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ABSTRACT
In this paper, based on an observed adaptive Type-II progressively
censored sample from the generalized exponential distribution, the
problem of predicting the order statistics from a future unobserved
sample from the same distribution is discussed. The description of
the model of the adaptive Type-II progressively censored sample
from the generalized exponential distribution is presented. Also,
Markov chain Monte Carlo method is applied to construct the
Bayesian prediction intervals of the order statistics from a future
sample from the same distribution. Finally, results from simulation
studies assessing the performance of our proposed method are in-
cluded and then an illustrative example using real data set is pre-
sented for illustrating all the inferential procedures developed here.
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1. INTRODUCTION
There are several types on life testing in which units are removed
or lost from the experiment before the failure. Data which obtained
from such experiment are called censored data. The most common
reason for censoring is reducing the total time of the test and the
associated cost and effort. Also, a censoring scheme which can bal-
ance between, total time spent for the experiment, number of units
placed on the experiment and the efficiency of statistical inference
based on the results of the experiment, is desirable.
Type-I (time) and Type-II (failure) censoring schemes are the most
common censoring schemes. Under Type-I censoring scheme, the
life testing experiment will be stopped at a pre-fixed time T , while
under Type-II censoring scheme, the life testing experiment will
be terminated at the time when the rth failure is observed. Pro-
gressive Type-II censoring scheme is a generalization of Type-II

censoring scheme, where n units are placed on the life testing ex-
periment and only m failures are going to be observed. At the first
observed failure, R1 of the surviving units are randomly selected
and removed. When the second failure is observed, R2 of the sur-
viving units are randomly selected and removed. The experiment
will be terminated at when the mth failure is observed and all re-
maining Rm = n − R1 − R2 − ... − Rm−1 −m surviving units
are removed. We denote a progressively Type-II censored sample
by X1:m:n < X2:m:n < ... < Xm:m:n. For extensive reviews of
the literature on progressive censoring, readers may refer to Balakr-
ishnan and Aggarwala (2000), Balakrishnan (2007), Ng and Chan
(2007), and Mohie El-Din and Shafay (2013).
Recently, Ng et al (2009) have suggested an adaptive Type-II pro-
gressive censoring which is a mixture of Type-I and Type-II pro-
gressive censoring schemes. In this censoring scheme, we allow
R1 − R2 − · · · − Rm to depend on the failure times so that the
effective sample size is always m which is fixed in advance. A
properly planned adaptive progressively censored life testing ex-
periment can save both the total test time and the cost induced by
failure of the units and increase the efficiency of statistical analy-
sis. This censoring scheme can be described as follows: Consider
n identical units under observation in a life-testing experiment and
suppose the experimenter provides a time T , which is an ideal to-
tal test time, but we may allow the experiment to run over time T .
If the mth progressively censored observed failure occurs before
time T (i.e. Xm:m:n < T ), the experiment terminates at the time
Xm:m:n (progressive Type-II censoring case); see Fig. 1.
Otherwise, once the experimental time passes time T but the num-
ber of observed failures has not reached m, we would want to ter-
minate the experiment as soon as possible. Therefore, we should
leave as many surviving items on the test as possible. Suppose J
is the number of failures observed before time T , i.e. XJ:m:n <
T < XJ+1:m:n, J = 0, 1, ...,m, where X0:m:n ≡ 0 and
Xm+1:m:n ≡ ∞. After the experiment passed time T , we set
RJ+1 = ... = Rm−1 = 0 and Rm = n − m −

∑J
i=1Ri; see

Fig.2.
This formulation leads us to terminate the experiment as soon
as possible if the (J + 1)th failure time is greater than T for
J + 1 < m. The value of T plays an important role in the de-
termination of the values of Ri and also as a compromise between
a shorter experimental time and a higher chance to observe extreme
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Fig. 1. experiment terminate before time T .

