
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.48, June 2018

22

Key-Aggregate Cryptosystem based on Elliptic Curve

Cryptography for Data Sharing in Cloud Storage with

Result and Analysis

Kulkarni Mayuri A.
PG Student,

M.B.E.S. College of Engg
Ambajogai

V. R. Chirchi
Professor
PG Dept.,

M.B.E.S. College of Engg
Ambajogai

ABSTRACT

It is important to share data securely, efficiently and flexibly

in cloud storage. We describe public-key encryption technique

based on elliptic-curve theory which is used to create faster,

smaller and more efficient cryptographic keys. This public-

key cryptosystem produces constant size cipher texts and user

can aggregate any set of secret keys and make them as

compact as single and can decrypt any set of cipher texts by

using that compact aggregate key but, files outside the set

remain confidential. In this cryptosystem it is possible to

efficiently assign decryption rights for the set of cipher texts

to any users. The secret key holder can release a constant-size

aggregate key for set of cipher texts and this compact

aggregate key conveniently shared with others with very

limited secure storage. In this paper, we study how to create a

decryption key more powerful so that it can allows decryption

of multiple cipher texts, without increasing key size.

Keywords

Key-aggregate cryptosystem, Elliptic curve cryptography,

public-key cryptosystem, Data sharing.

1. INTRODUCTION
Cloud storage is becoming very popular recently. Online data

almost always present in shared environments so that,

ensuring privacy is a very important task. Nowadays, many

online services are available that are using personal data. Any

user can easily apply for free accounts for email, photos, files

etc. with specified storage space. Also with the help of

wireless technology users are accessing their files, emails by

their mobiles from anywhere. Traditionally, data privacy was

provided by depending on server ensuring access control

mechanism and authentication but, in this any unexpected

privilege escalation will expose all data. Solution for this is to

encrypt data before uploading to cloud storage.

In this paper, to encrypt data effectively we propose a basic

key-aggregate scheme based on elliptic curves which is

public-key cryptosystem that assign decryption rights to

multiple cipher text classes using a single constant sized key.

Any user can combine set of secret keys and make them as a

single small key which hold the same ability of all the keys

and this key is called as aggregate key. By using this

aggregate key user can decrypt a specified set of cipher texts.

Consider example of Dropbox. Suppose, Alice puts all photos

on Dropbox and she does not want to share her data with

everyone. For more privacy she encrypts all photos before

uploading to the server. Bob asks her to share some photos in

which he appears. Now there are two possibilities:

1. Alice can encrypt all files with a single encryption key

and share that key directly with Bob.

2. Alice can encrypt files with distinct keys and share all

corresponding keys with Bob.

First approach is improper since, unwanted data also gets

exposed to Bob. In second approach, numbers of keys are as

many as number of shared files which may be hundreds or

thousands in numbers so transferring these keys requires

secure channel and large storage space which is expensive.

Therefore, best solution to above problem is Alice has to

encrypt data with distinct keys but share a single decryption

key of constant size to Bob.

To make Key-Aggregate cryptography (KAC) more efficient

we are using Elliptic-Curve cryptography (ECC) with it. ECC

is a public key encryption technique that can be used to create

faster, smaller and more efficient cryptographic keys. ECC

provides more security for a smaller key size therefore; it also

reduces the processing overhead. That means smaller

parameters can be used in ECC as compare to other systems

such as RSA and DSA, but with equivalent level of security.

2. RELATED WORK

2.1 Cryptography Using Predefined

Hierarchy of Secret Key
Most efficient techniques for access control of online data is

use of pre-defined hierarchy of secret keys [2] i.e. in the form

of tree structure. In tree structure key assigned to a particular

node is used to derive the keys of its descendent nodes i.e.

granting the access to key corresponding to any node

implicitly grants access to all keys to its descendent nodes.

This technique minimizes the expense in storing and

managing secret keys.

Sandhu [3] proposed a method to generate a tree hierarchy to

define access control using symmetric keys. With this scheme

information is classified into classes and these classes are

organized as a rooted tree i.e. hierarchy. In this tree most

privileged security class is at the root. User stores a single key

of fixed size associated to its security class and keys for the

security classes in the subtree are generated from this key by

using one-way functions.

Generally, hierarchical approach is efficient only if user wants

to share all files under particular branch of hierarchy. But, as

the number of branches increases the number of keys

increases.

2.2 Symmetric-Key Encryption using

Compact Key
This encryption scheme [4] is invented for sharing number of

keys at a time in broadcast scenario. Encryptor needs to get

the respective secret key for encryption of data trough secure

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.48, June 2018

23

channel. This key sharing via secure channel is costly and not

always suitable for many applications on cloud.

