
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.46, June 2018

22

Automated Software Testing Frameworks: A Review

Milad Hanna
Department of Computer

Science, Faculty of Computers
and Information, Helwan

University, Egypt

Amal Elsayed Aboutabl
Associate Professor at

Computer Science Department,
Faculty of Computers and

Information, Helwan University,
Egypt

Mostafa-Sami M. Mostafa
Professor of Computer

Science, HCI lab, Faculty of
Computers and Information,

Helwan University, Egypt

ABSTRACT

Manual software testing has been traditionally used in the

software industry. It depends completely on human testers

without the help of any tool to detect the unexpected behavior

of an application. However, the main problem in the manual

testing approach is that it is a time-consuming task in addition

to the fact that tests cannot be reused. Automation software

testing has been introduced to reduce testing efforts and detect

as many faults as possible. Test cases are executed not only

to test the functional requirements for the first time, but also

to check the functions which have been already tested. This

study aims to present the main features of different

automation testing frameworks. In addition, an overview of

different scripting techniques is presented during the study.

Keywords

Software Testing, Automated Software Testing, Test Data,

Test Case, Test Script, Manual Testing, Software Under Test.

1. INTRODUCTION
There are many ways through the Software Development Life

Cycle (SDLC) to control the product quality, such as careful

design process management, analysis and implementation.

However, software testing is the major method to control and

monitor quality [1] [2] [3]. Software testing helps software

programmers to fix bugs as early as possible in the SDLC to

decrease the bug fixing cost [6]. This opens research on how

to achieve the best possible quality in less time. The National

Institute of Standards and Technology mentioned in a report

that software failures cost nearly $60 billion every year [4].

Testing comes exactly before the final delivery of the final

version of the software [5] [6] [7]. Software testing activities

often consume from 30% to 40% of the total development

costs [8] [9] [10]. Bhondokar and Ranawade [10] illustrate

that during the past ten years, the software testing field has

grown rapidly because applications are getting more and more

complex.

Software testers face a problem in manual testing when they

need to run test cases repeatedly especially if the application

versions change frequently. The same problem occurs if the

tester wants to run test cases over multiple browsers or

multiple platforms. Therefore, manual testing is a tedious job

because testers repeat testing with every change in the SUT.

Moreover, manual tests cannot be reused [11] [12]. It is most

suitable for non-repeatable tasks. It is usually used for

revealing new and unexpected defects [13].

Automation of software testing is the process of creating a

program (test script) that simulates the manual test case steps

in whatever programming/scripting language [14] with the

help of other external automation assisting tools [11] [15].

Since automating tests means automating the manual process

which is currently in use [16], automation testing requires

clear manual testing process to be able to automate it [16]

[17]. Testing engineers must implement and run a program to

test the SUT [18]. In other words, they implement toolkits to

test the already implemented source code [11]. Automated

testing is a development activity [19] which involves

automating an already existing manual process.

Automation focuses on execution phase [20]. It increases the

test execution speed as it can be used many times with no

more effort. For sure, for the first run, it will take long time to

achieve this. However, after the test scripts are ready, the

human tester can execute them automatically on the SUT [21]

[22]. It has a very high impact on saving the cost of the

software testing phase [23].

2. AUTOMATED TESTING
A test script is a sequence of processing steps executed by the

application. Each step may have parameters such as the value

to be put in specific HTML control. These steps are

implemented using any high level programming language

[24]. Creating test scripts is a programming activity that

describes test case input, output and expected behavior. Any

test script is composed of three main components. The first

component is responsible for starting up the SUT, the second

one is responsible for exercising the main scenario steps and

the last one is responsible for verification of the expected

results.

Reddy [25] and Devi [26] listed detailed automation steps:

1. Automation feasibility and planning: involves

discussing the scope of testing, practices to be applied

and deciding whether to automate the project or not.

2. Automation design: involves selecting specific test

cases to be covered in the automation since not all test

cases are good candidates for automation as well as

selecting an automation tool. In addition, it involves

assigning automated testing tasks to the appropriate

team members.

3. Test scripts development: involves implementation of

test scripts that simulate test cases steps.

4. Test scripts deployment: getting the automation

project ready for use.