Fig. 2. experiment terminate after time T .

failures. One extreme case is when T → ∞, which means time is
not the main consideration for the experimenter, then we will have
a usual progressive Type-II censoring scheme with the pre-fixed
progressive censoring scheme (R1, ..., Rm). Another extreme case
can occur when T = 0, which means we always want to end the ex-
periment as soon as possible, then we will have R1, ..., Rm−1 = 0
andRm = n−m which results in the conventional Type-II censor-
ing scheme. For extensive reviews of the literature on the adaptive
Type-II progressive censoring scheme, readers may refer to Cramer
and Iliopoulos (2010), Mahmoud et al. (2013), and Amein (2016,
2017).
Statistical prediction can be applied in many domains such as, qual-
ity control, forecasting, marketing, engineering, industry, business,
reliability and many others. In each of these domains, it can be used
for planning purposes (predict the total medical cost of a popula-
tion, predict a future number of insurance claims), for process mon-
itoring (predict the number of nuclear scrams in a power plant), or
for decision making. There is a large amount of literature describ-
ing various statistical prediction applications and methods. Some
of these application may be found in Nelson (1982), Devroy and
Gyorfi (1985), Bernardo (1988), Brown and Makalainen (1992).
Predicting an observable in the future sample depends on the used
sampling scheme. Statistical prediction is provided some estimates
(point or interval) for future observations based on the results of
past (informative) sample. The predictive intervals are the most fa-
miliar forms of prediction. They differ significantly from the con-
fidence intervals and tolerance regions, which deal mainly with the
unknown population parameters. A predictive interval is an interval
that uses the results of an observed sample to contain the results of
a future (unobserved) sample with a specified probability.
Recently, Mohie El-Din et al. (2017) have considered the adaptive
Type-II progressive censoring scheme and used the maximum like-
lihood and Bayesian methods to calculate the point estimators and
the approximate confidence intervals for the unknown parameters
as well as the reliability and hazard rate functions of the general-
ized exponential distribution. In this paper, based on an observed
adaptive Type-II progressively censored sample from the general-
ized exponential distribution, the problem of predicting the order
statistics from a future sample from the same distribution is dis-
cussed. the rest of paper is organized as follows. In Section 2, the
description of the model of the adaptive Type-II progressively cen-
sored sample from the generalized exponential distribution is pre-
sented. In Section 3, Markov chain Monte Carlo (MCMC) method

is applied to construct the Bayesian prediction intervals of the order
statistics from a future sample from the same distribution. Finally,
in Section 4, results from simulation studies assessing the perfor-
mance of our proposed method are included and then an illustrative
example using real data set is presented for illustrating all the in-
ferential procedures developed here.

2. THE MODEL DESCRIPTION
Suppose n items on a life-testing experiment and the experimenter
provides a time T . If the failure times of the items are from a
continuous population with cumulative distribution function (CDF)
F (x) and probability density function (PDF) f(x). Then, the joint
density function of the adaptive Type-II progressively censored
sample X = (X1,m,n, ...,Xm,m,n) with censoring scheme R =
(R1, ..., Rm) is then given by (see Ng et al., 2009)

f(x1, · · · , xm) = dJ

(
m∏
i=1

f(xi:m:n)

)(
J∏
i=1

(1− F (xi:m:n))Ri

)
× (1− F (xm:m:n))n−m−

∑J
i=1Ri ,

0 < x1:m:n < · · · < xm:m:n <∞, (1)

where

dJ =
m∏
i=1

n− i+ 1−
max{i−1,J}∑

k=1

Rk

 . (2)

In this paper, the underlying distribution is assumed to be the two-
parameter generalized exponential distribution which is introduced
by Gupta and Kundu (1999) as an alternative to the gamma and
Weibull distributions. The two-parameter generalized exponential
distribution has PDF and CDF are given, respectively, by

f(x;α, β) =
α

β
e−

x
β (1− e−

x
β )α−1, x > 0, (3)

F (x;α, β) = (1− e−
x
β )α, x > 0, (4)

where α > 0 and β > 0 are the shape and scale parameters, re-
spectively. This distribution has increasing and decreasing hazard
rate depending on the shape parameter α. Depending on α, the gen-
eralized exponential distribution can be either reverse J-shaped or
bell-shaped. If α < 1, it is reverse J-shaped while if α > 1, it is
bell shaped. When α = 1, it becomes the exponential distribution.
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From (1), (3) and (4), we obtain the likelihood function of α and β,
based on the adaptive Type-II progressively censored sample X =
(X1:m:n, ...,Xm:m:n) with censoring scheme R = (R1, ..., Rm),
as

L(x; θ, σ) = dJ

m∏
i=1

θ

σ
e−

xi
σ (1− e−

xi
σ )θ−1

J∏
i=1

(1− (1− e−
xi
σ )θ)Ri

×
(

1−
(

1− e−
xm
σ

)θ)n−m−∑J
i=1Ri

, (5)

where dJ is defined in (2).