2.3 Identity-Based Encryption with

Compact Key
Identity-Based Encryption(IBE) [5] is based on public-key

cryptosystem in which the public key of a user is some unique

information about the identity of the user (e.g. a user's email

address). In public-key cryptosystem key pair i.e. public key

and private key used for encryption-decryption process. This

means that a sender who has access to the public parameters

of the system can encrypt a message using e.g. the text-value

of the receiver's name or email address as a key. The receiver

obtains its decryption key from a central authority, which

needs to be trusted as it generates secret keys for every user.

In IBE relies on trusted party called as private key

generator(PKG) which has a master-secret key and provides

each user a secret key depends upon identity of user. This

increases the costs of storing and transmitting ciphertexts

which is not suitable in many situations as shared cloud

storage.

Fuzzy IBE [6] allows to one single compact secret key to

decrypt cipher texts those are encrypted under many identities

which are near about close in specific manner. Fuzzy IBE

allows private key as identity and to decrypt cipher text

encrypted with identity only if those identities are close to

each other. Fuzzy IBE can also enable encryption using

biometric inputs as identities.

2.4 Attribute Based Encryption
In Attribute Based Encryption [7] and [8] each user is

identified by a set of attributes. Each cipher text in ABE is

associated with particular set of attributes and it can be only

decrypted by user who has access to corresponding secret key.

The master secret key holder can extract a secret key and

securely shares with user who satisfies the access control

policies defined by data owner depends upon attributes of

users. A drawback of this scheme is that the size of key

increases with the number of attributes and the cipher text size

is not constant.

2.5 Proxy Re-Encryption
In Proxy Re-Encryption (PRE) [9] proxy is allowed to convert

a cipher text with one key into cipher text of same message

but with different key i.e. this scheme grants to proxy server

the ability to convert the cipher text encrypted by one user‟s

public key into cipher text with another user‟s public key. In

this scheme proxy doesn‟t have knowledge of data that has

been sent. Any user has to trust the proxy that it only converts

cipher texts according to given instructions.

Proxy Re-Encryption scheme transfers the rights of secure key

storage from the delegate to the proxy. This is inconvenient

because every user needs to interact with the proxy for

decryption.

3. PROPOSED SYSTEM
We describe the more efficient Key-Aggregate cryptosystem

(KAC) that combines different decryption keys for the files of

same class into a single key for that subset of files. We create

a more powerful decryption key so that it can decrypt number

of cipher texts in the same class without increasing key size.

Fig 1: Key-Aggregate Cryptosystem for Online Storage

“We design Key-Aggregate Encryption scheme based on

Public Key Encryption which is efficient and flexible in the

sense that any subset of cipher texts is decryptable by

decryption key of constant size which also called as aggregate

key.”

Data owner encrypts all files with the public key and also with

the identifier for that cipher text. Data owner also contains

master secret key from which different secret keys for cipher

text classes can be extracted. This extracted key is called as

aggregate key which contains power of keys to decrypt

number of cipher texts under same class.

With this solution, data owner encrypts all files under the

identifier for the cipher text and sends a single aggregate key

to the receiver via secure channel. Receiver then downloads

the specific files from cloud storage and uses this aggregate

key to decrypt these files.

Fig 1 shows Key-Aggregate Cryptosystem, here data owner

encrypt files by using its private key and stores encrypted files

on cloud storage. Then data owner extract aggregate keys

from master secret key and shares aggregate key for

encrypted files with identifiers 1,8 & 7 with user1 and shares

aggregate key for encrypted files with identifiers 2,3,& 4 with

user2, so that user1 and user2 can decrypt those three files by

using single aggregate key.

3.1 Key Aggregate Cryptosystem
A Key-Aggregate Cryptosystem consists of the

following algorithms:

1. Setup(1
λ
,n): It takes input the number of cipher text

classes „n‟ and group order parameter „λ‟ and gives public and

private parameters as a output.
The data owner executes the setup phase.

2. KeyGen (): Outputs the public key „PK‟ and master secret

key „msk‟ pair.

This phase also gets executed by data owner.

3. Encrypt(PK,i,m): Takes input public key „PK‟, cipher

text class „i‟ and the message „m‟ and gives output the cipher

text „C‟.

This phase is executed by any user who wants to store the

encrypted data on cloud storage.

4. Extract(msk,S): Takes input the master secret key „msk‟

and a subset Sʗ {1,2,….n} and computes the aggregate key

„Ks„ for the given subset of cipher text classes.

