
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.48, June 2018

7

A Hybrid Approach to Social Network User Feed

Generation

Akhil Sudhakaran
Department of Computer

Science,
Sir M. Visvesvaraya

Institute of Technology,
Bengaluru, Karnataka, India

Devipriya Sarkar
Department of Computer

Science,
Sir M. Visvesvaraya

Institute of Technology,
Bengaluru, Karnataka, India

Praveen Kumar G.
Department of Computer

Science,
Sir M. Visvesvaraya

Institute of Technology,
Bengaluru, Karnataka, India

Ravikiran R.

Department of Computer Science,
Sir M. Visvesvaraya

Institute of Technology,
Bengaluru, Karnataka, India

Sushila Shidnal
Asst. Prof., Department of Computer Science,

Sir M. Visvesvaraya
Institute of Technology,

Bengaluru, Karnataka, India

ABSTRACT

Existing social networks handle generation of user activity

feeds by utilizing different data distribution models. Different

models optimize different aspects of feed generation such as

user specificity, processing efficiency, resource utilization and

latency. This paper propo*ses a hybrid model to handle this

problem elegantly. This model takes into account the

frequency of query requests between individual users and

classifies them into either a PUSH-Target user or PULL-

Target user. The former is provided with prioritized data

pushes and the latter with data pulls on user request basis.

Keywords

Social Network, Activity Feed, Hybrid Model.

1. INTRODUCTION
A „feed‟ is a content representation format used for providing

users(subscribers) with frequently updated information. Feeds

are populated with content provided by publishers that the

user is subscribed to. This can be sorted based on the time of

release or relevance to the user.

The steps involved in generating a unique feed for every user

is decided based on the content that is served at the end.

Several questions need to be answered to decide the technique

required such as:

(1). Are there more producers than consumers?

(2). What is the maximum acceptable latency?

(3). Will the feed items be sorted in the chronological order

or ranked selectively?

(4). Will the feed be infinitely long or of fixed length?

(5). Whether or not ads are a part of the feed to monetize the

feed service, etc.

Based on these questions one needs to choose a strategy for

publishing the feed.

2. RELATED WORK

2.1 Existing Models
There are primarily two models for managing feed events:

(1) Push Model / Fan-out-on-write (As shown in figure 1) -

Each activity is pushed to a generated feed maintained

for every consumer.

Fig. 1. Diagrammatic Representation of Push Model

(2) Pull Model / Fan-out-on-load (as shown in figure 2)-

Activities are retrieved from producers when user logs in

or refreshes the feed.

Fig. 2. Diagrammatic Representation of Pull Model

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.48, June 2018

8

Using the push model results in lower latency when fetching

feeds because they are pre-generated. This involves a huge

number of writes, but reads are really fast. This can lead to

higher resource consumption and potentially wasteful if users

log in infrequently. In contrast, using the pull model requires

processing time to generate a feed but is much more resource

friendly.

Many of the popular platforms today use a combination of

both. Although this leads to better performance, it

significantly increases complexity of the architecture

2.2 Existing Implementations
2.2.1 Facebook’s News Feed
Facebook‟s architecture uses a model that is primarily pull

based [2]. News feeds are fetched using aggregators, which

are query engines that accept user queries and retrieve items

from the backend while performing aggregation, ranking [7]

and filtering. Aggregators use „leaf‟ servers, which is a

distributed storage layer that indexes most recent activity for

each user.

2.2.2 Twitter’s Feed
Twitter uses a combination of both, pushing only to users that

are currently active [1]. Fan outs are implemented as micro

services. Cache is critical for Twitter and protects backing

stores from heavy read traffic. It uses Manhattan, Blobstore,

FlockDB and Redis among others.

2.2.3 Pinterest Feed
An implementation of the feed at Pinterest needs to be

continually updated as users follow or unfollow other users

and boards. New content is pushed out to the feeds of all

followers. MySQL is used for persistence and HBase for

backend storage [4].

2.2.4 Instagram Feed
In contrast to Facebook, Instagram uses a predominantly push

based model for generating a user‟s feed. When a user

uploads a post, the activity is asynchronously pushed to each

of the user‟s followers using a task manager and a message

broker [5]. Cassandra, Redis, RabbitMQ, PostgreSQL and

Memcached are used to manage data [3].

2.2.5 Yahoo
Yahoo describes architectures and techniques for large scale

applications that require the generation of activity feeds in its

paper “Feeding Frenzy: Selectively Materializing Users‟

Event Feeds” [6]. It suggests selecting a push or pull action

for each producer consumer pair based on their relative

producing and querying frequencies and the cost of each

action. This strategy was tested using Yahoo!‟s web-scale

database PNUTS [8], resulting in lowest system load.

3. PROPOSED MODEL
An optimal system utilization can be achieved by making

local push/pull decisions on a per producer-consumer pair

basis, depending on the relative frequencies of publishing and

querying. This paper suggests a less complex alternative by

associating the push/pull decision with each user.

Here, individual users are classified as either PUSH-target or

PULL-target based on the frequency of querying for feed. If a

user queries for updates frequently, he/she's classified as a

PUSH-target. If a user queries relatively less, he/she's a

PULL-target. The threshold frequency to decide whether a

user is push or pull target is based on the average query

frequency of all users and current system performance.

Fig. 3. Diagrammatic Representation of Hybrid Model

If a user has query frequency below the threshold, he/she is a

PULL-target; else push. When an event is generated, it is only

pushed to all the followers of the producers that are PUSH-

targets. Thus when a user requests for a feed, the system first

checks to see what kind of user it is. In case of a PUSH-target,

the feed is directly fetched from that user‟s materialized feed

table. In the other case, the feed is generated by fetching the

activity of the producers in that user‟s network (As shown in

figure 3).