3. THE POSTERIOR DISTRIBUTION
In this section, we derive the joint and conditional posterior distri-
butions of the two unknown parameters θ and σ. Under the assump-
tion that both parameters θ and σ are unknown and independent,
we may consider the prior distributions of θ and σ as independent
gamma prior distributions, G(a, b) and G(c, d), respectively:

π1(c) = baca−1e−bc

Γ(a)
, c > 0, (6)

and

π2(β) = ξγβγ−1e−ξβ

Γ(γ)
, β > 0 (7)

Multiplying π1(θ|a, b) by π2(σ|c, d), we obtain the joint prior
function of θ and σ as

π(θ, σ) =
badc

Γ(a)Γ(c)
θa−1σc−1 exp(−bθ − dσ). (8)

Using the likelihood function given in (5) and the joint prior given
in (8), the joint posterior function of θ and σ can be obtained as

π∗(θ, σ|x) ∝ θm+a−1σ−m+c−1e−bθ−dσ

[
m∏
i=1

e−
xi
σ

(
1− e−

xi
σ

)θ−1
]

×

[
J∏
i=1

(
1−

(
1− e−

xi
σ

)θ)Ri]

×
(

1− (1− e−
xm
σ )θ

)n−m−∑J
i=1Ri

. (9)

From (9), the conditional posterior density function of θ given σ
can be obtained as

π∗θ(θ|σ, x) ∝ θm+a−1e−bθ

[
m∏
i=1

(1− e−
xi
σ )θ−1

]

×

[
J∏
i=1

(
1−

(
1− e−

xi
σ

)θ)Ri]

×
(

1−
(

1− e−
xm
σ

)θ)n−m−∑J
i=1Ri

. (10)

Similarly, the conditional posterior density function of σ given θ
can be obtained as

π∗σ(σ|θ, x) ∝ σ−m+c−1e−dσ

[
m∏
i=1

e−
xi
σ

(
1− e−

xi
σ

)θ−1
]

×

[
J∏
i=1

(
1−

(
1− e−

xi
σ

)θ)Ri]

×
(

1−
(

1− e−
xm
σ

)θ)n−m−∑J
i=1Ri

. (11)

Unfortunately, the conditional posterior distribution of θ and σ in
(10) and (11) cannot be reduced analytically to well known distri-
butions and therefore it is not possible to sample directly by stan-
dard methods, but the plot of it show that it is similar to normal dis-
tribution. So, to generate random numbers from these distributions,
we use the M-H algorithm within the Gibbs Sampling scheme with
normal proposal distribution.

4. TWO-SAMPLE BAYESIAN PREDICTION FOR
FUTURE ORDER STATISTICS

One of the main objectives of statistical modeling is to pre-
dict future observations on the basis of available information and
Bayesian methodology provides a natural way. Several authors ad-
dressed the issue of prediction and obtained the predictive bounds
for future data. The aim of this section is to discuss the problem of
predicting unobserved order statistics from the future sample from
the generalized exponential distribution on the basis of an observed
(informative) adaptive Type-II progressive censored data from the
same distribution. The predictive density and distribution functions
are obtained and used to determine prediction intervals for the un-
observed order statistics. We consider the prediction problem in
terms of the estimation of the posterior predictive density of a fu-
ture observation for two-sample prediction case. We also construct
predictive interval for the observed order statistics observation us-
ing Gibbs sampling procedure.
Suppose thatXR

1:m:n,X
R
2:m:n, ...,X

R
m:m:n is the observed adaptive

Type-II progressively censored sample drawn from the general-
ized exponential distribution and Y1:N , Y2:N , ..., YN :N are unob-
served order statistics from an independent future random sample
(of sizeN ) from the same distribution. Based on the observed adap-
tive Type-II progressively censored sample, our aim is to construct
Bayesian prediction for the sth order statistics, Ys:N , 1 < s < N .
The marginal density function of Ys:N , given θ > 0 and σ > 0, is
of the form:

g(s)(ys|θ, σ) = D(s)f(ys|θ, σ) [F (ys|θ, σ)]s−1 [1− F (ys|θ, σ)]n−s ,
(12)

where D(s) = n!
(n−s)!(s−1)!