5. Automation execution: the implemented test scripts

are executed on the SUT.

6. Test verification: actual results extracted from the

second step are compared against the expected results

to mark every test case as either passed or failed.

7. Automation maintenance: test scripts need to be

updated frequently to match any update in the source

code.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.46, June 2018

23

3. AUTOMATION TESTING

FRAMEWORKS
Historically, early automated software testing frameworks

adopted the record/playback approach, then moved to the

data-driven approach, and nowadays it is currently moving to

be keyword-driven [27]. These approaches can be dived into

two main automation testing approaches.

3.1 Record/Playback Automation
The first approach is record/playback automation testing

framework is attractive particularly for non-programmers

because of its ease of use. All what is needed is simply

clicking the record button to record user actions, then clicking

the playback button to replay the auto-generated scripts. There

are many record/playback testing tools that record all user

actions and data input to the different web pages of the SUT.

Actions may vary such as clicking buttons, selecting values,

inputting data values, etc. These auto-generated scripts are

used later to run automatically without any user interaction

[28] as shown in Fig. 1. Creating test cases in the

record/playback approach does not require any advanced

testing skills or any programming skills. Testers just need to

run the web application and record their actions. However, the

auto-generated test scripts are very fragile and sensitive to any

simple change. Any minor change in the application GUI

might break the auto-generated test script. This means that test

scripts are tightly coupled to the web pages. For example, test

scripts may fail to locate a hyperlink or an input field that is

changed from dropdownlist to checkbox or submission button

because of layout change. The solution to this problem is

either to repair the test script to match the new UI change or

re-record the user scenario again on the new release of the

application and generate the test script from scratch.

Fig. 1. Record/playback Automation Approach

3.2 Programmable Automation
The second approach is programmable automation testing

framework which aims to automate applications by using all

the features, guidelines and best practices of the traditional

development. In this type, testing engineer can use: handling

conditional execution to select one path from multi paths,

loops to execute specific portion of code many times,

handling exceptions and logging reuse of common methods,

reference elements, parameterizing methods. It is built on the

concept of encapsulation.

Nguyen and Robbins [29] named the programmable

automation testing as script-based automation testing which

asks testing engineers to implement test scripts to control the

GUI.

Programmable approach requires elevated level programming

skills because it is a normal development project, so it

requires high initial effort in scripts development. The

programmable test scripts that are implemented using this

approach are more flexible than the scripts which are

generated by record/playback tools. It is based on the manual

implementation of test scripts as shown in Fig. 2.

Test scripts can be implemented using any general-purpose

programming language (such as C++, Java, and Ruby). They

also use specific UI libraries that can catch browser instance

and provide commands that deal with HTML UI objects.

Fig. 2. Test Script Life Cycle

4. KEYWORD DRIVEN AUTOMATION

TESTING FRAMEWORKS

4.1 Keyword Driven Automation Testing

Framework Main Concept
Keyword-driven frameworks are based on the concept of

separating not only test data but also keywords. Keywords are

translated into actions using an automation driver. It is an

extension of the data- driven framework where user actions

are separated as keywords in addition to test data. Every

keyword is related to a specific functionality, and the

sequence of keywords is automatically run using a driver

program. The suite of automated test cases will later run

without any human intervention. It works on a higher level of

abstraction [28] as it implements reusable functionalities in

the form of keywords that represent test case steps [30]. The

test script engine is responsible for calling the corresponding

method for the appropriate keyword. Fig. 3 illustrates the

high-level architecture diagram for a keyword-driven

framework [31].

A keyword-driven automation framework consists of three

main components [32] [33]:

 External data files: which consists of keywords and

test data.

o Keywords: The keywords sequence represents

the test case flow. Based on these keywords,

specific functions will be called.

o Test data: includes test case inputs and outputs.

Input values can either be stored with the

keywords repository or separated in an external

data file.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.46, June 2018

24

Fig. 3. General Keyword Driven Framework

 Test function libraries: These functions should open

and read the external data source line by line and then

map each keyword to its corresponding function. It is

also responsible for mapping each test step to the

automation source code (e.g. Selenium, Watin, QTP,

etc.) that integrates with the framework.