This phase is executed by data owner for providing decryption

rights for a particular set of ciphertexts classes to particular

user.

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.48, June 2018

24

5. Decrypt(Ks,S,i,C={c1,c2,c3,…}): Takes input as the

aggregate key „Ks‟ corresponding to a subset Sʗ {1,2,..n}, the

cipher text class „i‟ and the set of cipher texts „C‟ and gives

output as a decrypted message „m‟ .

This phase is executed by user who got aggregate key and

decryption authority.

Fig 2: Key-Aggregate Cryptosystem Data Flow Diagram

3.2 Elliptic Curve Cryptography
In 1985, Neal Koblitz and Victor Miller independently

proposed using elliptic curves to design public key

cryptographic systems. In the late 1990`s, ECC was

standardized by a number of organizations and it started

receiving commercial acceptance. Nowadays, it is mainly

used in the resource constrained environments, such as ad-hoc

wireless networks and mobile networks.

Elliptic curves are used to construct the public key

cryptography system. The private key d is randomly selected

from [1, n-1], where n is integer. Then the public key Q is

computed by dP, where P,Q are points on the elliptic curve.

Like the conventional cryptosystems, once the key pair (d, Q)

is generated, a variety of cryptosystems such as signature,

encryption/decryption, key management system can be set up.

ECC requires significantly smaller key size with same level of

security. Benefits of having smaller key sizes are faster

computations need less storage space. ECC ideal for

constrained environments such as Pagers, PDAs, Cellular

Phones, Smart Cards.

Table 1: NIST recommended key sizes

Symmetric algorithm

(bit)

RSA and DH

(bit)

ECC

(bit)

56 512 112

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 521

4. PERFORMANCE ANALYSIS
For this approach to evaluate performance we consider tree

structure in fig:3 as an example. Here height of tree is 4 (h=4).

For this tree total number of classes i.e. N=31 (N = 2h+1 - 1).

Consider now Alice has demanded some set of classes i.e.

n = 3 so for this Delegation Ratio i.e. r = 3/31 = 0.1 (r = n/N).

To provide access on 3 classes how many keys need to be

distributed to Alice? Na i.e. Total number of keys distributed

for given r. (Na = 2.5)

Compression factor F for certain h is average number of

delegated classes that each granted key can decrypt i.e. ratio

of total number of classes to the total number of keys

distributed for given r (F = n/Na). F = 3/2.5 = 1.2

Here for this approach higher Compression Factor is

preferable because it means each granted key can decrypt

more ciphertexts.

(a) (b)

Fig 3 : Key assignment for 3 classes in tree hierarchy of

height h=4

Fig 4 : Compression Factor (F) for Different Delegation

Ratio

0

5

10

15

20

0 0.5 1 1.5

C
o

m
p

re
ss

io
n

 F
ac

to
r

(F
)

Delegation Ratio (r)

h=2

h=3

h=4

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.48, June 2018

25

Fig 5 : Number of Granted Keys (na) required for

Different Delegation Ratio

5. FUTURE WORK
To share data flexibly through cloud computing users prefers

to upload encrypted data on cloud. We can provide additional

security by verifying the encrypted data by admin of cloud

before uploading it to cloud. It is also important to provide

additional security while sharing decryption key with users.

6. CONCLUSION
Our Key-Aggregate Cryptosystem ensures that the cipher text

and aggregate key are of constant size. Use of Elliptic Curve

Cryptography (ECC) in addition provides advantage of

shorter key length providing faster computations. ECC can

provide a level of security with a 164-bit key where other

systems require 1024-bit key for same level of security. As

ECC provides more security with lower computing power and

low resource usage , it is widely used for mobile applications.

7. REFERENCES
[1] Cheng-Kang Chu, Sherman S. M. Chow, Wen-Guey

Tzeng, Jianying Zhou, and Robert H. Deng,” Key-

Aggregate Cryptosystem for Scalable Data Sharing in

Cloud Storage,” IEEE Transactions on Parallel and

Distributed Systems. Volume: 25, Issue: 2. Year :2014

[2] S. G. Akl and P. D. Taylor, “Cryptographic Solution to a

Problem of Access Control in a Hierarchy,” ACM

Transactions on Computer Systems (TOCS), vol. 1, no.

3, pp. 239–248, 1983.

[3] R. S. Sandhu, “Cryptographic Implementation of a Tree

Hierarchy for Access Control,” Information Processing

Letters, vol. 27, no. 2, pp. 95–98, 1988.