.
By substituting from (3) and (4) into (12), we obtain the marginal
density and distribution functions of Ys:N , respectively, as

g(s)(ys|θ, σ) = D(s)
θ

σ
e−

ys
σ (1− e−

ys
σ )θs−1

[
1− (1− e−

ys
σ )θ

]n−s
= D(s)

θ

σ
e−

ys
σ

n−s∑
k=o

ak(s)(1− e−
ys
σ )θ(k+s)−1

(13)
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and

G(s)(ys|θ, σ) = D(s)

n−s∑
k=o

ak(s)

[
(1− e−

ys
σ )θ(k+s)

k + s

]
, (14)

where ak(s) = (−1)k
(
n−s
k

)
.

The Bayesian predictive density function of Ys:N , based on the ob-
served adaptive Type-II progressively censored sample, can be ob-
tained as

g∗(s)(ys|θ, σ) =

∫ ∞
0

∫ ∞
0

g(s)(ys|θ, σ)Π∗(θ, σ|x)dθdσ, (15)

where Π∗(θ, σ|x) is the joint posterior density of θ and σ as given
in (9). Thus, the predictive distribution function, based on the ob-
served adaptive Type-II progressively censored sample, is given by

G∗(s)(ys|θ, σ) =

∫ ∞
0

∫ ∞
0

G(s)(ys|θ, σ)Π∗(θ, σ|x)dθdσ. (16)

It is clear that g∗(s)(ys|θ, σ) in (15), and G∗(s)(ys|θ, σ) in (16)
cannot be expressed in closed form and hence it cannot be eval-
uated analytically. A simulation based on consistent estimator
g∗(s)(ys|θ, σ), and G∗(s)(ys|θ, σ) can be obtained by using the
MCMC-Gibbs sampling procedure with M-H, which is introduced
by Metropolis et al. (1953) and then it is extended by Hastings
(1970). We propose the following scheme to generate θ and σ
from the posterior density functions and in turn obtain the simula-
tion estimators of the predictive density and distribution functions,
g∗(s)(ys|θ, σ) and G∗(s)(ys|θ, σ), for Ys:N .

(1) Start with an ( θ(0), σ(0)).

(2) Set i = 1.

(3) Generate θ(i) from π∗θ(θ|σ, x) with the N (θ(i−1), V ar(θ̂))
proposal distribution.

(4) Generate σ(i) from π∗σ(σ|θ, x) with the N(σ(i−1), V ar(σ̂))
proposal distribution.

(5) Compute θ(i) and σ(i).

(6) Set i = i+ 1

(7) Repeat steps 3− 6 N1 times.

(8) The simulation estimators of the predictive density and distri-
bution functions, g∗(s)(ys|θ, σ) andG∗(s)(ys|θ, σ), for Ys:N can
be obtained, respectively, as:

g∗(s)(ys|θ, σ) =
1

N1 −M1

N1∑
i=M1+1

g(s)(ys|θi, σi) (17)

and

G∗(s)(ys|θ, σ) =
1

N1 −M1

N1∑
i=M1+1

G(s)(ys|θi, σi). (18)

where M1 is burn-in.

Moreover, a symmetric 100(1 − γ)% predictive interval for Ys:N ,
s = 1, 2, ...,N , can be obtained by solving the two following non-
linear equations

P [Ys > L|x] =
γ

2
= 1−Ĝ∗(s)(ys|θ, σ) =⇒ Ĝ∗(s)(ys|θ, σ) = 1−γ

2
,

(19)

and

P [Ys > U |x] = 1−γ
2

= 1−Ĝ∗(s)(ys|θ, σ) =⇒ Ĝ∗(s)(ys|θ, σ) =
γ

2
,

(20)
where L and U are the lower and upper bounds of the predictive
interval.

5. NUMERICAL RESULTS
5.1 Simulation study
A simulation study is carried out for evaluating the performance of
the inferential methods discussed in the paper. We chose n = 30,
m = 10 and R = (3, 2, 3, 1, 2, 3, 1, 0, 2, 3). For T = 0.8, we first
describe the algorithm, proposed by Ng et al. (2009), to generate
adaptive Type-II progressively censored sample from the general-
ized exponential distribution with parameters (θ, σ) = (2, 3).

(1) Generate an ordinary Type-II progressively censored sample
X1,m,n, ...,Xm,m,n with the given censoring scheme R =
(R1, ..., Rm) from the GE distribution using the proposed al-
gorithm in Balakrishnan and Sandhu (1995).

(2) Determine the value of J , where XJ:m:n < T < XJ+1:m:n,
and discard the sample XJ+2,m,n, ...,Xm,m,n.