 Driver test scripts: It is responsible for initiating the

function library to start execution.

The main benefit of keyword-driven frameworks is that it

reduces the overall cost of test scripts maintenance because of

the high level of abstraction. Moreover, tests are easier to

understand by inexperienced testers/users [34]. Using

keyword-driven automation frameworks, the tester can create

new tests without having programming knowledge.

4.2 Related Work for Testing Frameworks
Leotta et al. [35] performed an experimental analysis to

calculate the cost/benefit tradeoff of the record/playback

scripting approach (using Selenium IDE) and the

programmable scripting approach (using Selenium Web

driver). They do not only calculate the cost for creating the

test scripts from scratch but also the cost for maintaining the

test scripts after publishing a new release of the application.

They asses the two approaches on both the short term and

long term. The results of experiments on testing six different

web applications indicated that [35]:

 Cost for the development of test scripts using the

programming scripting technique is more expensive

than using the record/playback scripting technique as it

has additional time required ranging from 32% to

112% [35]. However, test scripts maintenance in the

programming approach cost less than in

record/playback approach as it saves from 16% to 51%

[35] of the required time. They noticed that after about

one to three releases of the same application, the cost

of developing test scripts in the programmable

approach is less than the cumulative cost of

maintaining record/playback scripts. The saving cost

value increases gradually after each release. This

means that for any web application which is expected

to have three releases over its progress, programmable

test scripts will have more return on investment than

record/playback test scripts.

 The more the reuse of page objects across test cases,

the lower the maintenance cost needed to update test

scripts because shared page objects will be maintained

only once. This depends on the modularity of the web

application under test.

Bhondokar et al. [27] propose usage of a hybrid testing

framework which combines both data-driven and keyword-

driven concepts. This type of framework can be used widely

in any type of web application for automation testing as

shown in Fig. 4.

Fig. 4. Hybrid Testing Framework

Sinha [14] propose another solution to reduce the cost of

automation testing by transforming the English manual

written test cases to a well-organized keyword-driven form

sheet. These auto-generated keywords will be used later by

the automation framework to test the SUT. The main issue in

this solution is that output test steps from the English written

test cases are not 100% guaranteed to be correct because the

user can express a test case in many different forms [36].

This requires human intervention to revise the auto-generated

steps before running them. Revision of hundreds of steps is a

difficult and time-consuming task. Therefore, there are recent

researches that focus on detecting user intent from natural

languages [37] [38] [23] [39] [40].

Lau [38] propose the Co-Tester system suggesting a new

language called ClearScript. The tester should provide the co-

tester system with segmented test steps so that the system can

handle them. Little and Miller [40] proposed another solution

to transform the tester’s keywords to the user interface of a

specific system.

Fei Wang [41] proposes an automated framework for testing

web applications based on Selenium and JMeter. It is used for

performance testing by simulating a heavy load on a server.

This framework has four main components. The first

component is the model which is responsible for converting

each test case for object models such as elements, actions and

assertions. The second component is the translator which is

responsible for converting each test case into a set of actions.

Then, these actions are converted into its corresponding test

script. The third component is ActionWorker which is

responsible for calling the testing tool to execute the actions.

The last component is the comparator which is responsible for

comparing the actual test results against the expected results.

Anuja [42] proposes a keyword-driven framework which is

called WAT (Web-Based Automation Testing) developed in

Java. It depends on generating GUIWebObjects for the web

Keywords Test Data

Driver script

Test results

Input

Input

Input data from
external data source

Input keywords

Call appropriate
functions related to

keywords

Execute test scripts

Select web
elements using web

locators

Run application

Generate reports

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.46, June 2018

25

page to be tested to perform GUI actions on these HTML web

objects. Then, functional testing is performed using these GUI

action-events. This framework architecture diagram is shown

in Fig. 5.

WAT framework [42] consists of the following components:

 Web objects: a test case consists of test steps, each test

step works on a different HTML web object such as

button, dropdownlist, radio button, checkbox and tabs

to perform the required test case step.

Fig. 5. Keyword Driven Framework Architecture

 JSoupParser and WebOperation: each HTML web

object has a different tag such as id, name and class.

