mohanty, An Improved Move-To-Front (IMTF) Off-

line Algorithm for the List Accessing Problem.
[11] Khalid Sayood, Introduction to Data Compression, 3rd Edi-

tion.
[12] L. Hanzo, R. G. Maunder, 2010. Near-Capacity Variable

Length Coding.
[13] Arup Kumar Bhattacharjee, ”Comparison Study of Lossless

Data Compression Algorithms for Text Data”, IOSR Journal
of Computer Engineering (IOSR-JCE) Vol.11, May- Jun. 2013,
pp 16-19.

[14] Shrusti Porwal, ”Data Compression Methodologies for Loss-
less Data and Comparison between Algorithms”, IJESIT, Vol-
ume 2, Issue 2, March 2013.

[15] Ritu Antil, ”Analysis and Comparison of various lossless
Compression Techniques”, IJRASET, Vol.2, Issue 3, March
2014.

8



International Journal of Computer Applications (0975 - 8887)
Volume 179 - No.43, May 2018

Table 3. Compression result using BWT→HM, BWT→MTT→HM, BWT→SCIT→HM
Input Input File Huffman MTF SCIT
File Size(Bytes) Output CR SP% Output Cr SP% Output CR SP%

syoulik 125,179 75,806 0.606 39.44 44,762 0.358 64.24 61,112 0.488 51.18

pi 124,928 53,051 0.424 57.53 53,057 0.424 57.53 53,041 0.424 57.54
random 100,000 75,000 0.750 25.00 75,000 0.750 25.00 75,000 0.750 25.00
alpha 100,000 59,615 0.596 40.39 12,516 0.125 87.49 12,500 0.125 87.50
alpha* 100,000 59,615 0.596 40.39 12,525 0.125 87.47 12,500 0.125 87.48

9


	Introduction
	LTITERATURE REVIEW
	Huffman Coding
	 Run Length Encoding (RLE)
	 Move-to-Front Transform
	Burrows-Wheeler-Transform (BWT)
	Entropy

	MODELING AND CODING
	PROPOSED METHOD: Simulated circular Indexing Transform (SCIT)
	 RESULTS & PERFORMANCE COMPARISON
	CONCLUSIONS
	References