(3) Generate the first m − J − 1 order statistics from a truncated
distribution f(x)/[1 − F (xj+1:m:n)] with sample size (n −∑J
i=1Ri−J−1) asXj+2:m:n,Xj+3:m:n, ...,Xm:m:n, where

f(x) and F (x) are given in (2.3) and (2.4), respectively.

We used the above algorithm to generate adaptive Type-II pro-
gressively censored sample and then computed the lower and up-
per bounds of the 100(1 − γ)% predictive interval of the order
statistic Ys:N , s = 1, 2, ...,N , from a future random sample of
size N = 5 based on (N1 = 11000) MCMC samples and dis-
card the first (M1 = 1000) values as burn-in. We replicated the
process 1000 times and compute the average values of the lower
bound, upper bound and width of the 100(1−γ)% predictive inter-
val when γ = 0.01, 0.05, 0.10, 0.20. The results are obtained us-
ing the non-informative gamma priors for the two parameters with
a = b = c = d = 0 (we call it MCMC - prior 0) and the informa-
tive gamma priors for the two parameters with a = 1, b = 2, c = 1
and d = 2 (we call it MCMC - prior 1). The obtained results are
presented in Tables 1-4.
From the results obtained in Tables 1-4, it can be observed that
the Bayesian prediction intervals with informative priors are tighter
than the width of those with noninformative priors. Also, when the
significant level (γ) increases, the width of the prediction interval
decreases in all cases. Moreover, the width of all prediction inter-
vals increase with increasing s.

5.2 Numerical example
To illustrate the inferential procedures developed in the preceding
sections, we consider the following data giving the number of mil-
lion revolutions before failure for each of 23 ball bearings in the
life test. These data are taken from Lawless (1982, Page 228) and
has been used earlier by Gupta and Kundu (2002)

17.88 28.92 33.00 41.52 42.12 45.60 48.80 51.84
51.96 54.12 55.56 67.80

68.64 68.64 68.88 84.12 93.12 98.64 105.12 105.84
127.92 128.04 173.40
In this example, we use this set of real data to generate an adaptive
Type-II progressively censored sample with n = 23, m = 10,
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T = 45 and R=(2,0,1,3,0,0,2,0,1,4). Thus, the generated adaptive
Type-II progressively censored sample is
42.12, 51.96, 54.12, 67.8, 68.64, 84.12, 93.12, 98.64, 105.12,
105.84, 127.92, 128.04, 173.4
Because we have no prior information about the unknown param-
eters, we assume here the non-informative prior (with a = b =
c = d = 0). Based on the generated adaptive Type-II progres-
sively censored sample, we compute the lower and upper bounds
of the 100(1 − γ)% predictive interval of the order statistic Ys:N ,
s = 1, 2, ...,N , from a future random sample of size N = 5. The
lower bound, upper bound and width of the 99% and 95% pre-
dictive intervals are presented in Table 5. The lower bound, upper
bound and width of the 90% and 80% predictive intervals are pre-
sented in Table 6.

5.3 Conclusion
In this paper, we discussed the problem if predicting unobserved
order statistics from a future sample based on observed adaptive
Type-II progressively censored sample from the generalized distri-
bution. We derived the joint and conditional posterior functions for
the unknown parameters. Also, we used the MCMC-Gibbs sam-
pling procedure with M-H to estimate the predictive density and
distribution functions of Ys:N and then calculated the Bayesian pre-
diction interval of Ys:N , s = 1, ....N . From all obtained results
in the simulation study and the numerical example, we can notice
that the Bayesian prediction interval with informative prior is better
than that with noninformative prior.
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Table 1. The average values of the lower bound, upper bound and width of the 99%
predictive interval for Ys:5, s = 1, ..., 5.

(MCMC − prior 0) (MCMC − prior 1)

Ys:5 (Lower,Upper) Width Ys:5 (Lower,Upper) Width

Y1:5 (0.0399, 10.4585) 10.4186 Y1:5 (0.1369, 7.5849) 7.4480

Y2:5 (0.2819, 11.8369) 11.5550 Y2:5 (0.6881, 10.5882) 9.9001

Y3:5 (1.3206, 18.6678) 17.3471 Y3:5 (1.3285, 15.3512) 14.0227

Y4:5 (2.4704, 44.7430) 42.2726 Y4:5 (2.2304, 22.5209) 20.2905

Y5:5 (3.9501, 47.4535) 43.5034 Y5:5 (3.6449, 39.2798) 35.6349

Table 2. The average values of the lower bound, upper bound and width of the 95%
predictive interval for Ys:5, s = 1, ..., 5.