Java soup parser is responsible for creating XPath for

each HTML control. This XPath will be used later to

locate the web element in the web page of SUT so that

the automation framework can use this HTML control

to achieve the business scenario such as Click,

SelectValue, Type…. etc.

 Configuration File: this file is responsible for

specifying the test script that will run on which web

browser This file is editable so that the tester can

update it to run the test script on a different browser.

 Client: It sends the commands of the test script to the

selenium engine to run them on the web browser.

Verma [43] and Singla [44] propose two frameworks which

are based on integrating the keyword-driven scripting

technique with Selenium automation tool. Both authors

propose almost the same main features and components.

Keyword-driven testing simulates user actions on the SUT. It

is used by testers to execute test cases and then extract the

final test results. Using this framework, testers do not any

programming skills. The main idea is the use of keywords

which are related to functions. These functions are

parameterized, so tester can update keyword parameters and

create new test cases using keywords lookup. This framework

integrates with Selenium. Singla [44] lists the main common

components of keyword-driven automation testing framework

as follows:

 Functionality class library: each functionality in the

SUT has a corresponding method.

 Test data sheet: this sheet has the test data which is

needed to execute the test case. The main columns for

this sheet are: test case id, object type, object

identifier, keyword, and data.

 Selenium web driver: To start test case execution, the

code must have a web driver to initialize an instance of

the web browser.

 Result reports: this report has the final testing result

for the executed test cases.

 Driver script: this script is responsible for reading the

keywords and mapping them to their corresponding

methods to be executed on the SUT.

Ashutosh [45] propose development of a software

automation testing framework for avionics system only.

However, its main problem was that this model cannot be

used to test different kinds of applications. Yalla and

Shanbhag [46] state that the best way to reduce testing effort

is mixing reusable testing framework with open source

automation tool.

Stresnjak [47] demonstrates usage of Robot framework in

automation testing. It is a keyword driven framework which

manipulates test cases which is stored in external source. Used

keywords should be implemented in test libraries to be

executed on SUT. Pajunen [34] describes the Robot

framework as a generic keyword-driven software testing

automation framework. Test cases are composed of higher

level user keywords which are composed of lower level

keywords which are translated to test scripts. First, lower level

keywords are packed together in framework libraries. Then,

the tester can create new user keywords by using different

combinations of the lower level keywords. After that, the test

cases will be executed on the SUT.

Madhavan [48] propose a semi-automated keyword driven

automation framework called “Autotestbot” to be used in the

acceptance testing phase. However, it is tightly coupled with

Selenium automation tool in Firefox web browser only. Fig. 6

shows the framework architecture [48] with its main

components:

 Test cases repository: The framework needs a

repository of acceptance test cases from similar

application types as input. These test cases are then

manipulated using the framework NLP engine. This

repository will be the knowledge base for the proposed

framework during execution.

Fig. 6. Semi-automated Keyword Driven Automation

Framework

XPath

JSoupParser

Buttons

Page

Menu

WebObjects

Click

mouseOver

WebOperations

Client Interface

Perform
Operations

Browser
Name

Browser
Path

Configuration File

Selenium

Preprocessor
module

Automation code
generator

Post tager
module

Keyword mapper
module

Test cases
repository

Training data

Keywords
repository

Web
browser

Selenium library
Input spread sheet

test cases
Input

Test Engineer

Users adds object IDs
to the input sheet

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.46, June 2018

26

 Keywords repository: Mapping is created between

actions in the test cases steps and their appropriate

selenium web driver keywords. Thus, each action will

be mapped to selenium keyword in a dictionary.

 Preprocessing module: This module has the

responsibility of reading the input test cases and uses

existing tool kit for text preprocessing operations.

 POS tagger module: This module is responsible for

reading the processed test cases and assigning parts of

the selected tags to these tokenized test cases using the

test cases repository.

 Keyword mapper module: This module is responsible

for selecting the corresponding Selenium action that

matches the test case step.

 Code generator module: This module is responsible

for generating the test script in Python. A test case is

mapped to Python test method that works upon

Selenium web driver.

Castro et al. [49] propose an extension to Selenium

automation tool, called “SeleniumDB”. This extension adds

new functionality to the assertion statements by adding the

feature of connecting to database to check whether data is

saved successfully or not as shown in the Fig. 7.