4. IMPLEMENTATION
The abstract implementation of the push algorithm is stated

below:

Algorithm 1 Algorithm for Push

Input: e (Event), User

Output: User Feed

1: onEvent(e, User):

2: for each follower of User:

3: follower.Feed.push(e)

4:

5: fetchFeed(User):

6: return User.Feed

Each event by a producer is pushed to the feed table of all the

subscribers of the producer. When a feed is requested by a

user, it is fetched from the per-consumer materialized feed

table. Ranking of items in the feed can be done either when

the feed is fetched, or when an event is being pushed.

The abstract implementation of the pull algorithm is stated

below:

Algorithm 2 Algorithm for Pull

Input: e (Event), User

Output: Feed

1: onEvent(e, User):

2: User.activity.push(e)

3:

4: fetchFeed(User):

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.48, June 2018

9

5: Feed = []

6: for each following of User:

7: Feed.append(following.activity.top)

8: return Feed

Each event by a producer is stored in the activity table of that

user. When a feed is requested by a user, the algorithm fetches

the top „x‟ entries of all the producers the user is subscribed

to. The value of „x‟ determines the diversity level of the feed,

to ensure items in the feed include events from multiple

sources.

In the proposed implementation the user base is divided into a

push-list and a pull-list. The deciding factor for this division is

the frequency at which each user queries for the feed. This

frequency is compared with a global average. If the requesting

user's query frequency is lesser, then the user is categorized as

a pull user, else the user becomes a push user.

The hybrid feed generation algorithm implementation is stated

below:

Algorithm 3 Hybrid algorithm for feed generation

Input: e (Event), User

Output: User Feed

1: on Event(e, User):

2: for each PUSH follower of User

3: follower.feed.push(e)

4:

5: fetchFeed(User):

6: if User is PUSH:

7: return User.Feed

8: else if User is PULL

9: User.Feed = []

10: for each following of User:

11: User.Feed.append(following.activity.top)

12: return User.Feed

In the hybrid algorithm, when an event is created it is still

pushed to the subscribers of that user. But here, the push

action is performed only to the subscribers categorized as

PUSH-target. When a user requests for a feed, there are two

ways it could be fetched depending on the category of the

user:

(i). The user is a PUSH-target: In this case all the

required events are present right in the feed table of

the user. They are ranked, if required and presented

to the user.

(ii). The user is a PULL-target: In this case, events need

to be fetched from the producers the user is

subscribed to. This happens in the same way as the

pull model.

5. CONCLUSION
In this paper the proposed algorithm handles generation of

personalized user activity feed. The goal has been to improve

performance and resource utilization by means of a hybrid

model while retaining simplicity of architecture.

Classification of users is done based on their relative query

frequency. The claim is that the average query rate is a good

heuristic to discriminate users and prioritizing feed

performance of active users leads to a fairly balanced trade-off

between resource usage, performance and user experience.

6. FUTURE WORK
The paper hasn‟t addressed the exact manner in which the

threshold frequency is determined, and has assumed that this

is the average query frequency of all users in the platform.

Some strategies to determine this value include maintaining a

service that tracks global average frequency of queries, and

running periodic checks on query logs to compute the latest

value. In the latter case the time period must vary as the

system scales, to keep up with changes in user activity

patterns. Different average values can be maintained for

different geographical regions if required.

Another consideration is what happens when the category of a

user changes. By default, a user is a PULL-target. On

transitioning to a PUSH-target, feed will be pre-generated for

that user. In the other transition case, the generated feed items

of the user can either be discarded, or retained to quickly

display an old feed while the latest one is being generated.

7. REFERENCES
[1] M. Hashemi “The Infrastructure Behind Twitter: Scale”,

retrieved from

https://blog.twitter.com/engineering/en_us/topics/infrastr

ucture/2017/the-infrastructure-behind-twitter-scale.html

(2017, 19 January).

[2] Y. Zhu “Serving Facebook Multifeed: Efficiency,

performance gains through redesign”, retrieved from

https://code.facebook.com/posts/781984911887151/servi

ng-facebook-multifeed-efficiency-performance-gains-

through-redesign/ (2015, 10 March).

[3] S. Schneider “How Instagram Feed Works: Celery and

RabbitMQ”, retrieved from

https://blogs.vmware.com/vfabric/2013/04/how-

instagram-feeds-work-celery-and-rabbitmq.html (2013,

15 April).

[4] V. Sharma et al. “Scaling Deep Social Feeds at

Pinterest” SocialCom, 2013.

[5] Instagram Engineering “What Powers Instagram:

Hundreds of Instances, Dozens of Technologies”,

retrieved from https://instagram-engineering.com/what-

powers-instagram-hundreds-of-instances-dozens-of-

technologies-adf2e22da2ad (2011, 2 December).

[6] A. Silberstein et al. “Feeding Frenzy: Selectively

Materializing Users‟ Event Feeds” SIGMOD, June 6–11,

2010.

[7] M. Zuckerberg et al. "Dynamically providing a news

feed about a user of a social network." U.S. Patent

7,669,123, issued February 23, 2010.

[8] B.F. Cooper et al. "PNUTS: Yahoo!'s hosted data serving

platform." Proceedings of the VLDB Endowment 1, no. 2

2008: 1277-1288.

IJCATM : www.ijcaonline.org

https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html%20(2017
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html%20(2017
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html%20(2017