(MCMC − prior 0) (MCMC − prior 1)

Ys:5 (Lower,Upper) Width Ys:5 (Lower,Upper) Width

Y1:5 (0.2787, 7.7365) 7.4578 Y1:5 (0.2812, 5.9442) 5.6630
Y2:5 (1.2391, 9.5651) 8.3259 Y2:5 (1.1009, 8.4139) 7.3130

Y3:5 (2.1861, 13.6587) 11.4726 Y3:5 (2.077, 11.9393) 9.8622

Y4:5 (3.5211, 26.4485) 22.9274 Y4:5 (3.1976, 17.2451) 14.0474
Y5:5 (4.7753, 37.5113) 32.7359 Y5:5 (5.0236, 32.3138) 27.2901

Table 3. The average values of the lower bound, upper bound and width of the 90%
predictive interval for Ys:5, s = 1, ..., 5.

(MCMC − prior 0) (MCMC − prior 1)

Ys:5 (Lower,Upper) Width Ys:5 (Lower,Upper) Width

Y1:5 (0.2116,6.9398) 6.7282 Y1:5 (0.4814,5.0934) 4.6120
Y2:5 (1.4914,9.2594) 7.7680 Y2:5 (1.4883,7.3580) 5.8697
Y3:5 (2.409,10.4310) 8.0220 Y3:5 (2.6075,9.5793) 6.9718
Y4:5 (4.0827,20.2031) 16.1204 Y4:5 (3.5975,13.8451) 10.2475
Y5:5 (6.1443,29.8928) 23.7485 Y5:5 (5.4645,22.5461) 17.0816

Table 4. The average values of the lower bound, upper bound and width of the 80%
predictive interval for Ys:5, s = 1, ..., 5.

(MCMC − prior 0) (MCMC − prior 1)

Ys:5 (Lower,Upper) Width Ys:5 (Lower,Upper) Width

Y1:5 (0.5926,5.0386) 4.4460 Y1:5 (0.8192,4.2796) 3.4604
Y2:5 (1.8149,8.5751) 6.7602 Y2:5 (1.8038,6.3711) 4.5673
Y3:5 (3.119,10.2792) 7.1601 Y3:5 (2.9292,8.8177) 5.8885
Y4:5 (4.6125,13.3709) 8.7584 Y4:5 (4.3643,12.0921) 7.7277
Y5:5 (6.7396,20.8389) 14.0993 Y5:5 (6.4141,19.7169) 13.3027

Table 5. The average values of the lower bound, upper bound and width of the 99% and 95%
predictive interval for Ys:5, s = 1, ..., 5.

99% predictive intervals 95% predictive intervals
Ys:5 (Lower,Upper) Width Ys:5 (Lower,Upper) Width

Y1:5 (5.3360, 88.9052) 83.5692 Y1:5 (10.7497, 72.2713) 61.5216
Y2:5 (19.2642, 109.4150) 90.1511 Y2:5 (21.5242, 100.3500) 78.8256

Y3:5 (24.9427, 153.6400) 128.6970 Y3:5 (32.8750, 126.6540) 93.7792

Y4:5 (36.2476, 226.0080) 189.7600 Y4:5 (44.9061, 164.7790) 119.873
Y5:5 (49.3578, 336.7620) 287.4040 Y5:5 (63.9343, 337.0110) 273.077

Table 6. The average values of the lower bound, upper bound and width of the 90% and 80%
predictive interval for Ys:5, s = 1, ..., 5.

90% predictive intervals 80% predictive intervals
Ys:5 (Lower,Upper) Width Ys:5 (Lower,Upper) Width

Y1:5 (13.2100, 65.5197) 52.3097 Y1:5 (17.4271, 56.9228) 39.4957
Y2:5 (26.1831, 91.8664) 65.6833 Y2:5 (30.4093, 77.9610) 47.5517

Y3:5 (37.3926, 124.9530) 87.5600 Y3:5 (44.1026, 99.6267) 55.5242

Y4:5 (50.7692, 159.5960) 108.8270 Y4:5 (56.3729, 124.2150) 67.8418
Y5:5 (61.5428, 222.2450) 221.2450 Y5:5 (73.3478, 235.4770) 162.1290
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