The results of applying this extension was saving 88% of the

total time spent in executing test cases compared to the semi-

automated approach and 92% compared to the manual

approach [49].

Fig. 7. SeleniumDB Extension to Selenium

5. CONCLUSION AND FUTURE WORK
Maintenance of application is always required to resolve

defects, add new features, and enhance existing features.

Therefore, regression testing is an important software testing

phase that it executed after every application change [50] [51]

especially for large scale applications that are frequently

updated. However, regression testing consumes large amounts

of time as well as effort because it requires re-running test

cases which were already executed [52]. Chittimalli et al. [53]

mentioned that regression testing consumes about 80% of the

total software testing estimated budget. For these reasons, it is

better to automate test cases that will be reused in later

software testing phases [54].

This study presents an overview of the main software

automated testing framework. From out the review, we

emphasize that using the programmable automation testing

approach is preferable. However, due to its high cost, new

techniques should be developed to overcome this problem.

6. REFERENCES
[1] Q. A. Malik, "Combining Model-Based Testing,

Stepwise Formal Development," Abo Akademi

University, Department of Information Technologies

Joukahaisenkatu, [PhD Thesis], 2010.

[2] Banerjee, B. Nguyen, V. Garousi and A. Memona,

"Graphical User Interface (GUI) Testing Systematic

Mapping and Repository," Information and Software

Technology, vol. 55, no. 10, p. 1679–1694, 2013.

[3] P. Yadav and A. Kumar, "An Automation Testing Tool

Using Selenium," International Journal of Emerging

Trends & Technology in Computer Science (IJETTCS),

vol. 4, no. 5, pp. 068-071, 2015.

[4] G. Tassey, "The Economic Impacts of Inadequate

Infrastructure for Software Testing," National Institute of

Standards and Technology Acquisition and Assistance

Division, 2002.

[5] Jain and S. Sharma, "An Efficient Keyword Driven Test

Automation Framework for Web Applications,"

International Journal of Engineering Science &

Advanced Technology, vol. 2, no. 3, pp. 600-604, 2012.

[6] K. M. Mustafa, R. E. Al-Qutaish and M. I. Muhairat,

"Classification of Software Testing Tools Based on the

Software Testing Methods," Second International

Conference on Computer and Electrical Engineering, vol.

2, 2009.

[7] O. A. Lemosa, F. C. Ferrari, M. M. Eler, C. J.

Maldonado and P. C. Masiero, "Evaluation Studies of

Software Testing Research in Brazil, In The World: A

Survey of Two Premier Software Engineering

Conferences," Journal of Systems and Software, vol. 86,

no. 4, p. 2013, 951–969.

[8] Santiago, W. P. Silva and N. L. Vijaykumar, "Shortening

Test Case Execution Time for Embedded Software,"

Second International Conference on Secure System

Integration and Reliability Improvement, 2008.

[9] R. K. Chauhan and I. Sing, "Latest Research and

Development on Software Testing Techniques and

Tools," International Journal of Current Engineering,

Technology, vol. 4, no. 4, 2014.

[10] Singh and B. Tarika, "Comparative Analysis of Open

Source Automated Software Testing Tools: Selenium,

Sikuli, Watir," International Journal of Information and

Computation Technology, vol. 4, pp. 1507-1518, 2015.

[11] Divya and S. D. Mahalakshmi, "An Efficient Framework

for Unified Automation Testing: A Case Study on

Software Industry," International Journal of Advanced

Research in Computer Science & Technology, vol. 2,

2014.

[12] T. Kanstrén, "A Review of Domain-Specific Modelling,

Software Testing," The Eighth International Multi-

Conference on Computing in the Global Information

Technology, 2013.

Bindings:
C#, Java

Selenium
webdriver API

Drivers:
IE, Firefox,

Chrome

Selenium RC

SeleniumDB

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.46, June 2018

27

[13] Pillai, "Designing Keyword Driven Framework mapped

at Operation Level," 2017. [Online]. Available:

http://www.automationrepository.com/2012/08/keyword-

driven-framework-mapped-at-operation-level-part-1/.

[14] S. Thummalapenta, S. Sinha, N. Singhania and S.