[4] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, “Patient

Controlled Encryption: Ensuring Privacy of Electronic

Medical Records,” in Proceedings of ACM Workshop on

Cloud Computing Security (CCSW ‟09). ACM, 2009,

pp. 103–114.

[5] D. Boneh and M. K. Franklin, “Identity-Based

Encryption from the Weil Pairing,” in Proceedings of

Advances in Cryptology – CRYPTO ‟01, ser. LNCS, vol.

2139. Springer, 2001, pp. 213–229.

[6] A. Sahai and B. Waters, “Fuzzy Identity-Based

Encryption,” in Proceedings of Advances in Cryptology -

EUROCRYPT ‟05, ser. LNCS, vol. 3494. Springer,

2005, pp. 457–473.

[7] V. Goyal, O. Pandey, A. Sahai, and B. Waters,

“Attribute-Based Encryption for Fine-Grained Access

Control of Encrypted data,” in Proceedings of the 13th

ACM Conference on Computer and Communications

Security (CCS ‟06). ACM, 2006, pp. 89–98.

[8] M. Chase and S. S. M. Chow, “Improving Privacy and

Security in Multi-Authority Attribute-Based

Encryption,” in ACM Conference on Computer and

Communications Security, 2009, pp. 121–130.

[9] R. Canetti and S. Hohenberger, “Chosen-Ciphertext

Secure Proxy Re-Encryption,” in Proceedings of the 14th

ACM Conference on Computer and Communications

Security (CCS ‟07). ACM, 2007, pp. 185–194.

[10] L. Hardesty, “Secure computers aren‟t so secure,” MIT

press, 2009,

http://www.physorg.com/news176107396.html.

[11] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou,

“Privacy-Preserving Public Auditing for Secure Cloud

Storage,” IEEE Trans. Computers, vol. 62, no. 2, pp.

362–375, 2013.

[12] B. Wang, S. S. M. Chow, M. Li, and H. Li, “Storing

Shared Data on the Cloud via Security-Mediator,” in

International Conference on Distributed Computing

Systems - ICDCS 2013. IEEE, 2013.

[13] G. C. Chick and S. E. Tavares, “Flexible Access Control

with Master Keys,” in Proceedings of Advances in

Cryptology – CRYPTO ‟89, ser. LNCS, vol. 435.

Springer, 1989, pp. 316–322.

[14] W.-G. Tzeng, “A Time-Bound Cryptographic Key

Assignment Scheme for Access Control in a Hierarchy,”

IEEE Transactions on Knowledge and Data Engineering

(TKDE), vol. 14, no. 1, pp. 182–188, 2002.

[15] G. Ateniese, A. D. Santis, A. L. Ferrara, and B. Masucci,

“Provably-Secure Time-Bound Hierarchical Key

Assignment Schemes,” J. Cryptology, vol. 25, no. 2, pp.

243–270, 2012.

[16] Y. Sun and K. J. R. Liu, “Scalable Hierarchical Access

Control in Secure Group Communications,” in

Proceedings of the 23th IEEE International Conference

on Computer Communications (INFOCOM ‟04). IEEE,

2004.

[17] C.-K. Chu, J. Weng, S. S. M. Chow, J. Zhou, and R. H.

Deng, “Conditional Proxy Broadcast Re-Encryption,” in

Australasian Conference on Information Security and

Privacy (ACISP ‟09), ser. LNCS, vol. 5594. Springer,

2009, pp. 327–342.

[18] S. S. M. Chow, J. Weng, Y. Yang, and R. H. Deng,

“Efficient Unidirectional Proxy Re-Encryption,” in

Progress in Cryptology AFRICACRYPT 2010, ser.

LNCS, vol. 6055. Springer, 2010, pp. 316–332.

[19] G. Ateniese, K. Fu, M. Green, and S. Hohenberger,

“Improved Proxy Re-Encryption Schemes with

Applications to Secure Distributed Storage,” ACM

Transactions on Information and System Security

(TISSEC), vol. 9, no. 1, pp. 1–30, 2006.

[20] D. Boneh, C. Gentry, and B. Waters, “Collusion

Resistant Broadcast Encryption with Short Ciphertexts

and Private Keys,” in Proceedings of Advances in

Cryptology - CRYPTO ‟05, ser. LNCS, vol. 3621.

Springer, 2005, pp. 258–275.

0

1

2

3

4

5

6

0.1 0.3 0.5 0.7 0.9

N
u

m
b

e
r

o
f

G
ra

n
te

d
 K

e
ys

 (
n

a)

Delegation Ratio (r)

h=2

h=3

h=4

IJCATM : www.ijcaonline.org