Chandra, "Automating Test Automation," 34th

International Conference on Software Engineering

(ICSE), 2012.

[15] V. N. Maurya and R. Kumar, "Analytical Study on

Manual vs. Automated Testing Using with Simplistic

Cost Model," International Journal of Electronics and

Electrical Engineering, vol. 2, no. 1, 2012.

[16] Jain, M. Jain and S. Dhankar, "A Comparison of

RANOREX, QTP Automated Testing Tools, their impact

on Software Testing," International Journal of

Engineering, Management & Sciences (IJEMS) ISSN-

2348 –3733, vol. 1, no. 1, 2014.

[17] J. Mishra, I. Ali and A. K. Upadhyay, "Automated Model

Based Testing," International Journal of Engineering

Research & Technology (IJERT), vol. 1, no. 4, 2012.

[18] V. Sangave and V. Nandedkar, "Generic Test

Automation," International Journal of Science and

Research (IJSR), vol. 4, no. 7, 2015.

[19] M. Sadiq and F. Firoze, "A Method for the Selection of

Software Testing Automation Framework using Analytic

Hierarchy Process," International Journal of Computer

Applications, 2014.

[20] S. Maheshwari and D. C. Jain, "A Comparative Analysis

of Different Types of Models in Software Development

Life Cycle," International Journal of Advanced Research

in Computer Science and Software Engineering, vol. 2,

no. 5, 2012.

[21] J. A. Clark, H. Danb and R. M. Hierons, "Semantic

Mutation Testing," Third International Conference on

Software Testing, Verification, and Validation

Workshops, vol. 78, no. 4, p. 345–363, 2011.

[22] O.-P. Puolitaival, T. Kanstrén, V.-M. Rytky and A.

Saarela, "Utilizing Domain-Specific Modelling for

Software Testing," The Third International Conference

on Advances in System Testing and Validation

Lifecycle, pp. 115-150, 2011.

[23] T. Kosa, M. Mernikb and T. Kosarb, "Test Automation

of a Measurement System Using a Domain-Specific

Modelling Language," Journal of Systems and Software,

vol. 111, p. 74–88, 2016.

[24] S. Paydar and M. Kahani, "An Agent-Based Framework

for Automated Testing of Web-Based Systems," Journal

of Software Engineering and Applications, vol. 4, pp. 86-

94, 2011.

[25] Ema and E. M. Reddyb, "Software Test Automation: An

algorithm for solving system management automation

problems," International Conference on Information,

Communication Technologies (ICICT), vol. 46, pp. 949-

956, 2015.

[26] T. R. Devi, "Propose Automated Software Testing Tools

to Test Given Application Report Bugs," International

Journal of Engineering Research and Technology

(IJERT), vol. 2, no. 1, 2013.

[27] B. Bhondokar, P. Ranawade, S. Jadhav and M. Vibhute,

"Hybrid Test Automation Framework for Web

Application," International Journal of Engineering

Research and Technology (IJERT), vol. 4, no. 4, pp.

1007-1012, 2015.

[28] M. Hammoudi, G. Rothermel and P. Tonella, "Why do

Record/Replay Tests of Web Applications Break?,"

IEEE International Conference on Software Testing,

Verification and Validation (ICST), 2016.

[29] B. N. Nguyen, B. Robbins, I. Banerjee and A. Memon,

"GUITAR: an Innovative Tool for Automated Testing of

GUI-driven Software," Automated Software

Engineering, vol. 21, no. 1, p. 65–105, 2014.

[30] J. Tang, X. Cao and A. Ma, "Towards Adaptive

Framework of Keyword Driven Automation Testing,"

IEEE International Conference on Automation and

Logistics, 2008.

[31] Peethambaran, "Automated Functional Testing Using

Keyword-driven Framework," Helsinki Metropolia

University of Applied Sciences, Master of Engineering

[Master Thesis], 2015.

[32] G. D. Lucca, A. Fasolino and F. Faralli, "Testing web

applications," International Conference on Software

Maintenance, p. 310, 2002.

[33] R. D. Craig and S. P. Jaskiel, Systematic Software

Testing, Artech House Publishers, 2002.

[34] T. Pajunen, T. Takala and M. Katara, "Model-Based

Testing with a General Purpose Keyword-Driven Test

Automation Framework," Fourth International

Conference on Software Testing, Verification and

Validation Workshops, 2011.

[35] M. Leotta, D. Clerissi, F. Ricca and P. Tonella, "Capture-

Replay vs. Programmable Web Testing," 20th Working

Conference on Reverse Engineering (WCRE), 2013.

[36] M. Leotta, D. Clerissi, F. Ricca and P. Tonella, "Visual

vs. DOM-Based Web Locators: An Empirical Study,"

International Conference on Web Engineering (ICWE),

p. 322–340, 2014.

[37] H. Liu and H. Lieberman, "Programmatic Semantics for

Natural Language Interfaces," Proceeding Extended

Abstracts on Human Factors in Computing Systems, pp.

1597-1600, 2005.

[38] C. Kelleher and R. Pausch, "Lowering the Barriers to

Programming: A Taxonomy of Programming

Environments,Llanguages for Novice Programmers,"

Journal ACM Computing Surveys (CSUR), vol. 37, no.

2, p. 133–137, 2005.

[39] S. Srivastava, S. Gulwani and J. S. Foster, "From

Program Verification to Program Synthesis,"

Proceedings of the 37th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming

languages, vol. 45, no. 1, pp. 313-326, 2010.

[40] G. Little and R. C. Miller, "Translating Keyword

Commands into Executable Code," Proceeding UIST '06

Proceedings of the 19th annual ACM symposium on

User interface software and technology, pp. 135-144,

2006.

[41] F. Wang and W. Du, "A Test Automation Framework

Based on WEB," IEEE/ACIS 11th International

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.46, June 2018

28

Conference on Computer and Information Science, pp.

683-687, 2012.

[42] J. M, S. P and S. Prabu, "Web-Based Automation

Testing Framework," International Journal of Computer

Applications, vol. 45, no. 16, 2012.

[43] K. V. Arya and H. Verma, "Keyword Driven Automated

Testing Framework for Web Application," 9th

International Conference on Industrial and Information

Systems (ICIIS), 2014.

[44] S. Singla and H. Kaur, "Selenium Keyword Driven

Automation Testing Framework," International Journal

of Advanced Research in Computer Science, Software

Engineering, vol. 4, no. 6, pp. 125-129, 2014.

[45] K. Jha, "Development of Test Automation Framework

for Testing Avionics Systems," 29th Digital Avionics

Systems Conference (DASC), 2010.

[46] M. Yalla and M. Shanbhag, "Building Automation

Framework Around Open Source Technologies,"

Proceeding of Software Testing Conference, pp. 6-9,

2009.

[47] S. Stresnjak and Z. Hocenski, "Usage of Robot

Framework in Automation of Functional Test

Regression," The Sixth International Conference on

Software Engineering Advances (ICSEA), pp. 30-34,

2011.

[48] Madhavan, "Semi Automated User Acceptance Testing

using NLP," Lowa State University, [Master Thesis],

2014.

[49] Cervantes, "Exploring the Use of a Test Automation

Framework," IEEE Aerospace conference, 2009.

[50] E. Engström, P. Runeson and M. Skoglund, "A

Systematic Review on Regression Test Selection

Techniques," Information and Software Technology, vol.

52, p. 14–30, 2010.

[51] Swarnendu and R. Mall, "Regression Test Selection

Techniques A Survey," An international Journal of

Computing and Informatics, vol. 35, p. 289–321, 2011.

[52] Zarrad, "A Systematic Review on Regression Testing for

Web-Based Applications," Journal of Software, vol. 8,

pp. 971-990, 2015.

[53] P. K. Chittimalli and M. J. Harrold, "Recomputing

Coverage Information to Assist Regression Testing,"

IEEE Transactions on Software Engineering, vol. 35, no.

4, p. 452–469, 2009.

[54] K. Dobolyi, E. Soechting and W. Weimer, "Automating

regression testing using web-based application

similarities," International Journal on Software Tools for

Technology Transfer, vol. 13, no. 2, p. 111–129, 2011.

[55]

IJCATM : www.ijcaonline.org

